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Abstract A sensitive “on-off” fluorescent protocol for
thrombin detection is demonstrated. Firstly, thrombin
aptamers which hybridize with labeled help DNA were
immobilized on the surface of Ag@SiO2 nanoparticles
(NPs). The silver core causes the label Cy5 to display strong
metal-enhanced fluorescence. On addition of thrombin and
graphene oxide (GO), thrombin (with its high affinity for
the aptamers) displaces the Cy5-labeled help DNA which
then binds to the surface of GO via π-stacking, causing fluo-
rescence quenching of Cy5. The findings were used to design
a thrombin assay that has a 0.05 nM detection limit and ex-
cellent selectivity. It was applied to the quantification of
thrombin in spiked serum samples where is showed recover-
ies ranging from 97 % to 107 %, with relative standard devi-
ations between 2.2 and 4.5 %.
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Introduction

Fluorescence detection is one of the most powerful tools in
medical diagnostics and biotechnology. [1–3] Much effort has
been made to develop fluorescent protocol because of their
simplicity, ease of use, and wide-range availability of instru-
mentation. “Turn-off” and “turn-on” fluorescence responses
are the two common processes involved in fluorescent proto-
col, due to fluorescence quenching or enhancement, respec-
tively. A variety of techniques have been used to manipulate
these processes to design platforms for sensing, among which
fluorescence resonance energy transfer (FRET) and metal en-
hanced fluorescence (MEF) are the widely reported tech-
niques. [4–10] FRET assays can adopt a variety of donors
(organic dyes, inorganic materials, and metal complexes)
and quenchers (organic molecules, metal NPs, and carbon-
based nanomaterial quenchers), the sensing is based on the
rate of energy transfer from donor to quencher. Donors with
high quantum yield (QY) are preferred to obtain high sensi-
tivity, however, some common commercial donors process
low quantum yield, such as Cy3 (QY is 0.04), [11] Cy5 (QY
is 0.27), [11] NBD (QYis 0.1), [12] which limits the sensitivity
of FRET technique. Moreover, photobleaching of organic
dyes and photoblinking of quantum dots also limit their appli-
cations. MEF can improve the problems above mentioned, to
enhance QY, improve photostability, and reduce blinking,
endowing this technique high sensitivity. [13–16]

The detection of thrombin with high sensitivity is of great
importance in clinical applications, various methods have
been developed for thrombin detection. [17–21] Special atten-
tions have been paid on signal amplification strategies, such as
rolling circle amplification, [22] nicking enzyme-assisted
fluorescent enhancement, [23] and polymerase chain reaction,
[24] they have significantly improved the sensitivity for
thrombin detection. However, protein enzymes are always
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involved in reaction, which are costly and require special re-
action conditions. Therefore, development of a simple and
sensitive fluorescent method will benefit for thrombin and
other targets detection.

Here, we designed an aptamer-based assay for thrombin
detection, in which FRET and MEF were both used. A sand-
wich architecture of Ag@SiO2-DNA-Cy5 was firstly fabricat-
ed. Silver plays the role to enhance fluorescence due to its high
efficient MEF effect on Cy5 emission. [15] MEF is
dependent upon the distance between the fluorophore
and the metal surface, it occurs whenever the distance
is from 5 nm to dozens of nanometers. [1, 14, 15]
Silica shell was coated on AgNPs to control the dis-
tance between metal and fluorophore. GO was chosen
as quencher due to its good water dispersity and high-
efficiency quenching of fluorescence of dyes. [24, 25] Based
on molecular recognition, the fluorescence of Cy5 was en-
hanced by Ag@SiO2, and quenched by GO to achieve the
purpose of thrombin detection.

Materials and methods

Materials

Tetraethyl orthosilicate (TEOS), N-succinimidyl 4-(N-
maleimidomethyl)-cyclohexane-1-carboxylate (sulfo-
SMCC), and 3-aminopropyltrimethoxysilane (APTMS) were
purchased from Sigma-Aldrich (www.sigmaaldrich.com). All
chemicals used in this work were of analytical grade or
of highest purity available and used directly without
further purification. Milli-Q water (18.2 MΩ•cm) was
used in all the preparations. All of the oligonucleotides
were synthesized by SBS Genetech Co., Ltd. (Shanghai,
China, www.sbsbio.com). Thrombin, bovine serum
albumin (BSA), and human IgG antibody were from
Zhongshan Golden Bridge Biotechnology Co., Ltd.
(Beijing, China, www.zsbio.com). Graphene oxide was
purchased from Leadernano Co., Ltd. (Jining, China,
www.leadernano.com).

Preparation of Ag and Ag@SiO2 core/shell NPs

AgNPs were prepared using a previously reported method. [26]
Silica coating onto silver NPs was performed by our previous
method, [27] Typically, 5 mL of silver colloid was mixed with
20mLof ethanol (containing 1.25mLof concentrated ammonia
solution) under vigorous stirring. Then, 0.4, 0.7, 1.5, 2.5 and
4 μL of TEOS were added dropwise to the suspension to obtain
Ag@SiO2 NPs with 3, 5, 11, 18, and 26 nm silica shell thick-
ness, respectively. After reacted for 12 h, Ag@SiO2 NPs were
collected by centrifugation and dispersed in 5 mL of ethanol.

Preparation of DNA-functionalized Ag@SiO2 NPs

The sequences of oligonucleotides (ssDNA) used in this work
were as follows: Thrombin aptamer: 5′-SH-(CH2)6-
TACGGTTGGTGTGGTTGG-3′. Help DNA: 5′-Cy5-
ACCCAACCACACCAACC-3′

APTMSwas used for the functionalization of Ag@SiO2 NPs
with amino groups, which was reported in our previous work.
[28] Sulfhydryl-tagged aptamer was covalently conjugated to
Ag@SiO2-NH2 using sulfo-SMCC as the cross-linking agent.
Briefly, 0.2 mg of sulfo-SMCCwas added into 5mL PBS buffer
solution (10 mM, containing 20 mM KCl and 2.5 mM MgCl2,
pH 6.2) containing 2 mg of Ag@SiO2-NH2. After 1 h of reac-
tion, maleimide-activated Ag@SiO2 NPs were collected by cen-
trifugation, and dispersed in 2 mL HEPES buffer solution, then
5.5 nM (50 μL) of aptamer was added into this solution and
reacted overnight at room temperature. Ag@SiO2-aptamer NPs
were collected by centrifugation and incubated in BSA solution
(containing 50 nM BSA) to block non-specific adsorption, and
washed by HEPES for 3 times. Before thrombin detection, Cy5-
labeled help DNA was hybridized with Ag@SiO2-aptamer to
form Ag@SiO2-aptamer/help DNA, hybridization was per-
formed as below: Ag@SiO2-aptamer NPs were dispersed in
2 mL hybridization buffer (50 mM Tris-HCl, 1 M NaCl, 0.1 %
Tween-20, pH 8.4), 50 μL Cy5-labeled help DNA (containing
10 nM help DNA in 0.05M borate buffer, pH 8.4) was added in
above-mentioned solution, the mixture was incubated at room
temperature for 2 h. Finally, the NPs were washed with

Fig. 1 Schematic illustration of
MEF/FRET protocol for
thrombin detection
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hybridization solution for several times and dispersed in 2 mL
hybridization solution for further use.

Thrombin detection

Various concentrations of thrombin were added into Ag@SiO2-
aptamer/help DNA (containing 5.5 nM of aptamer and help
DNA on surface of Ag@SiO2) and GO (0.3 mg⋅L−1) mixture
solution, and incubated for 30 min. The selectivity was tested
using 10 nM BSA and IgG. For the detection in the serum
matrix, freshly serum from a healthy man (Qingdao Central
Hospital). Serum is what remains from whole blood after coag-
ulation. Its chemical composition is similar to plasma, but it does
not contain coagulation proteins such as thrombin or other fac-
tors. All measurements were done in Tris-HCl buffer (20 mM,
containing 100 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM
MgCl2, and 8.5 % glycerol (v/v), pH 7.4). The fluorescence
intensities were recorded at 667 nm under 640 nm excitation.

Characterization

JEOL JEM-2010 transmission electron microscope was
employed to observe the morphology of Ag@SiO2. The fluo-
rescence emission spectra were measured using a HITACHI
F-7000 fluorescence spectrophotometer with an excitation
wavelength of 640 nm. The pH was measured on a Lei Ci
PHS-3C pH-meter (Shanghai, China).

Results and discussion

The principle of the protocol

The principle of the protocol is illustrated in Fig. 1. The aptamer
hybridizes with Cy-5-labeled helper DNA to form rigid DNA
duplexes on the surface of the Ag@SiO2NPs. The fluorescence
of Cy5 will be enhanced by silver surface plasmon resonance

Fig. 2 TEM images of the
AgNPs (a), and core-shell
Ag@SiO2 NPs with 3 ± 1 nm (b),
5 ± 1 nm (c), 11 ± 1 nm (d),
18 ± 1 nm (e) and 26 ± 2 nm (f)
shell thickness

Fig. 3 a TEM image of GO, b
UV-vis absorption spectra of Ag,
Ag@SiO2, and Ag@SiO2-
aptamer
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via controlling the distance between the fluorophore and
AgNPs surface (i.e. the thickness of silica shell). Upon the
introduction of thrombin and GO, the quadruplex-thrombin
complex is formed, [23] the DNA duplexes are dismissed and
helper DNA is released which then is absorbed by GO via π-
stacking, [29] leading to fluorescence quenching.

Characterization of GO, Ag, and Ag@SiO2-DNA

The morphology of Ag and Ag@SiO2 NPs was observed under
TEM. The AgNPs with an average diameter of about 49 ± 8 nm
(standard deviation for n = 100) were obtained, as shown in
Fig. 2a. To achieve MEF effect, silica layer was established
between silver and fluorophore to avoid FRET that occurs when
the distance between them is below 5 nm, [13, 30] moreover,
silica is an optically transparent dielectric medium and plasmon
scattering can be achieved up to a few hundreds of nanometers.
[31, 32] Herein, various silica thicknesses were fabricated via
changing the amount of TEOS, as shown in Fig. 2b-f. The crum-
pled silk wave-like GO is shown in Fig. 3a. Figure 3b shows the
UV-vis absorption of AgNPs, Ag@SiO2 NPs (11 nm of silica
thickness) without and with the functionalization of DNA
aptamers. Compared with AgNPs, the peak of Ag@SiO2 NPs
showed a red shift (from 415 to 430 nm) due to the increase of
the local refractive index of silica shell. The presence of silica
shell facilitates the conjugation of DNA, according to our previ-
ous method, [27] the relative ratio of DNA to Ag@SiO2 was
calculated to be about 800 DNAmolecules per Ag@SiO2 nano-
particle. The absorbance at 260 nm proved the successful con-
jugation of DNA on the surface of Ag@SiO2 NPs.

MEF between Ag@SiO2 and Cy5

After hybridization of aptamer and helper DNA, Cy5 can be
brought to the surface of Ag@SiO2, fluorescence enhance-
ment is achieved. The fluorescence intensity of help DNA

was monitored before and after the addition of Ag@SiO2-
TA solution, as shown in Fig. 4a. It can be seen that the
fluorescence intensity does not increase any more after
10 min, it indicates the DNA hybridization between help
DNA and aptamer was accomplished within 10 min. The
maximum enhancement factor was 6.3. In the presence of
thrombin and GO, the fluorescence intensity decreased grad-
ually, and did not decrease anymore after 20 min, as shown in
Fig. 4b. This indicates the formation of quadruplex-thrombin
complex and most of the released help DNAwas absorbed on
GO surface, consequently, FRET occurred between Cy5 and
GO due to π-stacking. [29, 33] However, in the presence of
only GO, the fluoresence intensity did not change significant-
ly, as shown in Fig. 5. It indicates that the GO can only quench
the fluorescence of released help DNA-Cy5.

As MEF is affected by the spatial distance between metal
NPs and fluorophore, [10, 13, 26] the distance should be
precisely tailored to optimize MEF effect. Here, silica shell
was used as separated media, different silica thicknesses

Fig. 5 Fluorescence intensity of HD-Cy5, Ag@SiO2-TA/HD -Cy5,
Ag@SiO2-TA/HD-Cy5 + GO, Ag@SiO2-TA/HD-Cy5 + thrombin,
Ag@SiO2-TA/HD-Cy5 + thrombin + GO at 667 nm. HD represents
help DNA, TA/HD represents aptamer/help DNA
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Fig. 4 Fluorescence emission spectra of MEF system (a), and MEF/FRET system at 10 nM thrombin concentration (b). Insets: fluorescence intensities
at 667 nm against the time



(3 ± 1 nm, 5 ± 1 nm, 11 ± 1 nm, 18 ± 1 nm, and 26 ± 2 nm,
standard deviation comes from ten independent Ag@SiO2

NPs measurement) were fabricated to evaluate the effect of
the separated distance on MEF. At the silica thickness of
3 nm, fluorescence quenching was obtained due to the in-
creased nonradiative decay caused by Ag core, [34] whereas

this effect decreased greatly when the separated distance was
above 5 nm. Fluorescence enhancement was obtained at other
silica thicknesses, and the maximum fluorescence enhance-
ment was achieved when the shell thickness was 11 nm, as
shown in Fig. 6. Further increase in silica shell thickness
resulted in the decrease of the fluorescence intensity, this is

Fig. 6 The fluorescence
emission spectra (a) and
fluorescence intensities at 667 nm
(b) of different silica thicknesses.
Reference is help DNA-Cy5

Fig. 7 Fluorescence emission spectra of MEF/FRET assay (a) and MEF
assay (c) in response to different concentrations of thrombin (from top to
bottom, 0, 0.1, 0.5, 1.5, 2, 3, 4, 5, 10 and 20 nM). Fluorescence intensity
ratio plotted against the concentration of thrombin: MEF/FRET assay (b)

and MEF assay (d). Insets: the linear ranges of sensing assay. F0 and F
were the fluorescence intensity at 667 nm in the absence and presence of
thrombin
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because the surface plasmon of Ag did not effectively interact
with Cy5. [27, 35]

Thrombin detection

To evaluate the sensitivity of the MEF/FRET protocol, differ-
ent concentrations of thrombin (0.1, 0.5, 1.5, 2, 3, 4, 5, 10, and
20 nM) and GO were added into the assay, the fluorescence
intensity of the assay decreased with the increase of thrombin
concentration, as shown in Fig. 7a and b. The plot of the
fluorescence intensity ratio F0/F (F0 and F were the fluores-
cence intensity without and with the presence of thrombin and
GO) versus the thrombin concentration shows a linear range
from 0.1–4 nM with a limit of detection (LOD) 0.05 nM (at a
signal-to-noise ratio of 3), we compared our results with other
fluorescent methods (Table 1). We also explored another de-
tection approach where the GO was not added into the assay,
i.e. only MEF worked. Figure 7c shows the corresponding
fluorescence emission spectra, Fig. 7d shows the plot of the
fluorescence intensity ratio F0/F versus the thrombin concen-
tration, the LOD is 0.12 nM. Compared to MEF protocol,
MEF/FRET protocol exhibits a higher sensitivity.

Different sensitivity of two detection approaches can be
attributed to different fluorescence intensity change in the de-
tection process. After the addition of thrombin, quadruplex-
thrombin complex is formed, help DNA is released. The re-
leased help DNA exists in solution and is absorbed on GO
surface for MEF and MEF/FRET, respectively, leading to dif-
ferent variation of “on-off” fluorescence signals. Obviously,
the decrease of fluorescence intensity for MEF/FRET (96 %)
is higher thanMEF (85%), thus, the sensitivity ofMEF/FRET
protocol is higher than MEF protocol.

To check the selectivity of our MEF/FRET protocol, the
assay was respectively incubated with 10 nM thrombin,
10 nM BSA, 10 nM human IgG, and a mixture of 10 nM
thrombin + 10 nM BSA + 10 nM IgG, the results are shown
in Fig. 8. It can be seen that the presence of the BSA and IgG
did not show any significant differences compared with the
blank, while the incubation of our assay into thrombin, the
signal intensity decreased greatly. Similarly, the mixed sample
did not exhibit major signal change compared with that of
thrombin. The results clearly demonstrated the high specific-
ity of our protocol for thrombin.

Analysis of thrombin in human serum

The MEF/FRET protocol was subsequently applied to moni-
tor the thrombin level in human serum to investigate its prac-
ticability. A fresh blood sample from healthy individuals was
adopted, the serum samples spiked with different concentra-
tions of thrombin. As presented in Table 2, the recovery for
testing of thrombin in the concentration ranged from 97 % -
107 %, and the relative standard deviation ranged from 2.2 %
to 4.5 %. It demonstrates the potential of the method for ap-
plication in complex matrix of serum.

Table 1 Comparison of
fluorescent methods for thrombin
detection

Methods Materials Analytical ranges (nM) LOD (nM) Ref.

FRET carbon NPs + aptamer 0.5–20 0.18 [36]

FRET GO + aptamer – 2 [29]

FRET magnetic NPs + aptamer 1–60 0.5 [37]

fluorescence aptamer 0.3–6.5 0.082 [20]

FRET MnO2 + aptamer 0–100 11 [38]

MEF/FRET Ag@SiO2-aptamer + GO 0.1–4 0.05 this work

Fig. 8 Selectivity of the MEF/FRET protocol to thrombin (10 nM) by
comparing it to the interfering proteins at the same level: BSA, IgG, and
the mixed sample (containing 10 nM of thrombin, BSA, and IgG),
respectively. Emission wavelength was monitored at 667 nm

Table 2 Determination of thrombin in human serum

sample Added (nM) Found (nM) RSD (n = 3) Recovery (%)

1 0.3 0.32 4.5 % 106

2 0.8 0.86 3.1 % 107

3 3.5 3.4 2.2 % 97
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Conclusion

We have demonstrated a simple, sensitive, and selective pro-
tocol for thrombin detection, which is based on the combina-
tion of MEF and FRET fluorescence techniques. The distance
of Ag nanoparticle to fluorophore was precisely controlled via
tailoring the thickness of silica shell, at the distance of 11 nm,
maximum fluorescence enhancement factor of 6 was obtain-
ed. The highly efficient MEF combined with FRET effect of
GO induced high signaling of the “on-off” format, which in
turn led to sensitive for thrombin detection. The system
showed the limit of detection of the assay is 0.05 nM, and
had a good linear relationship with thrombin concentration
in the range of 0.1–4 nM, which was better than MEF system
and other FRET sensors. The MEF/FRET system has a wide
scope in that it may be adapted to assays for other analytes for
which appropriate aptamers can be found. However, rare pa-
per reports MEF/FRET system, the limitation of this system
has not been investigated sufficiently, future work will include
the application of various types of analytes (biomolecules,
metal ions, cells and so on) and the interaction between
analytes and GO.
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