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Abstract It has recently been shown that surface plasmon
microscopy (SPM) allows single nanoparticles (NPs) on
sensor surfaces to be detected and analyzed. The authors
have applied this technique to study the adsorption of
single metallic and plastic NPs. Binding of gold NPs
(40, 60 and 100 nm in size) and of 100 nm polystyrene
NPs to gold surfaces modified by differently w-
functionalized alkyl thiols was studied first. Self-
assembled monolayers (SAM) with varying terminal func-
tions including amino, carboxy, oligo(ethylene glycol),
methyl, or trimethylammonium groups were deposited
on gold films to form surfaces possessing different charge
and hydrophobicity. The affinity of NPs to these surfaces
depends strongly on the type of coating. SAMs terminated
with trimethylammonium groups and carboxy group dis-
play highly different affinity and therefore were preferred
when creating patterned charged surfaces. Citrate-
stabilized gold NPs and sulfate-terminated polystyrene
NPs were used as negatively charged NPs, while branched
polyethylenimine-coated silver NPs were used as positive-
ly charged NPs. It is shown that the charged patterned
areas on the gold films are capable of selectively
adsorbing oppositely charged NPs that can be detected
and analyzed with an ~1 ng-mL™"' detection limit.
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Introduction

Detection, quantification, and characterization of nanoparticles
of biological origin or engineered nanomaterials is the actual
challenge of different fields of analytical science, including food
and environmental safety, bioanalytics, and medical diagnostics
[1-4]. Several methods to detect single nanoparticles (NPs)
were reported [5]. One of such techniques is based on surface
plasmon resonance (SPR) which belongs to the highly sensitive
refractometric transducers [6] and has become a routine tech-
nique for investigation of interactions of biomolecules [7, 8].
This approach has been also realized as an imaging system
(SPR imaging or SPM — surface plasmon microscopy) [9].

The sensitivity of SPR devices is limited by fluctuations of
refractive index of aqueous environment [10, 11] and can be
increased by corresponding referencing. This referencing was
performed using the measurements at two different wave-
lengths [12, 13] or at closely placed sensing and referencing
spots [14, 15], while the mathematical procedure was realized
using image analysis [14], electrical [12] or optical [15] sub-
traction. It has been recently demonstrated that adsorption of
NPs to the resonant layer of SPR sensors provides well mea-
surable signals. A high sensitivity of this approach is also
based on the referencing: a few wm vicinity around these
NPs in course of their adsorption is compared with the rest
of the sensor surface.

Two SPM approaches for detection of single nanoparticles
have been developed [5, 16-20]. Both are based on the exci-
tation of surface plasmons in Kretschmann configuration. But
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the optical system used for coupling and imaging of the sensor
surface under conditions of plasmon resonance can be imple-
mented either by using of a high-numerical aperture (high-
NA) microscope objective [5, 16, 17] or by using separate
objectives and camera tilted according to Scheimpflug princi-
ple [18-20]. The high-NA approach allows one to acquire
highly resolved low distortion images but leads to the limita-
tion of the field of view, which is in this case typically smaller
than 100 pm x 80 um (< 0.01 mm?). Using this approach,
metallic and organic nanoparticles have been detected and
binding of DNA modified gold nanoparticles to the sur-
face coated by a complementary DNA sequence have
been shown [21]. The technique can be used also in air
[22, 23] where the difference in the refractive index be-
tween analyte and environment is much higher. It was
also applied for detection of viruses [24] and for tracking
of mitochondria in the living cells [25].

Another approach, contrarily to the high-NA approach, is
based on the conventional SPM [9] where the incident light is
coupled to a plasmonic sensor layer by a glass prism (Fig. 1).
This approach leads to a lower numerical aperture of this
optical system and to a correspondingly lower optical resolu-
tion. However, the sensitivity is still sufficient for detection of
single nanoparticles. Such a configuration has been used for
detection of single polystyrene nanoparticles (PS NPs) and
HIV virus-like particles (HIV-VLP) [18, 19]. Despite the
lower spatial resolution, this configuration has an important
advantage: the monitored (imaged) surface is much larger -
typically few mm?. Therefore, this approach has a higher dy-
namic range and lower limit of detection — starting from below
10° NPs-mL ™" up to 10'° NPs-mL ™" thus covering the whole
ppb concentration range [26, 27]. The large sensor surface
also provides more possibilities for the investigation of the
binding of NPs to different surfaces. Moreover, it can be used
for deposition of different receptors and for formation of sen-
sor arrays; this is demonstrated in the present work.

We report here a comparative investigation of interaction of
citrate stabilized gold nanoparticles (cit-Au NPs) and sulfate-
terminated polystyrene nanoparticles (sPS NPs) with various
surfaces formed by self-assembly monolayers (SAM) of w-
functionalized alkyl thiols. First, the influence of ionic
strength and surface coatings on the binding of cit-Au NPs
and sPS NPs was studied. Then, the binding of nanoparticles
to the surface patterned by deposition of spots with different
w-functionalized alkyl thiols was registered. The direct detec-
tion and visualization of adsorption of single NPs to the dif-
ferently functionalized sensor surfaces enables ultrasensitive
and unambiguous characterization of NP-surface interaction.
A brief schematic illustration of the study is depicted in Fig. 1.
Negatively charged cit-Au NPs and sPS NPs, and positively
charged branched-polyethylenimine-coated silver nanoparti-
cles (bPEI-Ag NP) were applied. The results indicate that
the electrostatic interaction is essential for a selective binding
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of NPs. Therefore, the surfaces patterned by oppositely
charged w-functionalized alkyl thiols can be used as sensors
to determine the sign of the surface charge of nanoparticles.

Materials and methods
Materials

11-Mercaptoundecanoic acid (C10-COOH), (11-
Mercaptoundecyl)tetra(ethylene glycol) (C11-(EG)4-OH), 1-
Undecanethiol (C10-CHj3), 11-Mercaptoundecyl amine hy-
drochloride (C11-NH,), were purchased from Sigma
Aldrich. 11-(Mercaptoundecyl)trimethylammo-nium chloride
(C11-N*(CH3); CI") was purchased from ProChimia Surfaces
(www.prochimia.com), 100 nm latex beads (sulfate-
terminated polystyrene nanoparticles, sPS-NPs) and citrate
stabilized gold nanoparticles (20 nm, 40 nm, 60 nm and 100
cit-Au NPs) from Sigma Aldrich (www.sigmaaldrich.com),
sodium citrate from Sigma-Aldrich, 99.9 % ethanol, boric
acid and phosphate salts from Merck (www.merck.de),
dimethyl sulfoxide (DMSO) and sodium chloride (NaCl) from
Roth (www.carlroth.com). Branched-polyethylenimine-
coated 60 nm silver nanoparticles (bPEI-Ag NP) were pur-
chased from nanoComposix (www.nanocomposix.com). All
solutions were prepared using deionized water additionally
purified by ELGA-Classic system (elgalabwater.com). All
suspensions of nanoparticles were diluted to a final
concentration of ~10% NP-mL ™.

The control measurements of hydrodynamic size and (-
potential of nanoparticles were performed at pH 5 (1 mM
citrate), pH 7 (1.2 mM phosphate), and pH 9 (1 mM boric
acid) using Malvern Zetasizer Nano ZS (www.malvern.com).

Functionalization of sensor surface

Prior to functionalization, the gold coated sensor prisms were
cleaned for ~20 s by freshly prepared “piranha solution” (1:3
v: v mixture of 32 % H,0,/H,SO,), rinsed thoroughly with
water and ethanol, and dried at room temperature. Caution:
piranha solution reacts violently with most organic materials
and must be handled with extreme care. In the next step, the
cleaned prisms were put in 1 mM ethanolic solution of the
corresponding w-functionalised alkyl thiol, and were incubat-
ed overnight at room temperature. Before usage, the prisms
were rinsed thoroughly by ethanol, and were dried by air.
The patterned C11-N*(CH3); CI” / C10-COOH surfaces
were prepared in two steps. First, 10 mM of C11-N*(CHs);
CI solution in DMSO were deposited by a non-contact dis-
penser sci-FLEXARRAYER-S3 (www.scienion.com) with a
dot pitch of 200-300 um forming an array of 100-250 pm
spots. After 20 min incubation in DMSO atmosphere at room
temperature, the spotted gold surface was rinsed thoroughly
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Fig. 1 Self-assembled
monolayers of w-functionalized
alkyl thiols were deposited on the
gold layer as a homogeneous
coating (left panel) or as patterned
layers consisting of two types of
w-functionalized alkyl thiols
(right panel). The binding of
nanopatrticles to such surfaces
was detected by wide-field
surface plasmon microscopy
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by DMSO and by ethanol followed by incubation in ethanolic
solution of 1 mM C10-COOH for 10 min - at this step, the rest
of the gold area is functionalized [15]. Due to very slow ex-
change kinetics of alkyl thiols [28, 29] we assume that this
procedure does not lead to any essential modification of the
formerly coated spots by C11-N*(CHs); CI™ alkyl thiol. Then,
the prism was rinsed by ethanol, dried, and mounted in the
SPM device.

Surface plasmon microscopy setup

The setup for SPM was developed within the EC-FP7 project
“Nanodetector” (www.nanodetector.eu). 642 nm SM-fiber
coupled laser diode with current and temperature controllers
(LP642-SF20, LDC205C and TED200C correspondingly)
were from Thorlabs (www.thorlabs.com). Light was
collimated by the 16 mm focus length objective (MVL16,
Thorlabs) and directed through 14 mm free aperture Glan
polarizer (EksmaOptics, www.eksmaoptics.com) set to the
p-polarisation (with regard to the gold coated prism surface).
Gold coated sensors consist of SF - 10 (n = 1.72) glass prisms
with 43—45 nm gold layer on 3—5 nm titanium adhesive layer.

The slope of the SPR curve and correspondingly the abso-
lute value of the signal of the SPR reflected light shows its
maximum at approximately 0.3-0.5 of the SPR reflectivity
[30]. However, taking into account the relative changes (the
ratio of signal changes to the mean signal value), the highest
signal-to-noise ratio is expected at the angle much closer to the
SPR minima [31]. Moreover, in close vicinity to SPR min-
imum the reflected light intensity tends to zero which
makes more affordable a registration of small changes
caused by adsorption of nanoparticles. Therefore, the
measurements were performed at the angle 0.1-0.3 de-
grees before SPR minimum.
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The image was formed on a MT9P031 monochrome
CMOS image sensor. The image sensor has a
2592 x 1944 pixels resolution with a pixel size of 2.2 pm.
The images with field of view of about 1.3—1.5 mm?” were
read at ~15 frames per second at full resolution by the
Beagleboard-XM single-board computer, averaged over 16
consecutive frames and recorded by PC for further analysis
by the homemade software. Initial version of this software
was reported in [23] whereas the advanced version based on
cluster analysis of images and template matching algorithms
was presented in [27].

Measurement sequence

The sample suspension was pumped by a solenoid-operated
micro-pump (Biochem Valve, 130SP1220-1TP, 12 V-DC,
www.biochemfluidics.com) at a flow rate of 1 mL-min ..
The measurement was started by calibration of the system in
the units of the refractive index; it was performed by pumping
of a 1.5 mL pulse of the background solution containing
additionally 20 mM NaCl. After a washing step, 1.5 mL
suspensions of each type of nanoparticles (40 nm, 60 nm,
100 nm cit-Au NPs and 100 nm sPS NPs) were pumped
through the flow cell with a washing step in between by 1.5
—5 mL of the background solution. The investigation of NPs
binding on homogeneously modified surface was performed
in 1.2 mM phosphate buffer with and without 200 mM NaCl
at pH 7. The calibration was performed in the corresponding
buffer containing 20 mM NacCl or 180 mM NaCl (in case of
using 200 mM NaCl in the background solution). When using
patterned surfaces, no calibration step was performed and,
additionally, 60 nm bPEI-Ag NPs suspended in pure water
were investigated.
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Results and discussion
Characterization of nanoparticles

As the work was performed with commercial nanoparticles,
their characterization was limited to measurements of (-
potential and hydrodynamic diameter. The measurements were
performed using dynamic light scattering. As shown in Table 1,
the obtained size values are very close to the data of supplier:
the deviation for “100 nm” NPs was below 10 %. No statisti-
cally significant changes of their measured size were observed
after an increase of the ionic strength by the addition of
200 mM NaCl or after 1-day incubation at room temperature.
An increase of pH from 5 up to 9 leads to a monotonous
change in (-potential of cit-Au NPs in 1 mM buffer without
NaCl with values about =30 mV to —46 mV (Table 1). In the
presence of 200 mM NacCl the absolute value of the C-
potential decreases down to the range between —6 mV and
—11 mV. It can be explained by electrostatic screening where
in the presence of 200 mM NaCl the Debye length decreases
from 3.6 nm down to 0.7 nm. The surface charge of sPS NPs is
determined by sulfate groups which are completely
deprotonated in the used pH-range. The observed non-
monotonous dependence of the (-potential on pH can be ex-
plained by adsorption of phosphate ions from the phosphate
buffer. Notably, the relatively low values of (-potentials at
200 mM NaCl did not lead to aggregation of nanoparticles.

Visualization of nanoparticles on the surface

Once a nanoparticle has bound on the sensor surface, it causes
a weak optical signal, which can be visualized only after some
preprocessing [23]. The crucial step of this analysis is the
formation of the differential record acting as a dynamic cor-
rection of the background and providing a possibility to com-
pensate not only the static background signal but also some
background drift. The result of this operation is the intensity
change (differential frame) between two subsequent frames
caused mainly by adsorbed (or desorbed) NPs. Therefore the

Table 1
NPs) at different conditions

number of images of NPs in each differential frame character-
izes the number of NPs adsorbed to (or desorbed from) the
surface during the time between two subsequent frames which
is ~1.1 s in full resolution.

The penetration depth of evanescent field into aqueous en-
vironment is about 200 nm for 650 nm wavelength [12].
Therefore, we can expect that we detect NPs on the surface
or at the distance till ~200 nm from the surface. The traveling
speed of NPs in aqueous suspension depends on their size;
1.6m-s ' for 10 nm NPs and 5.2 x 10 2 m-s~" for 100 nm NPs
[32]. Considering the penetration depth of the evanescent field
for the 642 nm laser wavelength as ~200 nm, the traveling
time of NPs within this region is ~0.1 us and 4 ps, for 10 nm
and 100 nm NPs, respectively, if these NPs are moving per-
pendicular to the surface. This time is much shorter than the
time between subsequent averaged frames, which is ~1.1 s.
Therefore, we cannot expect well measurable signals from
NPs bouncing from the surface.

The size and shape of the obtained images of adsorbed NPs
is the result of complicated interference of the incident,
reflected, and diffracted light. These images do not correspond
to the real size and shape of NPs and look like a dark or bright
oval spot or more complex shapes surrounded by one or more
ovals (Fig. 2). Their shape is very close to that obtained by
theoretical calculations [33, 34].

It is logical to expect that the differential images of the
adsorbed and desorbed NPs look like photographic
“positives” and “negatives”. Therefore, the detailed quantita-
tive analysis of the number and time dependent evolution of
these images allows one to get quantitative information on
adsorption and desorption of NPs to/from the surface [26,
27]. As single NPs are detectable, their minimal adsorption
rate corresponds to one NP per reasonable measurement time.
The adsorption rate of one NP per second per total sensor area
corresponds to ~10° NPs-mL ' or ~1 fM. The optimal con-
centration range for the detection technology was found to
cover the whole ppb range (1-1000 ng-mL ") [27]. An in-
crease of the measurement time and/or sensor area lead to
further improvement of the detection limit.

(-potential and hydrodynamic size of sulfate-terminated polystyrene nanoparticles (sPS NPs) and citrate stabilized gold nanoparticles (cit-Au

Buffer composition sPS NPs cit-Au NPs

Buffer [NaCl] mM  pH C-potential, mV Hydrodynamic diameter, nm ¢ potential mV Hydrodynamic diameter, nm
1 mM citrate 0 5 -23.5+1.9 N/A -29.5+0.6 N/A

1.2 mM phosphate 0 7 -47.7£5.0 939+14 -372+09 109.9 +0.6

1 mM boric acid 0 9 274+18 N/A 458 +2.6 N/A

1 mM citrate 200 5 -74+0.3 N/A -57+09 N/A

1.2 mM phosphate 200 7 23+1.7 98.5+4.1 -8.7+0.8 109.3+£0.3

1 mM boric acid 200 9 -17.7+1.5 N/A -114+0.6 N/A
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20nm
cit Au-NP

100nm
cit-Au-NP

100nm
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Fig. 2 Differential images of nanoparticles on the surface coated by
C11-(CH3);* CI” alkyl thiol. 20 nm (a), 100 nm citrate stabilized
gold nanoparticles (b), and 100 nm sulfate-terminated polystyrene
nanoparticles (c) at concentrations ~5 x 10® nanoparticles-mL ",
except 10® nanoparticless-mL ™" for 100 nm citrate stabilized gold
nanoparticles. Image size: 300 X 300 pixels (~ 0,02 mm?)

Detection of single nanoparticles on the surfaces
homogeneously coated by self-assembled monolayers

In order to identify the most suitable SAMs for creating het-
erogeneously patterned sensor surfaces, we first monitored the
adsorption behavior of cit-Au and sPS NPs on homogeneous-
ly coated surfaces. Additionally, we investigated the influence
of the higher ionic strength (salinity) on the adsorption of
these NPs. For coatings, five types of w-functionalized alkyl
thiols with different terminal moieties were selected: C11-
NH,, C11-N*(CH3); CI, C10-COOH, C11-(EG)4-OH and
C10-CHj. 20, 40, 60, 100 nm cit-Au NPs and 100 nm sPS
NPs were used. All types of NPs showed a negative value of
C-potential (Tab. 1) caused by citrate adsorbed on gold NPs or
by sulfate groups of plastic NPs.

Adsorption of these nanoparticles was studied at pH 7 at
low ionic strength (Fig. 3a) and in the presence of 200 mM
NaCl (Fig. 3b). Quantitative comparison based on normaliza-
tion to C11-N"(CHj3); CI™ coated surface possessing the
highest adsorption rate, is shown in Fig. 3 c-f. The values of
the Debye lengths in the buffer solutions with- and without
200 mM NaCl are 3.6 nm and 0.7 nm, correspondingly. Thus,
at low ionic strength a strong adsorption of all studied nano-
particles to the positively charged surface formed by C11-NH,
and C11-N*(CHj3); CI” was observed (Fig. 3a, A-B).
Oppositely, no binding of sPS or 40 and 60 nm cit-Au NPs
to the negatively charged surfaces formed by C10-COOH
(Fig. 3a, C) occurred. This indicates clearly the role of elec-
trostatic interaction in the adsorption of nanoparticles.

Unlike on C11-NH, and C11-N*(CH3); CI” coatings, the
behavior of 100 nm cit-Au NPs on C10-COOH and C11-EGy-
OH coatings was quite different: it was possible to observe
some weak signals corresponding to two types of images,
while one of these images looked like a negative of another
one. The magnitude of these signals is much lower than in the
case of adsorption to the two positively charged surfaces.
Probably, in this case we detect NPs which adsorb/desorb
from the surface within one frame. The shortness of NPs’ stay

on the surface and the exponential decay of their image
intensity with the distance to the sensor lead to much
weaker signals compared to usual signals from firmly
adsorbed NPs. In the case of smaller NPs, such transient
signals are not measurable.

In the absence of specific adsorption of sodium and chlo-
ride ions, the addition of 200 mM NaCl leads to a decrease of
the Debye length down to 0.7 nm and of the absolute values of
the surface potentials. Therefore, one can expect a decrease of
electrostatic interaction and a subsequent decrease of adsorp-
tion of negatively charged NPs to the positively charged sur-
faces but also a decrease of electrostatic repulsion of these NPs
from the negatively charged surface. Such effect was really
observed for C11-N*(CH;); Cl” and C11-NH, coated sur-
faces. In this case, a decrease of the number of adsorbed
NPs was observed (Fig. 3 c-f). Notably, in the presence of
200 mM NaCl, a strong adsorption of NPs to the C10-
COOH coated surfaces was observed. Therefore, a decrease
of the electrostatic barrier leads to adsorption caused by other
types of interactions (i.e., Van der Waals attraction). The same
adsorption behavior of NPs is observed for the C11-EG4-OH
coated surface, but in this case the physical nature of the en-
ergetic barrier is rather unclear.

Direct electrostatic interaction is not expected for C10-
CHj; coating. According to [35], such surfaces can adsorb
OH' ions, but the observed adsorptive properties of these
surfaces (Fig. 3 c-f) are more typical for the surfaces
which are positively charged.

The observed influence of the surface coating indicates that
the process is not completely limited by diffusion. We cannot
exclude some contribution of gravity into binding of NPs, but
the observed influence of the surface coating indicates that this
effect is not very strong. An attempt to separate a contribution
of the adsorption and of the diffusion processes into the ob-
served adsorption rate will be presented elsewhere.

The results demonstrate that the surface coated by C11-
N*(CH3); CI” terminated alkyl thiol provides the most effective
binding of negatively charged nanoparticles. Such coating type
can be used as an unselective one for detection of nanoparticles;
namely, this coating was applied in our recent work focused on
detection and characterization of nanoparticles in complex me-
dia [27]. Albeit few times weaker, the adsorption of nanoparti-
cles to the C11-EG4-OH coated surface was observed at high
ionic strength; thus indicating that such a surface cannot be
reliably applied in analytics of NPs as a negative control.

Directed binding of single nanoparticles to the patterned
surfaces

The highest adsorption rates of negatively charged cit-Au NPs
and sPS NPs are observed for the C11-N*(CH3); CI” coating
whereas the lowest adsorption rates were observed for C10-
COOH coated surface at low ionic strength (Fig. 3 c-f). These
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C11-(EG)4-OH (D) and C10-CHj; (E) - alkyl thiols. Detection of nano-
particles without (a) and with (b) 200 mM sodium chloride and their

two coatings, providing maximal contrast for binding of NPs,
were selected for surface patterning. Using a non-contact
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piezoelectric dispenser, droplets of N*(CH3); CI™ terminated
alkyl thiol were deposited to the gold surface. Then, the space
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Fig. 4 Visualization of selective adsorption of negatively charged surrounded by a coating with C10-COOH alkyl thiol. Upper panel:
nanoparticles without addition of sodium chloride on the surface coated Differential SPM images. Bottom panel: Visualization of nanoparticles
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Fig. 5 Visualization of selective 60 nm Cit-Au N PS 60 nm b PEI-Ag N PS
adsorption of negatively charged
citrate stabilized gold
nanoparticles (left pannel) and
positively charged branched-
polyethylenimine coated silver
nanopatrticles (right pannel)
without addition of sodium
chloride on the surface coated by
spots with C11-N-(CH3);* CI”
(120-130 um spot diameter) and
C10-COOH coated area in-
between. Differential SPM
images (a-b). Visualization of
single nanoparticles adsorbed
within 90 s (c-d). Visible area is
~0.3 mm?
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between droplets was coated by C10-COOH alkyl thiol. The
results of adsorption of different negatively charged NPs to
such patterned surface are shown in Fig. 4 and in Videol
(Supplementary material), while the adsorption of the posi-
tively charged bPEI-Ag NPs is presented in Fig. 5 and in
Video2 (Supplementary material). The measurements were
performed at low ionic strength. A clear selectivity of adsorp-
tion of all negatively charged NPs to the C11-N*(CHj3); CI”
coated spots was observed. Almost no binding of 40- and
60 nm cit-Au NPs to the surface coated by C10-COOH was
observed, while this selectivity was some lower for sPS NPs
and large cit-Au NPs, probably due to the contribution of the
gravity. Similar results were also obtained for patterned sur-
faces containing spots with C16-NH, and the rest area with
C10-COOH.

The behavior of the positively charged bPEI-Ag NPs
showed an opposite effect: they adsorbed to the negatively
charged C10-COOH coated part of the sensor surface
(Fig. 5). The results demonstrate that SPM in combination
with the patterned surfaces coated by w-terminated alkyl
thiols with oppositely charged functional groups can be used
to distinguish positively and negatively charged NPs.

Conclusion

Wide-field SPM is the real-time label-free optical method for
detection of NPs at ppb concentration range. We have applied
it for investigation of binding of single nanoparticles to sensor
surfaces coated by differently w-functionalized alkyl thiols.
The observed difference in the adsorption rates to various
surfaces indicates the possibility to develop sensor arrays for
analysis of nanoparticles. The concept was proved using the
simplest array consisting of patterns with positively charged
spots whereas the rest area was coated by negatively charged
alkyl thiols. A strong difference in binding of charged nano-
particles to the oppositely charged parts of the surface was
observed. This effect can be used for separation of NPs based
on the difference in their charge. Additional parameters, which
can be used to control the binding of nanoparticles to surfaces,
include pH and ionic strength.

The direct detection and visualization of adsorption of sin-
gle NPs to the differently functionalized sensor surfaces en-
ables ultrasensitive and unambiguous characterization of NP-
surface interaction. Besides applications in analytics and
basic research, this can be used for nanotoxicology
studies. To achieve this aim, the adsorption of nanopar-
ticles to biomimetic surfaces (e.g. coated by phosphati-
dylcholine and by polysaccharides from glycocalyx) can
be determined and compared with toxicity of nanoparti-
cles towards cell lines. Thus the nanotoxicity related
Quantified Structure Activity Relationship (QSAR) for
selected nanoparticles can be determined.
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