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sensing of uric acid and dopamine with high selectivity
over ascorbic acid
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Abstract Porous cuprous oxide nanospheres were deposited
on reduced graphene oxide (pCu2O NS-rGO) by a
solvothermal approach that uses hexadecyltrimethylammonium
bromide as the capping agent and L-glutamic acid as the reduc-
ing agent. The nanomaterial was characterized by trans-
mission electron microscopy, Raman spectroscopy,
thermogravimetry, and electrochemical methods. A
glassy carbon electrode was modified with pCu2O NS-
rGO, and the respective electrode displays a well
expressed oxidation peak for dopamine (DA) located at
160 mV (vs. SCE). It also gives a strong peak for uric
acid (UA) which is separated from the DA peak by
130 mV (vs. SCE). No signals can be detected for ascor-
bic acid (AA) in concentrations up to 2.0 mM. The find-
ings are exploited in a method for simultaneous determi-
nation of UA and DA. The linear ranges are from 1.0 to
138 μM for UA, and from 0.05 to 109 μM for DA even
in the presence of relatively high concentrations of AA.
The detection limits are 112 nM for UA and 15 nM for
DA (at an S/N ratio of 3).
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Introduction

Dopamine (DA) is a neurotransmitter in hypothalamus and
pituitary gland, which has direct effects on human emotion
[1, 2]. Low concentration of DA can induce several diseases
including Schizophrenia and Parkinson’s disease [3].
Similarly, uric acid (UA) is widely investigated as the main
final product of purine metabolism [4]. Abnormalities of UA
levels in biological fluid will cause several diseases such as
gout and hyperuricemia [5]. UA and DA as electroactive mol-
ecules can be measured by electrochemical methods [6],
which have the advantages of convenience, rapidity, and high
sensitivity over the other methods [7].

Nonetheless, ascorbic acid (AA) usually coexists with UA
and DA in human blood and/or urine [8], and their electro-
chemical signals cannot be separated on conventional bare
electrode because of their overlapped oxidation peaks [9].
Hence, it is greatly imperative to exploit a highly selective
and sensitive electrochemical approach for simultaneous test-
ing of UA and DA containing AA.

Numerous materials such as ion-exchange membrane [3,
10], conducting polymer [11], carbon-based nanomaterials
[12], metal and metal oxide [13, 14] have been used to im-
prove the electrochemical responses of these biomolecules.
Among them, cuprous oxide (Cu2O), a p-type semiconductor,
is an attractive electrode material [15]. Cu2O has wide appli-
cations in CO oxidation [16], catalysis [17], and biosensing
[18], due to its low band-gap energy (2.17 eV), high catalytic
activity, superior conductivity, and relatively low price. Up to
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now, there are a variety of Cu2O nanomaterials with different
morphologies such as rods [19], wires [20], porous spheres
[21], and cubes [22]. Particularly, porous Cu2O nanospheres
are considered as promising electrode materials for determi-
nation of some electroactive species, because of their high
surface area and more active sites accessible [23, 24].

Graphene and its derivates attract tremendous attention in
electrochemical sensors [25], owing to their enhanced electrical
conductivity and enlarged electroactive surface area. For exam-
ple, Li’s group fabricated reduced graphene sheet films for the
determination of β-nicotinamide adenine dinucleotide [26]. In
another example, Xu et al. synthesized Pt/rGO for concurrent
detection of UA and DA in the presence of of AA [27].

Herein, porous Cu2O nanospheres supported on rGO (pCu2O
NS-rGO) were synthesized by a one-pot solvothermal approach,
using L-glutamic acid and hexadecyltrimethylammonium bro-
mide (CTAB) as the reducing agent and structure-directing
agent, respectively. The nanocomposites were extended for con-
structing a sensor to simultaneously detect UA and DA in the
presence of AA.

Experimental section

Chemicals

Graphite powder (99.95 %, 8000 mesh), copper(II) ni-
trate trihydrate (Cu(NO3)2·3H2O), L-glutamic acid,
hexadecyltrimethylammonium bromide (CTAB), ascorbic

acid (AA), dopamine (DA), uric acid (UA), acetaminophen,
citric acid, glycine, lysine, fructose, and glucose were supplied
by Shanghai Aladdin Chemical Reagent Company (Shanghai,
China, www.chemicalbook.com) with the analytical grade.
All the chemicals were used as received.

Preparation of pCu2O NS-rGO

Typically, a modified Hummers’ method was applied to pre-
pare graphene oxide (GO), as reported in our previous work
[28]. In brief, 1.0 g of natural graphite powder, 1.0 g of
NaNO3 and 33 mL of 98 % H2SO4 were put into a 250 mL
beaker, successively. Then, 6.0 g of KMnO4was slowly added
into the mixed solution under stirring at 0 °C. The ice-bath
was removed and the mixture was heated at 35 °C for 1.5 h.
Subsequently, 40 mL of water was slowly added into the sys-
tem under stirring. Afterwards, the temperature was up to
95 °C for 30 min. Next, another 100 mL of water and 6 mL
of 30 % H2O2 was added into the above mixture. The color of
the reaction system was changed from blackish brown to
earthy yellow. Finally, the resultant mixture was cooled to
room temperature and centrifuged at 1000 rpm for 5 min.
Then, the solution was placed over one night and washed by
centrifuging at 4000 rpm for 5 min until the pH value of the
upper layer of the suspension arrived at near 7. A homoge-
neous suspension is obtained after filtering the trace residues.

For the preparation of pCu2O NS-rGO, 0.5 g of CTAB and
5 mL of GO (1.0 mg mL−1) were dispersed into 15 mL of
ethanol by stirring. 0.121 g of Cu(NO3)2·3H2O, and 0.3 g of
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L-glutamic acid were added into the above solution subse-
quently. After stirring for 30 min, the mixture was transferred
into a 25 mLTeflon-lined stainless-steel autoclave and heated
at 160 °C for 6 h. After cooling to room temperature, the
products were separated via centrifugation and thoroughly
washed using ethanol and water. Finally, the purified samples
were dried in vacuum at 60 °C for further use.

In control experiments, Cu2O nanoparticles (NPs) were
prepared without CTAB in the identical procedure. Pure
rGO was obtained by reducing GO with freshly prepared
NaBH4 solution (0.5 M).

Characterization

Transmission electron microscopy (TEM) and high-resolution
transmission electron microscopy (HRTEM) measurements
(www.jeol.co.jp/en.com) were carried out on a JEM-2100F
transmission electron microscope equipped with the selective
area electron diffraction (SAED). The crystalline nature was
examined by X-ray diffraction (XRD, Rigaku Dmax-2000

diffractometer, www.rigaku.com) with Cu-Kα radiation
(Bruker Co., Germany). X-ray photoelectron spectra (XPS,
www.pharmaceuticalonline.com) were recorded on a
Thermo SCIENTIFIC ESCALAB 250 XPS spectrometer
with Al Kα X-ray radiation (1486.6 eV). Raman spectra were
acquired on a micro-Raman system (Renishaw RM1000 spec-
trometer) with an excitation wavelength of 633 nm (www.
antpedia.com). Thermogravimetric analysis (TGA) was con-
ducted with a simultaneous thermo-gravimetric analyzer
(NETZSCH STA 449C, www.brain-power.com). The
samples were heated in air from room temperature to 800 °C
at a heating rate of 10 °C min−1.

Electrochemical measurements

All the electrochemical measurements were conducted on a
CHI 660D electrochemical workstation (Chenhua Instruments
Co., Shanghai, China, www.chinstruments.com), and
performed on a conventional three-electrode system, which
includes a bare or modified glass carbon electrode (GCE, 3.
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0 mm in diameter) as the working electrode, a platinum wire
as the counter electrode, and a saturated calomel electrode
(SCE) as the reference electrode. All the electrochemical ex-
periments were carried out at room temperature, if not stated
otherwise.

For the construction of pCu2O NS-rGO modified electrode
(pCu2ONS-rGO/GCE), the sample was diluted to 1.0mgmL−1

with water and sonicated for 30 min to form a homogenous
dispersion. Then, 6 μL of the dispersion was transferred onto
the electrode surface. After drying in air, Nafion (0.05 %) with
the volume of 5 μL was coated on the surface of the catalyst.
For comparison, Cu2O NPs and rGO modified electrodes were
constructed under the identical conditions, named as Cu2O
NPs/GCE and rGO/GCE, respectively.

Differential pulse voltammetry (DPV) measurements were
performed to estimate the electrocatalytic activity of the cata-
lyst toward UA and/or DA oxidation in the presence of
2.0 mM AA in 0.1 M phosphate buffer (pH 7.0) at a sweep
rate of 50 mV s−1.

Results and discussion

Characterization

Low- and high-resolution transmission electron microsco-
py (TEM) images were provided to illustrate the detailed

structural information of the typical product (Fig.1a and
b). The sample was composed of many uniformly dis-
persed spherical particles with the mean diameter of
223 ± 8 nm on the surface of rGO with well-resolved
fringes as marked by the arrows. The polycrystalline
property of the resultant Cu2O nanospheres was demon-
strated by the selected area electron diffraction pattern, as
seen in inset of Fig. 1b.

As observed in Fig. 1c, the distinguished lattice fringes
with the measured d-spacing distance of 0.24 nmwere obtain-
ed, which is matched well with the (111) crystal planes of
Cu2O [29]. This observation is similar to Cu2O nanocrystals
in the literature [30]. Moreover, the porous structure of Cu2O
nanospheres is clearly observed, which is assembled by many
small primary particles.

Nitrogen adsorption-desorption isotherms were carried out
at 77.4 K to further testify the porosity of Cu2O nanospheres
(Fig. 1d). The isotherms exhibit type V hysteresis loops with a
large hysteresis loop, providing the strong evidence for the
formation of porous structures. The BETsurface area and pore
volume are calculated to be 38.04 ± 0.05 cm2 g−1 and
0.077 ± 0.002 cm3 g−1, respectively. The enlarged surface area
and pore volume strongly demonstrate the formation of po-
rous structure. It is believed that a high surface area favors the
efficient contact between active materials and reactants in the
electrolyte, thereby providing more electroactive sites for UA
and DA oxidation [31].
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Thermogravimetric analysis (TGA) of pCu2O NS-rGO
was performed to investigate its thermal stability (Fig. 2A,
curve a), using GO as the reference (curve b). The mass loss
in weight emerged at 100, 370, and 480 °C is ascribed to the
escape of interlamellar water, combustion of oxygenated func-
tional groups, and carbon framework, respectively [32].
Compared with GO, the relatively smaller loss at 250 and
450 °C reflects the enhanced stability for pCu2ONS-rGOwith
the metal mass loading of 33.2 %.

Figure 2B provides the Raman spectra of pCu2O NS-rGO
(curve a), using GO (curve b) as the reference. There are two
main peaks located at 1330 and 1600 cm−1 for pCu2O NS-
rGO, corresponding to the D and G bond whose intensity
ratios (denoted as ID/IG) are usually applied to determine the
defect degree of graphitization carbon, respectively [33]. The
ID/IG is 1.14 for pCu2O NS-rGO, which is higher than that of
GO (0.94), but similar to that of the previous PtNi nanoflakes/
RGO (1.13) in our group [34], showing the efficient decom-
position of oxygenated groups during the solvothermal
synthesis.

The valence states and surface composition of the sample
were characterized by X-ray photoelectron spectroscopy
(XPS). As observed in survey XPS spectrum (Fig. 3a), the
product mainly contains C, N, O, and Cu elements. Figure
3b depicts the oxidation state of Cu in pCu2O NS-rGO.
There are two main peaks located at 953.80 and 932.68 eV,
which are well indexed to Cu 2p1/2 and 2p3/2 features of Cu

0

[35]. Besides, a weak peak at around 944 eV demonstrates the
very minimal Cu2+ species after the reaction process [36]. It is
also worth mentioned that the 2p3/2 binding energy of Cu0 is
merely ~0.1 eV differ from Cu+ [36]. Therefore, the valence
state of Cu in pCu2O NS-rGO is probably located between 0
and +1.

High-resolution C 1 s XPS spectra of pCu2O NS-rGO
(Fig. 3c) can be separated into three peaks at 284.78,
287.63, and 288.63 eV, which were indexed to the C-C
(sp2), C-O, and C = O groups, respectively [33]. The peak
intensities of oxygen containing groups are much weaker than
those of GO (Fig. 3d), indicating the efficient reduction of
GO, as demonstrated by Raman data.

Electrochemical measurements

The electrochemical property of pCu2O NS-rGO (curve a),
Cu2O NPs (curve b), and rGO (curve c) modified electrodes
were characterized in 1.0 M KCl containing 5.0 mM
[Fe(CN)6]

3−/4–, using bare electrode (curve d) as the referenced.
There is a couple of redox peaks presented in the respective
cyclic voltammetry (CV) curves in all cases (Fig. 4A). The peak
potential separation of pCu2O NS-rGO (ΔEP, 214 mV) is
smaller than those of Cu2O NPs (295 mV), rGO (336 mV),
and bare electrode (384 mV). It reflects the faster electron trans-
fer rate of pCu2O NS-rGO, owing to the enhanced electric

conductivity of rGO. Meanwhile, the peak current (IP) at
pCu2O NS-rGO/GCE (36.4 μA) is 1.23-fold, 1.26-fold, and
1.78-fold larger than those of Cu2O NPs (29.6 μA), rGO
(28.8 μA), and bare GCE (20.4 μA), respectively, thanks to
the enlarged surface area of the unique porous structure.

The electrical conductivity of the modified electrodes was
further examined by electrochemical impedance spectroscopy
(EIS). Figure 4B showed the larger well-defined semicircle at
higher frequencies for pCu2O NS-rGO (curve a) when com-
pared with rGO (curve b) and bare GCE (curve c) under the
same conditions. It means the greatly decreased electron
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transfer resistance at pCu2O NS-rGO modified electrode.
These observations were in good accordance with the CV
results, indicating the efficient deposition of pCu2O NS-rGO
on the electrode surface.

Electrocatalytic behaviors of UA and DA

Fig. S1 (ESM, Electronic supplementary material) exhibits the
CV curves of UA and DA at pCu2O NS-rGO/GCE (curve b)
in the presence of AA, using bare electrode (curve a) as the
standard. There are two distinct oxidation peaks emerged at
407 and 260 mV (vs. SCE) for pCu2O NS-rGO, which can be
ascribed to the electrochemical oxidation of UA and DA, re-
spectively. The ΔEP for UA-DA is 147 mV, which would be
employed for the subsequent concurrent detection of UA and
DA. However, there is an overlapped oxidation peak obtained
at 303 mV (vs. SCE) on the bare electrode (curve a), revealing
the inefficient distinguishment of UA and DA at bare GCE.

Furthermore, the effects of the pCu2O NS-rGO dosage
(range of 4 ~ 8 μg) were investigated by CV curves for
5.0 mM [Fe(CN)6]

3−/4– in 1.0 M KCl solution (Fig. S2, ESM)
as a redox probe by using Randles-sevcik equation
[37]: ip=2.69×10

5n3/2ACD1/2v1/2.
WhereC andD are the concentration (5.0 mM) and diffusion

coefficient (7.60 × 10−6 cm2 s−1) of K3[Fe(CN)6], respectively. ip
is the anodic peak current response, n is the number of electron

transferred, v is the scan rate and A is the effective surface area.
The effective surface area of pCu2O NS-rGO increase quickly
with the adding of catalyst dosage at the early stage (inset in
Fig.S2, ESM), and reach relatively high level at 6 μg of pCu2O
NS-rGO. Subsequently, the effective surface area almost keeps
unchanged by further increasing its dosage. Therefore, 6 μg of
the catalyst was employed for the following experiments.

The pH effects in phosphate buffer (0.1 M) in the presence
of 2.0 mMAAwere investigated on pCu2O NS-rGO/GCE for
concurrent determination of UA and DA (Fig. S3, ESM). The
IP and ΔEP are relatively larger at pH 7.0 as compared with
the other cases, which is chosen as the optimal pH in the
subsequent measurements.

DPV was devoted to simultaneously test of UA and DA at
pCu2O NS-rGO/GCE, due to its high sensitivity and selectiv-
ity [38]. Figure 5a provides the respective DPV curves at
different DA concentrations in the presence of 10.0 μM UA
and 2.0 mM AA. The anode peak currents toward the oxida-
tion of DA increased linearly as the DA concentrations in-
crease from 2.0 to 123.0 μM. The linear regression equation
is I (μA) = 7.65 + 0.20C (R2 = 0.9998), with the detection of
limit (LOD) of 48 nM. Similarly, Fig. 5b reveals that the
catalytic currents increase linearly with the increased concen-
trations of UA from 2.0 to 720.0 μM in the presence of
10.0 μM DA and 2.0 mM AA. The regression equations are
I (μA) = 2.23 + 0.02C (R2 = 0.9902) and I (μA) = 1.89 +

Table 1 Comparison with the
sensors for UA and DA in the
literature

Electrode materials Linear range

(μmol L−1)

Detection limit

(μmol L−1)

Ref.

DA UA DA UA

Poly(acrylic acid) –

multiwalled carbon-nanotubes

0.04–3.0 0.3–10 0.02 0.11 [4]

Pt/rGO 10–170 10–130 0.25 0.45 [27]

Nanoporous PtCu alloy 4–20 10–70 2.8 5.7 [39]

MoS2 /rGO 5–545 25–2745 0.05 0.46 [40]

Boron-doped multi-

walled carbon nanotubes

- - 0.11 0.65 [41]

Porous Cu2O

nanospheres-rGO

0.05–109.0 1.0–138.0 0.015 0.112 This work
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0.03C (R2 = 0.9988), with the LOD of 328 nM. It also indi-
cates that there is no interference observed for the concurrent
measuring of UA and DAwith the existence of 2.0 mM AA.

Under the optimized experimental conditions, a series of
UA and DA concentrations were simultaneously detected at
pCu2O NS-rGO/GCE. The electrochemical responses at 0.29
and 0.16 V (vs. SCE) are proportional to the concentrations of
UA and DA, respectively (Fig. 6a), owing to the electrocata-
lytic oxidation of UA and DA. The linear ranges for UA and
DA detection are 1.0 ~ 138.0 μM (Fig. 6b) and 0.05 to
109.0 μM (Fig. 6c), with the LOD of 112 and 15 nM
(S/N = 3), respectively. These results reveal their individual
or simultaneous determination with high sensitivity and selec-
tivity in this system. Furthermore, their catalytic performances
at pCu2ONS-rGO/GCE are comparative to or even better than
the other sensors reported previously (Table 1) [4, 27, 39–41].

The reproducibility and stability were investigated at
pCu2O NS-rGO/GCE for simultaneous assay of 1.0 mM UA
and DA. The reproducibility was examined by using five
modified electrodes prepared in the same way, and the relative
standard deviation was 3.52 %. The stability was further eval-
uated by measuring the corresponding catalytic currents of
UA and DA on the same electrode after the storage of one
month in the refrigerator at 4 °C if not in use. The respective
currents remained 95.1 % and 94.3 % of their initial values for
UA and DA after one month, respectively. These results ex-
hibit the excellent stability and reproducibility of the con-
structed sensor.

Several potential interferences were introduced to examine
the anti-inference ability at pCu2O NS-rGO/GCE for the elec-
trochemical detection of 20.0 μM UA and 10.0 μM DA con-
taining 2.0 mM AA (Fig. 7) under the optimized conditions.
There was no interference detected in the presence of 100-fold
citric acid, glycine, glucose, CO3

2−, NO3
−, lysine, fructose,

and maltose. As a result, the sensor has potential applications
for sensitive and selective detection of UA and DA in clinical
samples.

Conclusions

In summary, pCu2ONS-rGOwas synthesized by a convenient
one-pot solvothermal strategy, and employed to develop a
sensor for selectively concurrent detection of UA and DA
containing AA. As expected, this sensor possesses good sen-
sitivity and selectivity, wide linear ranges, and preeminent
stability in the concurrent analysis of UA and DA with the
existence of 2.0 mM AA.
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