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Abstract Core-shell surface molecular imprinting technolo-
gy represents a rather new trend in analytical sciences. In this
kind of material, the imprinting sites are located on the surface
of the cores or shells of nanoparticles (NPs). This material can
improve the capability of recognizing target molecules
(analytes), reduce nonspecific adsorption, increase the relative
adsorption capacity and selectivity, and accelerate the rate of
mass transfer. This review (with 158 references) focuses on
recent trends in core-shell MIPs. Following an introduction
into the field, a first main section covers common core-
materials including silica, magnetic NPs, quantum dots (in-
cluding semiconductor quantum dots and carbon dots), gold
and silver nanoclusters, and up-conversion materials. A fur-
ther section covers the materials and reagents required
for preparing MIPs (with subsections on templates,
functional monomers, cross-linkers, initiators, and ef-
fects of solvent). A next main section covers synthetic
approaches such as precipitation polymerization, emul-
sion polymerization, and grafting approach. A final

section gives examples for applications of core-shell MIPs
in analytical assays and in sensing.
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Introduction

Molecularly imprinted polymers (MIPs) can act as receptors for
target molecule (template) recognition [1, 2]. Pre-
polymerization of functional monomer is the first step in the
synthesis process. Molecular recognition sites are produced on
the highly cross-linked polymer through non-covalent or cova-
lent interactions. After templates are removed, recognition cav-
ities are complementary to the target molecules with specific
shape, structure and functional groups [3, 4]. Due to the notice-
able characteristics of MIP, such as easy preparation process,
specific identification [5], good stability [6], high selectivity [7]
and wide practicability [8, 9], it has been widely applied in
different areas such as solid phase extraction (SPE) [10], optical
sensors [11], electrochemical sensor [12] and catalytic [13]etc.
However, traditionalMIP possess various obstacles, such as the
uncompleted removal of template or leakage, the non-uniform
distribution of binding sites, the slow mass transfer, and the
irregular morphology [14–16]. Therefore, different surface im-
printing strategies are established to circumvent these draw-
backs [17]. Bulk MIP is taken as one representative of tradi-
tional MIP and compared with core shell MIP in Table 1.
Although bulk material can be synthesized easily and quickly,
some obvious superiority can be observed from Table 1.
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As the pros and cons show in Table 1, core-shell MIP
represent significant superiorities among numerous materials
[18, 19]. Due to the special structure of core-shell NPs, the
overwhelming majority of the template molecules is distribut-
ed on the surface or locates in the proximity of the surface
region, leading to a more complete removal of the template
and an easier rebinding progress of target molecules with the
recognition sites, which greatly improved the mass-transfer
efficiency [20–22]. Core-shell MIP offers an attractive
alternative approach for the identification and quantifi-
cation of biological/chemical target molecules with
smaller amount of samples and less detection time.
With rapid development of core-shell MIP, single nano-
particle is difficult to satisfy the need of detection, the
composites materials emerged rapidly. Silica, magnetic
NPs [23] , quantum dots [24], gold and si lver
nanoclusters [11], and up-conversion materials etc. are
commonly as main cores due to their excellent
properties.

As Fig. 1 shows, different core materials are selected and
modified for a better adhering of MIP shell. MIP shell should
possess an appropriate thickness to get enough recognition
sites. Under the optimal conditions, molecularly imprinted
core-shell NPs are prepared through precipitation method,
emulsion polymerization or grafting method [25] according
to references cited in this review.

Core materials

Normally, cores are synthesized according to the characteris-
tics of template and functional monomers. Cores are the sup-
ports of MIP and mostly need to be modified. Modification
would be beneficial for the adhering of MIP shell.
Modification on the surface of core NPs [26] is an important
strategy to offer materials with at least two or three new

properties for better applications. Different cores need modi-
fications with the different functional groups. Compared with
unmodified cores, modified cores possess a higher specific
surface area, a great improvement of polarity, a decrease of
NPs surface energy, advances in dispersibility and stability
[27]. Sometimes, there is another type of core-shell structure
of MIP, MIP is the core and the shell is material synthesized
from other reagent in order to modify MIP. In this review, we
mainly focused on the structure of core-shell MIP, the four
main categories of cores used (silica, magnetic NPs, quantum
dots, nanoclusters and up-conversionmaterials), the main syn-
thesis methods for each cores, the basic reagents used in the
synthesis of MIP with some examples and the main applica-
tions of core-shell MIP.

Silica

Silica, an inorganic material, has been widely applied due to its
different properties such as stability under acidic conditions
[28], thermo stability, excellent permeability to the template
molecules, and good biocompatibility [29]. Stöber method is
most widely used for the synthesis of silica NPs. This approach
needs the hydrolysis of tetraethoxysilane (TEOS) in basic con-
ditions [30]. Modification on the silica core with vinyl groups
(−C = C) is a very classic strategy to enhance the performance
of final silica MIP and is beneficial for the adsorption of target
molecular selectively and sufficiently. Silane coupling agent is
a common agent for surface modification, such as γ-
methacryloxypropyltrimethoxysilane (MPS), 3-amino propyl
triethoxy silane (APTES) and vinyl triethoxy silane (VTES),
their main characteristic is all these silane coupling agent can
realize conjugation with active hydroxyl groups on the surface
of the silica core through hydrolysis. The amino (−NH2) and
vinyl group on the end of silane coupling agent can improve the
activity of silica and facilitate further modification of organic
functional groups. Usually, MPS are used for introducing vinyl

Table 1 Comparisons between core-shell MIPs and bulk materials

Material Bulk MIP Core-shell MIP

Synthesis process Easier simple More complex

Yield Lower Higher

Morphology Bulk irregular Sphere Uniform

Specific area Smaller Bigger

Distribution of binding sites All over the bulk embedded deeply nonuniform Near to the surface of cores uniform

Adsorption capacity Lower Higher

Post treatment Process Grind and sieving -

Effect Cause a loss of material damage binding sites -

Leakage of template More Lower

Elution process Harder inadequate Easier more sufficient

Mass transfer process Lower Faster

2678 Microchim Acta (2016) 183:2677–2695



groups [31], while APTES is used to introduce amino groups.
Gao [32] modified the silica core with two steps by introducing
amino groups with APTES, then vinyl groups with acryloyl
chloride (CH2CHCOCl). Due to the biocompatibility of silica,
it has been widely used for imprinting biomolecules. However,
macromolecules possess large molecular size and efficient
mass transfer process is limited. Therefore, appropriate macro-
molecular functional monomers should be designed for the
adhesion to the biocompatible silica nanoparticle cores. Qian
et al. [33] have successfully combined the strategies above
through redox initiate polymerization method as showed in
Fig. 2.

Uniformly spherical core SiO2@MPS was synthesized with
an average size of 500 nm, macromolecular functional mono-
mers were designed and the final thin MIP layers were closely
located to the silica core with around 30 nm thick. The adsorp-
tion time of imprinted and non-imprinted particles is 40 and
30 min respectively, which proves the core-shell MIP possesses
a fast adsorption property. Ma [34] and his co-workers have
used silica as core to synthesize core-shell MIP for 17β-
estradiol detection, and they applied this material to SPE tech-
nique. The adsorption capacity of MIP were 5 times higher than
NIP, the adsorption equilibrium time was only 25 min. Herein,
the silica@MIP synthesized these years are listed in the Table 2.

Magnetic NPs

Magnetic core-shell MIPs possess magnetism and special
characteristics. Magnetic materials include iron, cobalt, nickel

and their oxidizing material or alloy [39, 41]. However the
applications of cobalt and nickel are limited due to their tox-
icity in biological and pharmaceutical fields. Among these
magnetic materials, Fe3O4 has already drawn extensive atten-
tion due to excellent characteristics, such as lower toxicity,
low cost, and easy to prepare [42]. Magnetic core-shell MIP
can be separated from solution with external magnetic field.
Compared with traditional separation method, such as centri-
fugation and filtration, magnetic separation process is more
simple, rapid and effective. These advantages make magnetic
core-shell MIP broadly applicable in biological enrichment,
separation, sensors [43] for proteins and nucleic acids [1].

In general, Fe3O4 NPs are synthesized through
solvothermal and co-precipitation methods. Co-precipitation
is the most widely used method due to its easy operation,
simple equipment and mild reaction conditions [44].
Solvothermal method is performed in water phase under high
temperature and high pressure. Fe3O4 particles obtained from
hydrothermal method possess integrity structure, uniform par-
ticle size and less aggregation between particles. These two
methods were realized by Xiao [45] in our research group.
TEM images in Fig. 3 showed that the diameters of Fe3O4

NPs synthesized by the solvothermal method are about 100–
200 nm. Fe3O4 NPs size is about 200–300 nm when co-
precipitation method is used. And Fe3O4 NPs synthesized by
solvothermal method possess higher maximum saturation
magnetization (64.60 emu g−1).

For application in SPE, Fe3O4NPs synthesized by the chem-
ical co-precipitation method needs a longer time to separate and

Fig. 1 Outline of review. MIP:
molecular imprinted polymer
SPE: solid phase extraction
SERS: Surface-enhanced Raman
scattering
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the adsorption capacity is lower.Well defined modifications are
needed for naked Fe3O4 core in order to get multifunctional
materials, such as silica, oleic acid and gold [46]. In general,
before Fe3O4 particles are encapsulated inside of MIP shell,
silica is still a better candidate due to its properties mentioned
before and can avoid the leaking of Fe3O4 particles [47].
Although magnetization of Fe3O4 particles will decrease be-
cause of silica or MIP layer, the magnetic property is still
enough for further application. Liu et al. [48] prepared the mag-
netic core-shell MIP for pefloxacin mesylate detection with
HPLC. Fe3O4 NPs were obtained from solvothermal approach.
TEOS and APTES were used for SiO2@NH2 shell synthesis,
a f te r in terac t wi th 2-bromoisobutyry l bromide ,
Fe3O4@SiO2@Br were obtained. Then the synthesis process

of MIP began. MAA and 2-Hydroxyethyl methacrylate as bi-
functional monomers were used in order to get higher adsorp-
tion. Methanol and water (9:1, v/v) were used as solvent. The
size of Fe3O4 was around 350 nm; the shell of SiO2 was 47 nm,
and MIP shell 18 nm, which definitely increased the mass
transfer ability. The adsorption capacity can reach to
9.43 mg g−1, and the imprinted factor is 6.3. Magnetic MIPs
are also applied in imprinted protein. Zhang [46] and his co-
workers have focused on magnetic core-shell MIP synthesis
with the self-polymerization of dopamine to detect lysozyme,
as showed in Fig. 4.

First, carboxyl group modified Fe3O4 NPs with PAA
(Fe3O4@PAA) were obtained through hydrothermal method,
then magnetic core-shell MIP were obtained under the

Fig. 2 SiO2@MPS MIP for BSA imprinting (adapted from ref. [33])

Table 2 Overview on materials
with silica@MIP architecture Core Target Functional

monomer
Core size (μm) Shell

thickness (nm)
Ref

Silica Bisphenol A APTES a 0.4 50 [35]

Silica Porcine serum albumin HDMAAb MAAc 5 20 [36]

Silica Dapsone MAA 0.8 50 [37]

MPS -silica Atrazine MAA 0.1 300 [38]

MPS - silica Lysozyme AMd 0.4 15 [39]

MPS- silica Bovine serum albumin NIPAMe 0.5 30 [40]

a 3-amino propyl triethoxy silane
b 2-hydroxyethyl methacrylate
cMethacrylic acid
dAcrylamide
e N-Isopropylacrylamid
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presence of polydopamine. PAA plays an important role in the
whole synthesis process. Fe3O4 NPs would not precipitate in
the presence of PAA; Carboxyl groups on PAA are beneficial
for the adsorption of dopamine. The thickness of MIP shell
shows a great influence on the adsorption of target molecules;
therefore, these authors controlled the shell thickness by opti-
mizing the ratio of Fe3O4@PAA and dopamine. When ratio is
1: 0.25, 1: 1 and 1: 4 between Fe3O4@PAA and dopamine, the
thickness is 15 nm, 30 nm and 40 nm respectively. Magnetic
core-shell MIP showed the highest binding ability when the
thickness of MIP shell is 30 nm, which means 30 nm, can
realize a more complete mass transfer course and a more uni-
form distribution of binding sites. Table 3 provides some in-
formation of magnetic core-shell MIP.

Quantum dots (QDs)

Semiconductor quantum dots

Semiconductor Quantum dots (SQDs), also named
nanocrystallines, and is one kind of NPs composed by II-VI
or III-V elements. The particle size is generally between 1 to
10 nm [58]. SQDs are spheres or approximately spheres, and
can be divided into three types according to structure: single
type, core-shell type [59] and mixed type. Single core type is
the earliest and simplest type of SQDs, such as CdSe, CdTe,
CdS, ZnSe, ZnS etc. After combined with MIP shell, the mor-
phology is still almost spherical. Core-shell type SQDs in-
clude CdSe/ZnS, CdSe/CdS, CdSe/CdS/ZnS, CdS/CdSe,
CdSe/ZnSe, and CdTe/CdSe etc. Compared with single type,
this kind of SQDs possesses a higher fluorescence in-
tensity and stability. If Mn, P and other elements are
doped with quantum dots to form a mixed type which can
improve their optical, magnetic and electric properties. The
present study of doped SQDs are mainly CdSe: Mn, ZnS:
Mn, ZnS: Cu etc. [58].

SQDs can be synthesized in organic phase or water phase.
Organic phase is beneficial for the generation of SQDs with
high dispersion and uniform size distribution. Temperature
plays an important role to control nucleation and growth pro-
cess of SQDs. SQDs synthesized in organic phase possess
good crystal structure, high fluorescence quantum yield and
narrow particle size distribution, etc. [60, 61]. However, this
method needs strict anaerobic and anhydrous condition. SQDs
synthesized in organic solvent are hydrophobic, which cannot
be applied in biological system or water system. Therefore,
this kind of SQDs requires excessive modification on the sur-
face. These modification steps will increase difficulties of the
operation and reduce the fluorescence intensity. Therefore,
SQDs synthesized directly in water are stable, less toxic, eas-
ily soluble in aqueous solution, and can quickly interact with
biological molecules. These characteristics are good for chem-
ical or biological detection. Synthesis process in
microemulsion system can be realized in mild conditions un-
der ambient temperature, the experiment device is simple and
easy to operate. This kind of SQDs possesses uniform particle
size, which overcomes the problems of wide particle size dis-
tribution in aqueous system. Here is a major problem in the
application of SQDs in complex matrix with interfering sub-
stances which will affect the luminescence properties of
SQDs. Therefore, the strategies explored in adhering MIP
layer to the surface of the QDs aroused much interest. QDs
possess many optical and electronic properties, such as highly
fluorescence sensitivity [62, 63], sharp emission band with
broad excitation and strong resistance to photobleaching.
Modification is helpful for keeping SQDs fluorescence stable
and getting more functional groups. Thus, composites mate-
rials of MIP combined SQDs is highly applicable in sensors,
lower detection and rapidly analyse [64]. Coating on the sur-
face of SQDs with silica can keep SQDs stable from the in-
fluence of the outside environment. Besides, toxicity of the
semiconductor quantum dots can be decreased owing to the

Fig. 3 TEM Comparison of magnetic NPs synthesized (adapted from ref. [45]) through solvothermal method a and co-precipitation b
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biocompatibility of silica shell, especially when applied in
protein imprinted process.

Room-temperature phosphorescence (RTP) technology is
also combined with core-shell MIP. MIP can avoid interfer-
ences of similar substances, improve the detection selectivity
and keep the RTP signal stable. Traditionally, non-
phosphorescent detection targets need inducers and derivati-
zation.Mn-doped ZnS quantum dots can provide RTPwithout
inducers and derivatization. Wei et al. [65] coated MIP shell
on the surface of Mn-doped ZnS quantum dots and they used
this composite material for 2, 6-dichlorophenol detection.
They optimized the thickness of imprinted shell through
adjusting the amount of monomer and quantum dots. Li etc.
[66] combined the fluorescence with core-shell MIP together

for pTyr peptide and improved the fluorescence selectivity of
the QDs. Zhao and his co-workers [67] synthesized ZnS:Mn2+

QDs@MIP to detect diazinon, the ZnS:Mn2+ QDs@MIP is
spherical with 160 nm nanosize. Liu et al. [68] synthesized
CdSe/ZnS QDs@MIP as sensors to sesamol in sesame Oils.
The final CdSe/ZnS QDs@MIP possesses a uniform and
spherical feature. Herein, some SQDs core-shell MIP are pre-
sented in Table 4.

Carbon dots (CDs)

Carbon dots are mainly composed of carbon element and pos-
sess good chemical inertness. Carbon dots can maintain good
dispersion in aqueous solution due to its large number of

Fig. 4 The synthesis process of
Fe3O4@polydopamine MIP
(adapted from ref. [46]). PAA:
poly (acrylic acid) EG: ethylene
glycol DEG: diethylene glycol

Table 3 Overview on materials consisting of magnetic core-shell MIPs

Core Target Functional monomer Core size (nm) Shell Thickness (nm) Ref.

Vinyl-Fe3O4 Tetracycline MAA 200 25 [49]

Fe3O4@SiO2 Sulfonylurea Herbicide MAA 620 20 [50]

Fe3O4@SiO2 Tadalafil 2-(trifluoromethyl)-AA,
MAA, AA

470.7 22.3 [51]

Fe3O4@SiO2 Sudan dyes MAA 400 60 [52]

Fe3O4@SiO2 ractopamine AM 10–25 2.5–7.5 [53]

Fe3O4@SiO2 Bovine hemoglobin Dopamine 840 10 [54]

Fe3O4@NH2 17β-estradiol AA 80 10 [55]

Fe3O4@SiO2 Biotin AA 565 212.5 [56]

Fe3O4@mSiO2
a Protocatechuic acid 4-VPb 400 50 [57]

aMagnetic mesoporous silica microspheres
b 4-vinylpyridine
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hydrophilic groups. Small size of carbon dots (usually under
10 nm) [74] presents low molecular weight, highly adjustable
photoluminescence, low toxicity and high hydrophilicity that
render them biocompatible and eco-friendly [75]. From a
physicochemical point of view, carbon dots are better than
SQDs. Therefore, carbon dots possess vast applications in
different areas such as biomarkers, optoelectronic devices,
biological sensing, fluorescent probe biological detection
and biochemical analysis. Although, there are a lot of carbon
dot combinations, carbon dots linked with MIP is still limited.
Many investigators focus on one carbon source that is citric
acid. Carbon dots from citric acid can be synthesized by dif-
ferent methods. Mao and his co-workers [76] synthesized
organosilane-modified carbon dots with anhydrous citric acid
under 240 °C with N-(β-aminoethyl)-γ-aminopropyl
methyldimethoxy silane played as modify agent. The final
nanoparticle size of carbon dots is only 1.5 nm. Then 3-
aminopropyltriethoxysilane was used as functional monomer
and TEOS as cross-linker to synthesis MIP shell coating on
the carbon dots. The whole synthesis should be no light and no
air to avoid oxidation of template. The final size of carbon dots
MIP was 50 nm. Similarly, Hou et al. [77] took microwave to
synthesis carbon dots from citric acid for detection of
Tetracycline (TC). The mainly synthesis process is showed
in Fig. 5. The size of these carbon dots was 5 nm.

The size obtained from this technique is bigger than carbon
dots synthesized in Mao’s work. Maybe Mao and his co-
workers [76] applied continuous and drastic stirring, which
is beneficial for getting a smaller size. The size of core-shell
MIP was 55 nm. Feng and his coworkers [78] used a similar
heating process to synthesis carbon dots. Differently, they
took allyl amine to modify carbon dots firstly, and took
MAA and 4-vinyl pyridine as functional monomer. Wang
[79] exploited another carbon dots with glucose as carbon
source. The final carbon dots have only 6.3 nm with fluores-
cence. However, the fluorescence intensity of these works is
still weak.We need to developmany kinds of carbon dots with
stronger fluorescence intensity, higher photoluminescence
quantum yield, and other materials for MIP shell with no
effect on the property of carbon dots.

Gold and Ag nanoclusters

In the application of core-shell nanocluster MIP, Ag-Au and
Au-Ag [80] are commonly used. Modifications of nanoparti-
cle surface with proper organic or inorganic material are need-
ed to ensure stability of nanoclusters and provide more func-
tionality for specific recognition properties [81]. AuNPs are
usually utilized as cores due to three main points following.
(1) They possess large specific surface area and improve the
imprinting effect due to their nanoscale dimension; (2) They
can make up for the decreased high conductivity that is de-
creased by SiO2;(3) They can provide high surface energy for

stable immobilization platform of biomolecules. Therefore,
the sensor formed through the combination of AuNPs and
MIP can convert the recognition event into an analytical signal
[82]. Other gold-silver nanoclusters used as core are also cited
in the literature. For example, Gultekin et al. [83] synthesized
gold-silver nanoclusters MIP for Bacillus cereus spores rec-
ognition. Methacryloyl iminodiacetic acid-chrome (MAIDA-
Cr (III)) was used as a metal-chelating monomer and Bacillus
spores as the template. The shape of nanoclusters is almost
spherical with average size about 42 nm. After combined with
DPA-template, the shape is still spherical and the average size
is about 62 nm, the size aggregated because of polymerization.
The same work group also use Au NPs as core support and
synthesis MIP for cholic acid detection [84]. Similarly, they
used methacryloylamidohistidine-Pt (II) as metal-chelating
monomer. The final MIP size was 32 nm with a spherical
morphology. And the experiments showed the selectivity
was 92 times higher than the control substance. We also con-
cluded related nanoclusters core-shell MIP in Table 5 from
recent researches.

Up-conversion materials

Combination of MIP shell with Up-conversion cores has been
paid great attention as one kind of innovative fluorescence
probe [90] with high selectivity. The main characteristic of
Up-conversion materials is it can emit visible light under the
motivation of near-infrared light. Different from quantum
dots, Up-conversion materials can avoid the toxicity and pos-
sess a better stability. The principle of BUp-conversion^means
the opposite of BStokes^, which if also called Banti-Stokes^. In
the process of Banti-stokes^, the light with lower energy can be
transferred into light with higher energy through continuously
absorbing more photons and energy transferring [91, 92]. Rare
earth luminescent materials mainly are made up by matrix,
activator (luminous center), co-activator and sensitizing agent,
etc. Usually, the luminous efficiency depends largely on the
matrix. Mostly applied matrixes are oxide, halide and sulfides,
etc. Among these matrixes, NaYF4 are highly welcomed due
to its lower energy of photon and well prepared lattice size,
which will benefit for reducing the probability of non-
radioactive transition and the doping of rare earth ions.

Researchers already established many synthesis ap-
proaches for conversion fluorescent materials, such as hydro-
thermal method, pyrolysis method, liquid co-precipitation,
microemulsion method and sol-gel method etc. Like the core
materials we discussed above, all of these approaches must
take consider about the size, morphology and dispersibility of
Up-conversion cores. Up-conversion cores are difficult to
connect with biological molecules in water due to the hydro-
phobic organic ligands, such as oleic acid, oleic oil amine
[93], which limit the applications. Therefore, modifications
are needed to convert the hydrophobic groups to hydrophilic
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group (e.g., −COOH, −NH2 or -SH). The common modifica-
tion methods are ligand engineering, ligand attraction, surface
polymerization, layer by layer self-assembly [94, 95].
However, some drawbacks of these modification methods still
need to be solved. For example, ligand attraction method can
damage the ligand on the NPs; layer by layer self-assembly
method is a little bit complex and may affect the stability of
NPs. Therefore, in order to get smaller particle size, good
water solubility and strong fluorescence intensity, more effec-
tive water soluble modification methods should be developed.

Guo and his coworkers [96] focus on this composite mate-
rial with sol–gel approach and applied it in Cytochrome de-
tection. The particle size of final Up-conversion core is 40 nm,
and the MIP shell is 5–10 nm. This research group studied the
composite material further [97]; they combined the Up-
conversion core-shell MIP together with metal-organic frame-
works for bovine hemoglobin detection. Like many thermo-
sensitive materials, N-isopropyl acrylamide is taken as func-
tional monomer. Both two materials possess high adsorption
ability and sensitivity, which provided an outstanding idea in
the field of detection.

Materials for fabricating MIP coatings

The synthesis of core-shell MIP is a complex polymerization
reaction which can be impacted by many factors, such as the
category and concentration of functional monomer, cross-
linker, initiator, temperature and time.

Template and functional monomer

For ideal template, it should possess some functional groups
which would not avoid the polymerization reaction and can
carry out self-assembly process when interacting with func-
tional monomers. Besides, template should keep stable [98].

In the synthesis process of MIP, functional monomers
should combine with molecular through non-covalent or co-
valent interactions, then followed by polymerization with ex-
cess cross-linking agent, which result in a specific position for
template. Strength of the interaction between template and
functional monomer molecules affect the features of MIP, se-
lectivity and accuracy of molecular recognition sites [99].
Therefore, it is essential to choose appropriate functional

Table 4 Overview on materials
consisting of quantum dot derived
core-shell MIP

Target Shell thickness (nm) Core size (nm) Core Ref

Tyrosine phosphopeptide 7 242 CdTe@SiO2 [66]

Pentachlorophenol 5 40 Mn-doped ZnS [69]

Cyphenothrin 14.2 7.9 ZnS:Mn2+ [70]

Nicosulfuron 10.5 6 Mn-doped ZnS [71]

Bisphenol A 20 4 CdTe@SiO2 [72]

Bovine serum albumin 50–60 20–30 CdTe@SiO2 [73]

Fig. 5 Synthesis process of
Carbon dots cores shell
MIP (ref [77])

2684 Microchim Acta (2016) 183:2677–2695



monomer. Some important approaches are used to screen ap-
propriate functional monomer, such as spectrum analysis
method (nuclear magnetic resonance, ultraviolet, Fourier
Transform Infrared Spectroscopy, etc.) and computer simula-
tion [100, 101]. The categories of functional monomers used
for core-shell are similar with traditional monomers which
include carboxyl group, (methacrylic acid, vinylbenzoic acid,
acrylic acid, 2-vinyl butyl diacid); propylene amide group
(acrylamide) and heterocycle group (2-or 4-vinylpyridine).
In these groups, carboxyl group is the most employed. Due
to the presence of carboxyl onmethacrylic acid (MAA),MAA
can combined with amino group or hydroxyl group on target
molecules through hydrogen bonding and electrostatic non
covalent interaction. MIP synthesized with MAA-based
monomers possesses a strong binding ability and high specific
capacity, which is very similar to antibody. Sometimes, two
kinds of functional monomers are used together in order to
enhance the imprinting effectively [102]. However, the cir-
cumstance established by traditional reagents is not suitable
for bio-molecules. Bio-molecules should be imprinted in wa-
ter system [103, 104] because the reaction between monomers
and templates should not be influenced by hydrogen bond
mainly existing in water. Therefore, some specific monomers
are exploited for bio-molecules. Mostly used functional
monomers are dopamine, chelating monomer and 3-
aminophenylboronic acid (APBA) for core-shell MIP. Yao
et al. [105] put forward a method to synthesis MIP on the

Fe3O4 NPs surface by self-polymerization of dopamine.
They combined SPR sensing protocol technique to determine
the concentration of organophosphate pesticide. The final
Fe3O4@Polydopamine NPs structure is nearly spherical and
the average diameter is 8–10 nm. The thickness of the PDA
layer is about 1 nm. Similarly, Xia and his workmates [106]
used silica as core, and synthesized the MIP shell under the
self-polymerization of dopamine to achieve the determination
of bovine hemoglobin. The SiO2@MIP was about 68 nm, and
the MIP shell was 5 nm.

Metal-chelating functional monomer broadens the applica-
tion field especially in water system. Compared with non-
covalent interaction, the metal coordination interaction is
more like a covalent interaction, which is stronger in water.
The interaction between template and metal ion is beneficial
for getting thermodynamics and kinetics equilibrium; some
transition metals, such as Cu (II), Pt (II), and Fe (III) are not
only one part to be combined, but also a catalytic center for the
complexes conversion. Metal-chelating monomer possesses a
high specific selectivity for protein in a mild condition. Thus,
these advantages make metal chelating monomer a promising
monomer for the recognition of proteins [107–113]. As Fig. 6
showed, Chen et al. [114] synthesized core-shell MIP to detect
lysozyme.

Cu2+ chelating N-(4-vinyl)-benzyl iminodiacetic acid
(VBIDA) plays an important role in the coordination mono-
mer, and this work group also employed other monomers such

Table 5 Overview on materials
consisting of nanocluster derived
core-shell MIP

Target Analyte Core Size Core Shell Thickness Application Ref

Dopamine 20 nm AuNPs 20–30 nm Electrochemical sensor [85]

Bisphenol A 50 nm AuNPs 2 nm SERSa [86]

4-mercaptobenzoic acid 2.5 μm AgNPs 40 nm SERS [87]

Fenitrothion 40 nm AuNPs 20 nm Electrochemical sensor [88]

Rhodamine 6G 800 nm AgNPs 16 nm SERS [89]

a Surface-enhanced raman scattering

Fig. 6 Vinyl- silica core-shell
MIP with metal coordination
monomer (adapted from
ref. [114])
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as N-isopropylacrylamide and acrylamide. MPS-modified sil-
ica was the core support, N; N-methylenebisacrylamide
(MBA) was cross-linker. For the final core-shell MIP, the core
size was around 200 nm, the MIP shell was about 16 nm. 3-
aminophenylboronic acid (APBA) can also be used as a prom-
ising functional monomer for protein. Water solubility and
easy interaction with the amino acids on the protein are the
two main advantages of APBA [115].

Cross-linker

The purpose of cross-linker is to combine template and func-
tional monomers together, and then generates a highly cross-
linked, rigid and three-dimensional polymer. The amount of
cross-linker can affect the morphology of MIP, the number of
recognition sites, the selectivity and adsorption ability of MIP
[116]. Less amount of cross-linker will be against the three-
dimensional structure of MIP. On the contrary, too much
cross-linker must be needed in order to get enough recognition
sites, which will make a bad effect on the extraction of original
templates located at interior area of bulk materials. Generally,
the highly cross-linked MIP need a lot of cross-linker (the
ratio of cross-linker is about (70 ~ 90 %) in order to keep a
rigid cavity recognition. Mostly adoptive cross-linkers are du-
al cross-linking agent (Ethylene Glycol Dimethacrylate
/EGDMA, divinyl benzene/DVB), such as tribasic cross-
linker (Trihydroxymethylpropyl trimethylacrylate/ TRIM)
[44]. Sometimes, combining different types of cross-linkers
together will considerably improve the formation of core-
shell MIP particles, such as size and yield. For example,
TRIM can be used together with DVB as cross-linker [117]
to improve the homogeneity of the core-shell MIP
morphology.

The ratio of molecular, functional monomer
and cross-linker

The ratio of molecular, functional monomer and cross-linker
will affect the property of MIP [118]. An increasing ratio of
functional monomer can enhance the process of pre-assemble
sufficiently However, a higher ratio of functional monomer is
not appropriate, here are two main reasons. First, too much
amount of functional monomers will result in the increasing
of nonspecific binding sites due to the un-assembled functional
monomer residues. Second, over high concentrate of functional
monomer can trigger the own aggregation and lead to the de-
crease amounts of specific binding sites [119]. Mostly, the ratio
betweenmolecules and functional monomers is 1: 4 [120]. The
ratio between functional monomer and cross-linker is usually
decided by the number of vinyl groups on cross-linker. In order
to make sure the rigid construction of MIP and guarantee a
certain binding capacity, mostly ratio used between cross-
linker and functional monomer is 5:1 [121].

Initiator

Usually, MIP is prepared by free radical polymerization in
which azodiisobutyronitrile (AIBN) and azobisisoheptonitrile
(ABVN) are popular initiators. The initiation reaction can be
initiated by high temperature (generally 60 °C) or low temper-
ature (generally 0 °C). In the pre-polymerization steps, the
initiator form active free radicals firstly, then quickly com-
bined with functional monomer by growing free radical
chains; finally, chain extension process begins until the end
of reaction. In the process of polymerization, there should be
no oxygen in the mixture free radical system, otherwise the
oxygen free radicals can capture free radicals and polymeriza-
tion will be blocked. Therefore, before the polymerization
reaction starts, oxygen must be removed out of the reaction
mixture system.

Solvent

Solvent plays an important role in process of preparing MIP.
Solvent will affect the interactions between the template mol-
ecules and functional monomer. The morphology and proper-
ties of MIP can also be influenced when adjusting the variety
and concentration of solvent. Suitable solvent will be helpful
to improve the dispersibility of molecular imprinting and keep
the template molecule, functional monomers and cross-linker
agent stable. Generally speaking, if the dielectric constant of
the solvent is higher, the recognition effect of MIP is weaker.
So, a lower dielectric constant of solvents is widely used in
molecular imprinted process, such as toluene, dichloroethane,
chloroform, etc. [32, 119]. However, MIP synthesized in or-
ganic solvent plays a poor performance in aqueous solution
due to the memory effect of solvent. MIP synthesized in water
phase is paid more attention. Water system is also suitable for
protein imprinted.

Synthesis approach

Precipitation polymerization

Precipitation polymerization is also called the non-
homogeneous solution polymerization. In polymerization,
functional monomer, initiator, cross-linker are dissolved in
solvent. After complete polymerization, the final MIP is not
dissolved and precipitated in the solvent. No stabilizer will be
added in this reaction system, the operation can avoid com-
plex process of reprocessing. The yield is high and the distri-
bution range of microspheres particle size is very narrow.

Although precipitation polymerization method is a tradi-
tional technique, it is still the most common method used
due to many characteristics, such as simple preparation pro-
cess, easily controlled particle size, high yield, and lower
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nonspecific adsorption. However, conventional precipitation
polymerization needs a lot of porogen (about 95 % of total
volume); porogen agent will cause pollution to environment
and increase the cost. And for core-shell MIP, the precipitation
method needs a large amount of template molecular, also in-
creasing the cost. In the synthesis of amino-modifiedmagnetic
cores by the technique of Su et al. [122], MIP shell was de-
posited by co-precipitation. They applied the core-shell MIP
in solid-phase extraction to detect Rhodamine B. Precipitation
polymerization method is suitable for SPE because the size of
core-shell MIP is smaller. In the other method of Liu and his
coworkers [123], these researchers applied the precipitation
polymerization in the synthesis of core-shell MIP for
cinchonidine detection. Therefore, monodispersed DVB ho-
mopolymers were taken as core.

Emulsion polymerization approaches

In the process of emulsion polymerization approach, template,
cross-linker are dispersed in organic solvents firstly, then the
mixed solution is transferred in water under the presence of an
emulsifier; they will be fully mixed to get an emulsion, after
adding initiator to start the polymerization. Finally, spherical
polymers are obtained with uniform size [124]. Emulsion po-
lymerization aspect is like milk; therefore, it is very stable.

Emulsifier can reduce the surface tension of the water, form
micelles, protect the monomer droplets and keep the system
composed by monomers and water stable. The whole process
of core-shell emulsion polymerization can be divided into two
steps: initial core (0.03–1 mm) generated frommanymaterials
firstly, and then MIP shell will be coated on the surface of the
core [125]. Many parameters will affect the second synthesis
step. The kind of template and the ration of template and
functional monomer strongly affect the morphology of the
core shell MIP. Especially, the functional monomer will take
a stronger impact on the size of composites. Suitable amounts
of surfactant will result in a stable core-shell system and a
benign adsorption capacity of core-shell MIP. Wang and Cao
[126] synthesized the core seed with emulsion polymeriza-
tion. Methyl methacrylate, sodium dodecyl sulfonate (SDS)
were used as monomer and surfactant respectively. Then they
put the core seed into DMSO in the presence of AM (func-
tional monomer), EGDMA (cross-linker) and lincomycin A
(template). The core size is 40 nm and MIP shell is 80 nm.

Emulsion polymerization possesses a lot of advantages.
Water medium can reduce the cost, improve the quality and
safety. Under emulsion polymerization, the particle size can
be easily controlled; the particle size is in nanoscale. Thus,
these NPs possess larger surface and can be widely used for
imprinting water-soluble molecules. The polymerization can
be preceded at low temperature using oxidize-reduction initi-
ator with fast speed. Besides, emulsion polymerization meth-
od is suitable for industrial applications. For core-shell MIP,

Pickering emulsion polymerization has been always used
[127]. However, some shortages still exit, the presence of
surfactant in polymerization system will affect the uniform
morphology and the imprint factor [125]. Besides, removing
steps of residual surfactant result in a tedious synthesis
process.

Grafting approaches

Grafting copolymerization is widely applied in the field
of surface imprinting technique. Grafting technology can
be realized through Bgrafting to^ and Bgrafting from^.
BGrafting to ^ method is one kind of covalent reaction be-
tween different functional groups on cores and grafting poly-
mer brushes, the grafting polymers brushes will be grafted on
the cores, then the final functional cores are synthesized.
BGrafting from^ method includes an initiation reaction. The
functional groups on the cores will initiate polymerization
reaction of functional monomers. Compared with Bgrafting
to^ method, Bgrafting from^ method can get a higher density
due to the functional monomers and can easily get close to
initiate sites on the surface of cores. Better controlled Bgrafting
from^ method has already been established, the size of core-
shell MIP and its structure will be easier controlled, thus this
kind of core-shell MIP possess a benign performance. The
reaction-active groups on cores are the technical prerequisite
of better controlled Bgrafting from^ technology. MIP synthe-
sized through this method always possesses a broad size distri-
bution due to side reactions [128]. Grafting approach benefits
for controlling thinMIP layer. Traditional free-radical polymer-
ization is always used in grafting approach, however, four prob-
lems exist. The rate of chain propagation in the free-radical
polymerization process is hard to control; bulk polymerization
cannot be controlled well; the thickness of MIP is difficult to
control; otherwise a secondary polymerizationwill be involved.
In order to overcome these shortages, controlled living radical
polymerization methods, such as the reversible addition frag-
mentation chain transfer (RAFT) [129] and atom transfer radi-
cal polymerization (ATRP) were established. Comparing these
two polymerizations, both possess some different characteris-
tics. For ATRP, catalyst is easy to get. The distribution of mo-
lecular weight is narrow. The available functional monomer is
less than RAFT; the conditions of polymerization (anhydrous,
anaerobic) are stricter. Imparity, the RAFT polymerization is
beneficial for functionalization of polymer. However, RAFT
reagent is smelly and needs to be synthesized by ourselves.
RAFT process needs fewer steps and no metal catalysts are
used. Li and coworkers [130] synthesized core-shell MIP with
RAFTmethod for Lysozyme recognition. Amino-silica was the
core. The final MIP shell was around 8 nm. The binding
amount was 5.6 mg g−1 and the imprinting factor was 3.7.
Zhang et al. [131] synthesized core-shell MIP through ATRP
method. They focused on the thickness ofMIP shell and proved
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that the shell thickness played an important role in the adsorp-
tion process of MIP.

Applications of core-shell MIP

In this article, the applications of core-shell MIP can be divid-
ed into two main parts: Solid Phase Extraction (SPE) and
sensors. According to type of cores, silica core-shell MIP
and magnetic core-shell MIP are main cores applied in SPE,
whereas, quantum dots core-shell MIP and metal clusters
core-shell MIP are mostly used for sensors.

SPE is one of most widely used technology for enrichment,
especiallymagnetic SPE. The applied interactions of tradition-
al SPE are between analytes and adsorbents. However, these
interactions are nonspecific, many interfering compounds can
be absorbed together because of low selectivity, which results
in difficulty for detecting [132, 133]. As we mentioned
above, coating MIP on magnetic NPs or silica can high-
ly improve the selectivity and adsorption. Thus, exploiting
new kind of MIP composites to overcome the complexity of
different samples and to improve the accuracy of detection is
of great importance.

In the field of SPE, core-shellMIP combiningwith restricted
access material (RAM) is another important application. Due to
appropriate pore size and hydrophilic modifications on the out-
er surface of the RAM, macromolecular, such as proteins, are
eluted in biological or environmental, and the inner surface of
RAMpossesses the properties of reverse extraction agent or ion
exchange agent, which can realize the extraction and detection
of small molecules. However, RAM cannot enrich the analytes
with selectivity. Therefore, adsorbent established by core-shell
MIP @ RAM possesses a high flexibility, enrichment and se-
lectivity, and this composites has been widely used in online
separation and purification of complex system. Hua et al. [134,
135] established RAM@MIP using phenobarbital as template,
4-vinylpyridine as functionalmonomer, EGDMAas cross-link-
er, and polystyrene beads as cores. The polystyrene cores were
1.3 μm in diameter. After the hydrophilic modification with a
synthesized glycomonomer, one hydrophilic shell was adhering
on the surface of MIP particles. The size of modified MIP
particles was 6 μm. The final MIP@RAM can successfully
realize enrichment and separation of phenobarbital in serum.

MIP sensor is one biomimetic sensing devices [136], which
is mainly constructed by a recognized element and a transduc-
er. The origin idea came from the principle of biosensor [137,
138]. For biosensor, bioactive substance is the recognition
parts in traditional biosensors. However, some shortages of
bioactive substance for biosensor limit its further application:
high cost, low sensitivity, short service life, besides, bioactive
substance is difficult to resist temperature change and pH
change by addition of some chemical reagents (for example,
the change from acid to alkaline solution) [139]. Compared

with biosensor, MIP sensor draw people attention to the field
of biochemistry, medicine, environmental protection, etc. due
to numerous advantages, such as good specificity, rapid anal-
ysis (usually about one minute for a determination); high ac-
curacy; simple operation, easily automated analysis [138].
Therefore, MIP sensors can effectively overcome many draw-
backs of biosensor [115]. According to the principle of sensor
part, core-shell molecular imprinted sensor can be divided into
two main types: Electrochemical sensors and optical sensors
[133, 140]. MIP electrochemical sensor usually includes two
main parts: specific MIP serves as the recognized element
[139, 141], the electrode (solid electrode, ion selective elec-
trode, gas sensitive electrode, etc.) serves as transducer. After
the interaction between MIP and target molecular, the specific
recognition results in the change of physical signal [142, 143].
There are three main preparation methods of molecular
imprinted electrochemical sensor: surface coating method,
self-assembly method and electric polymerization. (1)
Surface coating method [144] is the simplest method. First,
molecular imprinted polymer particles should be dispersed in
low boiling point solvent, then modify electrode surface with
mixed solution, put electrodes under lamp, solvent will vola-
tilize naturally, finally a layer of sensitive molecular imprinted
membrane is formed on the surface of electrode surface. (2) In
the self-assembly method [145], functional monomer and
template combined with each other by hydrogen bonding,
electrostatic charge transfer, van der Waals reaction etc., then
self-assembled film formed with special structure and shape.
Self-assembled film possesses good thermal stability, easy to
synthesis, and it cannot be affected by shape of the basic
material. (3) Electric polymerization [146] is one of the most
promising methods, it is easy to implement due to many traits:
operation is simple, shape of imprinting hole is hard to change
etc. [147, 148]. Specific operation is as follows: put electrodes
in mixed solution in the presence of imprinting molecular and
functional monomer, electrochemical reaction occurs, and
then molecular imprinted membrane can be synthesized with
uniform thickness and good reproducibility. Nanoscale thick-
ness of the sensitive membrane will be obtained when chang-
ing the amount of charges reasonably. Zhao etc. [137] con-
structed 2, 6-Diaminopyridine-imprinted core-shell compos-
ites and combined electrochemical method to detect hair dye.
In their work, 2, 6-Diaminopyridine was template, 6-
aminouracil was functional monomer, silica was taken as core,
graphene and ionic were introduced to increase conductivity,
and the final electrochemical sensor can get a low detection
limit of 0.0275 mg kg−1. Alizadeh [149] synthesized TNT
imprinted magnetic particles, and accumulated these particles
onto the surface of carbon paste electrode. This magnetic
chemical sensor possesses a 0.5 nM detection limit. In addi-
tion, some researchers covered electrochemical sensors that
contain MIP coated NPs directly on an electrode, which en-
ables direct detection without the need of an elution step. Li
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etc. [150] established a method for bovine hemoglobin detec-
tion with a simple process. The electrode was modified with
gold NPs firstly, and the MIP shell was fabricated tightly un-
der the self-polymerization of dopamine (functional mono-
mer). After optimization of experiment, the MIP electrochem-
ical sensor can specifically determine the bovine hemoglobin
in the exits of interferents.

For optical sensor, many applications have been mentioned
in the core part of this review, therefore, some other important
applications will be introduced here. Core-shell MIP combined
with SPR (surface plasmon resonance) is another research hot
pot. High sensitivity and good responsibility is the main advan-
tages of SPR. SPR sensor is constituted by sensor chip, optical
detection system, liquid delivery system. Sensor chip is the core
component of SPR sensor. A layer of metal film is covered on
the glass film of sensor chip, then different polymer is taken as
transition layer and covered on the metal film, which facilitate
fixed different molecules. Researchers take MIP as the recog-
nition parts on sensor chip, which definitely improved the se-
lectivity of SPR technology. Riskin et al. [151] introduced the
molecular imprinted sites on the surface of AuNPs, and they
combined SPR technology to detect the Pentaerythritol
tetranitrate, Nitroglycerin, and Ethylene Glycol Dinitrate.
After they synthesized different composites materials for each
targets using different template, the detection limits can reach to
200 fM, 20 pM, 400 f. respectively. Moczko [152] and work-
mates synthesized another core-shell MIP. In this technique,
MIP was core, PEG was used to modify MIP in order to keep
MIP NPs stable, protect MIP from aggregation and make MIP
easily applied in biochemistry detection. In their work, they also
combined core-shell MIP with SPR technology to detect mela-
mine. SPR here was applied to detect if the recognition proper-
ties was changed before and after modification of MIP NPs
with PEG shell.

Surface-enhanced Raman scattering (SERS) technique is
one kind of testing technology with ultra-sensitivity and un-
damaged ability to analytes. Due to its wide detection

conditions and time response, SERS technique has been wide-
ly applied in the field of chemical and biological sensors,
surface adsorption, catalytic reaction and trace analysis.
However, specific selectivity is still not high, thus impurities
interfere in the detection of the target analytes. Besides, sub-
strates for SERS detection must be stable and unreactive.
Therefore, combination of MIP and SERS technique together
will solve the problems above. Chang and coworkers [87]
synthesized core-shell MIP using MPS as coupling agent to
modify silver microspheres. This core-shell MIP possesses
characteristics of SERS and selectivity for the detection of 4-
mercaptobenzoic acid. The final Ag clusters were around
2.5 μm, and the MIP shell was 40 nm. The SERS was
10−5 M with a strong activity. Herein, some representative
applications are concluded in Table 6.

Conclusions and perspectives

In the review, we conclude the core-shell MIP from different
angles. Silica, magnetic NPs, quantum dots, nanoclusters and
Up-conversion materials are mainly applied as the core ma-
trix. They all possess excellent characteristics, which mostly
decide the function of MIP, therefore, silica is mostly applied
in separation and extraction of biomolecule detection due to
its biocompatibility, and is the also used modification shell on
the surface of other core materials. Magnetic NPs are mostly
used in SPE due to its magnetic properties. Quantum dots and
nanoclusters are widely applied as sensors due to their optical
and electrochemistry traits. Besides, we paid attention of
three main synthesis methods for core-shell MIP, precip-
itation polymerization, emulsion method and grafting ap-
proach. They are suitable for different core-shell MIP when
MIP is designed.

Although core-shell MIPs can definitely overcome many
problems compared with traditional MIPs, there are still some
limitations of core-shell MIPs need to be figured out. (1) First,

Table 6 Overview on analytical
applications of core-shell MIPs Template Core materials Application Ref

λ-Cyhalothrin YVO4:Eu
3+@MIPs Fluorescence sensor [18]

bensulfuron-methyl Fe3O4@SiO2 SPE [53]

Sesamol CdSe/ZnS Optical sensor [68]

Pentachlorophenol Mn-Doped ZnS RTPO [69]

Dicofol Fe3O4@OA SPE [128]

Sulfadiazine SiO2/ZnO/ZnS Photodegradation [153]

Enrofloxacin SiO2 -Ru FRET-Based Assaysa [154]

Paraoxon Disulfide ester-polystyrene Degradation [155]

Tert-butylhydroquinone Modified silica Electrochemical sensor [156]

atrazine herbicide MPS - Silica Fluorescent sensor [157]

tetrabromobisphenol A silica SPE [158]

a Förster resonance energy transfer-based assays.
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the water system should be explored widely as imprinting cir-
cumstance due to most interaction of proteins with other mol-
ecules happen in water, not in organic system; the field focused
on the imprinted macromolecules still needs a lot of develop-
ment. Metal chelating functional monomer should be highly
exploited to overcome this deficiency. And much more bio-
compatible and hydrophilic functional monomers can be select-
ed, which can reduce the impact of hydrogen bond. (2) Like
traditional problems of MIP, the category of functional mono-
mer and cross-linker is not abundant, which affect the ultrathin
and superfine structure ofMIP. In fact, this problem is related to
the mechanism of molecule recognition and the synthesis pro-
cess of MIP. Therefore, much more computer assistive technol-
ogies should be combined, which is benefit for theory research
on a molecular level. Only the interaction mechanism between
core-shell MIP and target molecular has been well clearly un-
derstood, a more appropriate functional monomer can be cho-
sen. (3) Considering about the structure of core-shell MIP, more
categories of cores should be exploited and modified in order to
coat with MIP shell, such as chitosan microsphere, polystyrene
microsphere etc., and the excellent traits of these materials need
to be combined together which can enhance the development of
MIP in crossing fields. When the MIP shell is designed, com-
puter simulation, Response surface and characterization tech-
nology should be combined together in order to control the
thickness of MIP shell and get enough recognition sites. (4)
When the applications in sensors of core-shell MIP are taken
into account, in order to get minimum interference, maximum
response and facilitate reuse, MIP must be used as membrane
or powder through a proper way to be fixed on the surface of
transverter. In the detection process, the loss of MIP sensor
membrane will lead to the decrease of the stability of sensor.
And sometimes the MIP membrane is too thin which result in
less binding sites, which limit the development of MIP sensor.
Choosing a suitable synthesis approach may overcome these
problems. Suspension and emulsion polymerization can get
uniform particles MIP directly with high adsorption capacity
and adsorption speed, template molecules can also buried more
deeply and tightly, however, these two method may also result
in a hard wash-out progress.

In this review, some solutions are put forward to the main
problems, however, exploring new kinds of method and ma-
terials are still needed to promote the development of core-
shell MIPs technique.
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