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Abstract We on report an eco-friendlymolecularly imprinted
material based on carbon dots (C-dots) via a facile and effi-
cient sol–gel polymerization for selective fluorescence detec-
tion of 4-nitrophenol (4-NP). The amino-modified C-dots
were firstly synthesized by a hydrothermal process using citric
acid as the carbon source and poly(ethyleneimine) as the sur-
face modifier, and then after a sol–gel molecular imprinting
process, the molecularly imprinted fluorescence material was
obtained. The material (MIP-C-dots) showed strong fluores-
cence fromC-dots and high selectivity due to the presence of a
molecular imprint. After the detection conditions were opti-
mized, the relative fluorescence intensity (F0/F) of MIP-C-
dots presented a good linearity with 4-NP concentrations in
the linear range of 0.2−50μmol L-1 with a detection limit (3σ/
k) of 0.06 μmol L-1. In addition, the correlation coefficient
was 0.9978 and the imprinting factor was 2.76. The method
was applicable to the determination of trace 4-NP in Yangtze
River water samples and good recoveries from 92.6–107.3 %
were obtained. The present study provides a general strategy
to fabricate materials based on C-dots with good fluorescence
property for selective fluorescence detection of organic
pollutants.

Keywords Molecular imprinting . Sol–gel . Eco-friendly
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Introduction

4-Nitrophenol (4-NP) has been listed by the U.S.
Environmental Protection Agency (U.S.EPA) as the prior-
ity environmental pollutant due to its wide use in agricul-
ture and drug production [1, 2]. Thus, developing effec-
tive analytical methods for the detection of the 4-NP is
very important. Until now, many traditional detection
methods, such as electrophoresis and electrochemical
methods, [3] chromatographic techniques [4] and high
performance liquid chromatography (HPLC) [5] have
been applied to detect trace 4-NP in real samples.
However, these methods suffer from expensive reagents,
time consuming, tedious sample pretreatment and possible
production of secondary pollutants. Therefore, it is still a
challenge to develop a simple, rapid and selective method
for the determination of the 4-NP in real samples.

Quantum dots (QDs) have attracted much attention in
the scientific community because of their unique proper-
ties, such as good photostability, narrow emission spectra
and broad absorption spectrum [6, 7]. However, most tra-
ditional QDs contain heavy metals, such as Cd, and their
applications are thus limited due to the toxicity and po-
tential environmental risk of the heavy metals. As one
type of QD substitutes, carbon dots (C-dots) were discov-
ered in single-walled carbon nanotubes in 2004 [8].
Compared with the traditional QDs, C-dots exhibit advan-
tages, including low toxicity, excellent photostability, easy
preparation, and good water solubility [9–11]. Substantial
research has been reported on analytical and detecting
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applications of C-dots based on the excellent fluorescence
property. Lu et al. used pomelo peel as the carbon source
to synthesize C-dots by hydrothermal treatment for the
detection of Cu2+ [12]. Huang et al. prepared a new C-
dots material by a one-pot microwave-assisted hydrother-
mal treatment using histidine as the carbon source for the
detection of Fe3+ [13]. Gao et al. used water-soluble ami-
no-functionalized C-dots as a fluorescence probe for the
detection of Hg2+ in aqueous solution [14]. However,
fluorescent detection based on QDs often confronts with
the interference of the coexisting substances. A feasible
method to enhance the selectivity of fluorescent detection
is the use of molecular imprinting technology (MIT) [15].

MIT is a versatile and well-established strategy to
obtain three-dimensional cross-linked polymers with
tailor-made recognition sites [16]. The resulting molec-
ularly imprinted polymers (MIPs) are prepared by the
polymerization of functional monomers, cross-linkers
and initiators in the presence of the template molecules
[17]. Subsequently, the removal of template molecules
from the three-dimensional cross-linked polymers leaves
behind specific recognition sites with complementarity
to the original template [18]. Due to the good stability,
high selectivity and satisfactory practicability, MIPs
have been widely used in many applications, including
drug delivery and controlled release, [19] extraction and
separation, [20] chemical material [21] and catalysis
[22]. Recently, many effective MIPs-based QDs mate-
rials have been reported, which combined the advan-
tages of high selectivity of MIPs and high sensitivity
of fluorescence detecting from QDs [23]. We reported
previously on the use of MIPs on Mn-doped ZnS QDs
for se lec t ive f luorescence de tec t ion of 2 ,4 ,5-
trichlorophenol, 2,6-dichlorophenol and 2,4-dichlorophe-
nol, [24–26] and the use of MIPs on Octadecyl-4-
vinylbenzyl-dimethyl-ammonium chloride-modified
CdTe QDs for specific recognition and fluorescence de-
tection of bifenthrin and λ-cyhalothrin [27, 28]. Here,
we synthesized a novel MIPs fluorescence material
based on polyamine-functionalized C-dots using a sim-
ple room-temperature sol–gel method for the fluores-
cence detection of target molecules.

In the present work, we report on a facile approach for
the formation of a fluorescent material by coating an
imprinted polymer layer on the surface of C-dots by a
sol–gel process. Polyamine-functionalized C-dots were
first synthesized by hydrothermal process using citric ac-
id as the carbon source and poly (ethylenimine) as the
surface modifier. Then 4-NP, 3-aminopropyltriethoxysilane
(APTES) and tetramethoxysilane (TEOS) were chosen as
the template molecule, functional monomer and cross

linker, respectively. After a sol–gel molecular imprinting
process and a solvent extraction process, the MIP-C-
dots fluorescence material was obtained. The synthe-
sized nanomaterial was characterized by transmission
electron microscopy (TEM), Fourier transform infrared
spectroscopy (FTIR) and spectrofluorometer, and then
used for selective recognition and fluorescence detection
of the target molecule 4-NP. To the best of our knowl-
edge, MIPs-capped C-dots for fluorescence detection of
4-NP has not been reported. Finally, this material was
demonstrated as a simple, rapid and selective detection
system for determination of 4-NP in real samples.

Experimental

Materials

All chemicals were of at least analytical grade. Citric acid,
branched poly(ethyleneimine) (PEI) (MM 1800 Da), am-
monia solution (25–28 %), tetraethoxysilane (TEOS) and
3-aminopropyltriethoxysilane (APTES) 4-nitrophenol (4-
NP), 2-nitrophenol (2-NP), 2,4,6-trinitrotoluene (TNT),
2,4,5-trichlorophenol (2,4,5-TCP) were all purchased
from Aladdin reagent Co., Ltd. (Shang Hai, China,
www.aladdin-reagent.com). Ethanol was obtained from
Sinopharm Chemical Reagent Co., Ltd. (Shang Hai,
China, www.sinoreagent.com). Double distilled water
was used during the whole experiment process.

Instrumentation

The morphologies were observed by a transmission
electron microscope (TEM, JEOL, JEM-2100). Fourier
transform infrared (FT-IR) spectra were recorded using
Nicolet NEXUS-470 FTIR apparatus (USA). The fluo-
rescence spectra of the C-dots and eco-friendly fluores-
cence material were obtained by a spectrofluorometer
(Cary Eclipse) equipped with a quartz cell and a plotter
unit.

The synthesis of polyamine-functionalized C-dots

Polyamine-functionalized C-dots were synthesized based on
the procedure described in the literature with some modifica-
tions [29]. Briefly, 2.0 g of citric acid and 1.0 g of PEI were
dissolved in 30 mL of deionized water, and the mixture was
then transferred into a 50 mLTeflon-lined autoclave and heat-
ed at 200 °C for 5 h. After the reaction, the autoclave was
cooled to room temperature, and the mixture was
centrifugated at 12,000 rpm for 15 min to remove the large
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dots. Finally, the C-dots were dried and re-dispersed in deion-
ized water at the concentration of 50 g/L.

Synthesis of MIP-C-dots and NIP-C-dots

0.02 mmol of 4-NP template was dissolved in 10 mL of
ethanol, mixed with 0.08 mmol of APTES (functional
precursor), and then 100 μL of C-dots was added and
stirred for 1.0 h. Subsequently, 0.4 mmol of TEOS
(cross-linker) and 100 μL of NH3 · H2O (catalyst) were
added to the reaction flask, and the mixture solution was
kept stirring for another 12 h. The resultant MIP-C-dots
were collected by centrifugation (8000 rpm, 5 min) and
washed with ethanol several times to remove any free
reagents. The 4-NP templates in the imprinted polymer
were extracted with ethanol, until no 4-NP can be detect-
ed by using UV spectrometer. Finally, the MIP-C-dots
were dried at 50 °C under a vacuum overnight. As a
control, the non-imprinted fluorescence materials (NIP-
C-dots) were also prepared using the same method but
without the addition of 4-NP.

Fluorescence measurement

All the fluorescence measurements were performed under
the same conditions: the slit widths of the emission and
excitation were both 10 nm, and the excitation wave-
length was set at 350 nm with a recording emission
range of 390–540 nm. The MIP-C-dots were dispersed
in deionized water to get the stock solution (100 mg L-1).
4-NP and other phenols were dissolved in ethanol to get
the analyte stock solutions (1.0 mmol L-1), respectively.
In a 5.0 mL tube, a given concentration of 4-NP solution
was added to a certain volume of a solution of the MIP-
C-dots, and then the mixture was diluted to volume with
deionized water. After incubation, the testing solution
was transferred to a quartz cell for the following fluores-
cence detection.

Results and discussion

Preparation and characterization of C-dots
and MIP-C-dots

The general scheme for the preparations of C-dots and
MIP-C-dots are illustrated in Fig. 1. Firstly, amino-
functionalized C-dots (see Figure S1) with high fluores-
cence property were synthesized via a facile and effec-
tive hydrothermal method. Citric acid and poly
(ethylenimine) were used as the carbon source and sur-
face modifier, respectively. Subsequently, the sol–gel mo-
lecular imprinting method was chosen as a simple and
appropriate way to fabricate the MIP-C-dots. As shown
in Fig. 1, 4-NP, APTES, TEOS and NH3 ·H2O were used
as template molecule, functional monomer, cross-linking
agent and catalyst, respectively. After a copolymerization
of the C-dots, APTES, 4-NP, and TEOS, the polymeric
networks around the 4-NP molecules and C-dots were
formed. The C-dots and APTES were interacted with 4-
NP via the hydrogen bond interaction and van der Waals

Fig. 2 (a) Emission spectra of the
C-dots at different excitation
wavelengths from 280 to 420 nm,
and (b) FL spectra of 4-NP@
MIP-C-dots (1), MIP-C-dots (2),
NIP-CQDs (3)

Fig. 1 Schematic illustration for the preparation of MIP-C-dots
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force. After the removal of the templates by solvent ex-
traction, the MIP-C-dots with specific imprinted cavities
were obtained.

The fluorescence spectra of the amino-functionalized C-
dots are shown in Fig. 2a. It can be found that when the
excitation wavelength was set at 365 nm, the maximum emis-
sion wavelength was at 460 nm. Thus, excitation wavelength
at 365 nm and emission wavelength at 460 nm were used in
the further experiments. As shown in Fig. 2b, the fluorescence
intensity of 4-NP@MIP-C-dots was about 18 % of that of
NIP-C-dots; after 4-NP was removed by solvent extraction,
the fluorescence intensity of MIP-C-dots was restored to
96.3 % of that of NIP-C-dots, which indicated that 4-NP
was removed cleanly from the polymer matrix.

The morphology of C-dots and MIP-C-dots were investi-
gated by TEM. As shown in Fig. 3a, the amino-functionalized
CQDs are uniform and microspherical particles with the size
about 4.5 nm. As shown in Fig. 3b, MIPs-CQDs exhibited
spherical structure and the diameters were about 20 nm, indi-
cating that the CQDs were coated with silica and the MIPs-
CQDs were successfully synthesized.

FT-IR spectra of MIP-C-dots and NIP-C-dots were
shown in Fig. 4. It can be found that the MIP-C-dots and
NIP-C-dots showed similar spectrum owing to the same
composition. The broad peak around 1097 cm-1 and the

characteristic peaks at 800 and 465 cm–1 are attributed to
the Si–O–Si asymmetric stretching and the Si-O vibrations,
respectively. The bands at 3385, 1647 and 1556 cm–1 were
assigned to the stretching vibration of N-H, indicating the
presence of amino group. All the bonds further confirmed
that the material was successfully synthesized by the sol–
gel condensation of the silane reagents.

Fluorescence detection of 4-NP by MIP-C-dots

The following parameters were optimized: the concentration
of MIP-C-dots and the detection time. Respective data and
Figures are given in the Electronic Supporting Material. The
following experimental conditions were found to give best
results: (a) the optimum concentration of MIP-C-dots was
about 2.0 mg L-1; (b) 2 min was determined as the optimal
detection time. Under the optimal condition, the capability of
the MIP-C-dots for quantitative determination of 4-NP was
further studied. After incubation of MIP-C-dots with different
concentrations of 4-NP for 2 min, the test was implemented.
As a control, NIP-C-dots with different concentrations of 4-
NP were also researched. The detection system was based on
the fluorescence quenching between C-dots and 4-NP.
Moreover, the quenching mechanism of this fluorescence de-
tection system can be described as follows: In the synthesis
process of MIP-C-dots, many tailor-made recognition sites
with complementarity to 4-NP (template molecule) were pro-
duced, and the specific imprinted cavities can generate a
strong adsorption of 4-NP; based on the hydrogen bonding
interactions between the template molecules and polymer ma-
trix, the template 4-NP can easily close to the fluorescent
material and lead to the fluorescence quenching behavior
which can be explained as the electron transfer from C-dots
to 4-NP. The fluorescence quenching followed the Stern
−Volmer equation.

F0
.
F ¼ 1þ Ksv c½ � ð1Þ

F0 and F are the fluorescence intensities of the MIP-C-dots
in the absence and presence of the target molecule 4-NP,Fig. 4 FT-IR spectra of MIP-C-dots (1) and NIP-C-dots (2)

Fig. 3 TEM images of C-dots
(scale bar: 20 nm) (a) and MIP-
C-dots (scale bar: 50 nm) (b)
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respectively. KSV is the quenching constant, and [c] is the
concentration of 4-NP. In addition, the ratio of KSV,MIP and
KSV,NIP is defined as the imprinting factor (IF) to evaluate
selectivity. The Stern-Volmer plots of MIP-C-dots and NIPs-
C-dots with different concentrations of 4-NP were shown in
Fig. 5a and b, respectively. The plot shown in Fig. 7a can be
described by the following equation: F0/F = 0.01605 [c] +
1.01593, the KSV,MIP was 16,050 M-1 and the correlation co-
efficient was 0.9978. The linear calibration curve was obtain-
ed in the range of 0.2–50 μmol L-1 with a detection limit (3σ/
k) of 0.06 μmol L-1. As shown in Fig. 7b, the KSV,NIP was
about 5820 M-1 and the correlation coefficient was 0.9970.
After being calculated, a high imprinting factor (IF) of 2.76
was obtained, indicating that MIP-C-dots can selectively rec-
ognize the template molecule 4-NP.

Selectivity study

Firstly, the interference of potentially interfering ions was
studied. It can be found from the Table S1 that all of the poten-
tially interfering ions have no effect on the FL intensity of the
MIP-C-dots. Then the other three substances (2-NP, TNTand 2,
4,5-TCP) were chosen to evaluate the selectivity of

MIP-C-dots. As shown in Fig. 6, the MIP-C-dots have a strong
response to the template molecule 4-NP, and the fluorescence
quenching amount of the MIP-C-dots for 4-NP was larger than
others. After being calculated, the difference in the quench
efficiency ((F0-F)/F0) of MIP-C-dots and NIP-C-dots were
0.2136, 0.0242, 0.0330, 0.0190 at 50μmol L−1 for the four
phenols (4-NP, 2-NP, TNT and 2,4,5-TCP), respectively.
Based on the above results, it can be found that MIP-C-
dots had specific recognition ability for 4-NP and the
specificity was probably due to the existence of the
imprinted cavities in the MIP-C-dots. In addition, other
target molecules were not be bound firmly into the
imprinted cavities, and there were no specific recognition
sites in the NIP-C-dots.

Analytical applications in real sample

To prove the applicability of the method, the nano material
was used for the determination of 4-NP in Yangtze River
water samples. The samples were filtered and stored in clean
containers. As no response to 4-NP was found in the Yangtze
River water samples, a recovery study was implemented and
the corresponding analysis results were listed in Table 1.
Owing to the excellent performance of the MIP-C-dots, good
recoveries from 92.6 to 107.3 % were obtained. It can be
found that the MIP-C-dots had good recognition ability to

Fig. 5 The Stern−Volmer plots
for MIP-C-dots (a) and NIP-C-
dots (b) with different
concentrations of 4-NP in test
solution

Fig. 6 Quenching efficiencies of MIP-C-dots and NIP-C-dots for 4-NP
and other substances

Table 1 Recovery of 4-NP in Yangtze River samples (n= 3)

Sample Concentration
taken (μmol L−1)

Found
(μmol L−1)

Recovery (%) RSD (%)

1 5 4.63 92.6 4.7

2 10 10.73 107.3 3.6

3 15 15.81 105.4 2.7

4 20 19.26 96.3 4.1

5 30 29.37 97.9 3.3

6 40 41.12 102.8 3.8
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provide accurate values of 4-NP concentrations on unknown
water samples. Thus, this eco-friendly fluorescence material
can be used as an effective tool for rapid and accurate analysis
of real samples.

Many good works about analytical method for 4-NP detec-
tion have been reported and some of them were summarized
and compared with our work in Table 2. It can be found that
the methodology had wide linear range and low detection
limit. Compared with electrochemical methods, fluorescence
analysis method has a lot of advantages, such as good stability,
low cost, simplicity, high sensitivity and test rapidity. For the
MIP-C-dots detection system, the selectivity was significant
improved but the sensitivity was low. The reason can be de-
scribed as follow: during the polymerization process, cross-
linkers formed the main polymer layer, and the interaction
sites between functinal monomers and template molecules
were comparatively far less.

Conclusions

In summary, we developed a simple and efficient strategy to
fabricate the eco-friendly molecularly imprinted fluorescence
material based on C-dots for selective fluorescence detection
of 4-NP. The preparedMIP-C-dots integrated the merits of the
fluorescence property of C-dots and selectivity of MIPs. The
material has a good linear range and detection limit, which
provided a reliable method to detection of 4-NP in a real
environment. Furthermore, it is suggested that a novel gener-
ation of eco-friendly fluorescence material based on C-dots
can be fabricated by using this strategy.
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