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Abstract Two-dimensional carbon nanomaterials ranging
from single-layer graphene to defective structures such as
chemically reduced graphene oxide were studied with respect
to their use in electrodes and sensors. Their electrochemical
properties and utility in terms of fabrication of sensing devices
are compared. Specifically, the electrodes have been applied to
reductive amperometric determination of hydrogen peroxide.
Low-defect graphene (SG) was obtained through mechanical
exfoliation of natural graphite, while higher-defect graphenes
were produced by chemical vapor deposition (CVDG) and by
chemical oxidation of graphite and subsequent reduction
(rGO). The carbonaceous materials were mainly characterized
by Raman microscopy. They were applied as electrode mate-
rial and the electrochemical behavior was investigated by
chronocoulometry, cyclic voltammetry, electrochemical im-
pedance spectroscopy and amperometry and compared to a
carbon disc electrode. It is shown that the quality of the
graphene has an enormous impact on the amperometric per-
formance. The use of carbon materials with many defects (like

Alexander Zpfl and Masoumeh Sisakthi contributed equally to this
work.

Electronic supplementary material The online version of this article
(doi:10.1007/s00604-015-1600-y) contains supplementary material,
which is available to authorized users.

< Thomas Hirsch
thomas.hirsch@ur.de

Institute of Analytical Chemistry, Chemo- and Biosensors,
University of Regensburg, Universitaets-Strasse 31,
93053 Regensburg, Germany

Institute of Experimental and Applied Physics, Micro- and
Nanophysics, University of Regensburg, Universitaets-Strasse 31,
93053 Regensburg, Germany

rGO) does not result in a significant improvement in signal
compared to a plain carbon disc electrode. The sensitivity is
173 mA-M '-cm ? in case of using CVDG which is about 50
times better than that of a plain carbon disc electrode and about
7 times better than that of rGO. The limit of detection for
hydrogen peroxide is 15.1 pM (at a working potential of
—0.3 V vs SCE) for CVDG. It is concluded that the application
of two-dimensional carbon nanomaterials offers large perspec-
tives in amperometric detection systems due to electrocatalytic
effects that result in highly sensitive detection.

Keywords Graphene - Reduced graphene oxide - Hydrogen
peroxide - Amperometry - Electrical impedance spectroscopy -
Chronocoulometry - Cyclic voltammetry - Raman
spectroscopy

Introduction

Graphene, a carbon nanomaterial comprising a single sp” car-
bon atomic layer, has attracted attention since its first exfolia-
tion in 2004 [1, 2]. The material is known for excellent elec-
trical properties like large redox active surface area (2,
630 m* g™) [3] and high electron mobility (up to p=250,
000 cm®-V'-s™! at room temperature) [4], both making this
material attractive to be used as electrode in electrochemical
applications. It has also been reported that carbon
nanomaterials comprise electrocatalytic effects in amperomet-
ric detection systems [5]. Therefore numerous studies deal
with graphene as electrode material in (bio) sensing applica-
tions [6], but often these materials are not exactly defined in
their chemical structure, shape, size, or number of layers [7].
Even within the same production technique a poorly defined
material will be received, often with slightly different proper-
ties from batch to batch.
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To date, most graphene employed in electrochemical anal-
ysis is chemically synthesized via oxidative methods with
subsequent reduction, introducing a lot of defects and hetero-
atoms [8, 9]. These materials incorporate oxygen containing
groups which strongly influences the electrochemical proper-
ties. Graphene derived from other methods like chemical va-
por deposition (CVD) [10, 11] also contains structural defects
or impurities generated by its transfer from a metallic support
to an insulating substrate. Many other methods have been
developed so far which allow the preparation of graphene of
various sizes, shapes and quality [12]. The methods most
commonly used can be classified by mechanical [1] or chem-
ical exfoliation [13]. All of these methods are advantageous in
some ways, and except the mechanical exfoliation they allow
to produce large quantities of graphene. The defects in the
carbon nanomaterials do not only negatively influence the
conductance [14] but also offer the possibility of
functionalization with biomolecules and/or metal and metal
oxide nanoparticles. This step is mandatory to introduce
selectivity to the system with the perspective of creating
sensor platforms in great variability. Tailoring the size
and morphology of the graphene in combination with
other nanomaterials, results in composite materials with
enhanced sensing performance [15].

There are many reports on amperometric detection systems
for H,O, based on graphene materials. An enzymatic system
using horseradish peroxidase immobilized onto graphene-
based electrodes led to a limit of detection of 0.1 uM [16]
Up to now, there are still drawbacks assigned to this approach
like complex immobilization protocols, low temporal stability,
and massive influence of pH, temperature, or humidity on the
enzyme activity. Great efforts have been made to develop non-
enzymatic peroxide detection systems, using noble metals [17,
18], metal oxides and sulfides [19], and composite materials
with other carbon nanomaterials [20]. These modifications
have been chosen for its enhanced electron transfer rates and
for catalytic activity, resulting in higher sensitivity. Lin et al.
recently presented a electrochemical detection of H,O, based
on a carbon nanotube MoS, composite, with an outstanding
limit of detection of 5 nM [21]. Nevertheless, the role of the
individual materials within these composites is not fully un-
derstood yet.

Therefore we investigate the influence of the choice of the
graphene material itself on the amperometric properties in
direct hydrogen peroxide detection. The graphene materials
in this study were prepared by mechanical exfoliation (single
layer graphene, SG), chemical vapor deposition (chemical va-
por deposited graphene, CVDG) and chemical exfoliation (re-
duced graphene oxide, rGO), comprising a different degree of
defects. All types of carbon materials have been characterized
with Raman spectroscopy, cyclic voltammetry, electrochemi-
cal impedance spectroscopy and amperometry. The sensitivity
in direct detection of hydrogen peroxide has been
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investigated. From these results the influence of the defects
in the carbon nanomaterial can be assigned to the sensitivity
which can be achieved.

Experimental
Materials and instrumentations

Unless otherwise stated, all chemicals were of analytical grade
and purchased from Merck (www.merck.de, Darmstadt,
Germany) or Sigma-Aldrich (www.sigma-aldrich.de,
Steinheim, Germany) and used without further purification.
Ultra-pure water (0.055 pS-cm™') was used in all
experiments.

Raman spectra were recorded by a Thermo Scientific DXR
Raman microscope with a 532 nm excitation laser, a laser
power of 10 mW, and a spot size of 2.1 um in diameter. All
spectra have been measured 10 times with an integration of
1 s. Electrochemical characterizations and measurements were
performed on a CH Instrument electrochemical analyzer Mod-
el 602a. The three-clectrode system consisted of a Pt wire as
counter electrode and a saturated calomel electrode (SCE) as
reference electrode. A custom build carbon disc electrode,
comprising a carbon fibre composite (www.conrad.de,
Regensburg, Germany) with 2 mm diameter implemented in
Teflon or the differently prepared graphene materials (SG,
CVDQG, and rGO) assembled on a silicon wafer substrate
electrically contacted by gold leads were used as working
electrode.

Preparation of different graphene materials

Single layer graphene (SG) was obtained through
micromechanical exfoliation of graphite flakes (NGS
Naturgraphit GmbH, Leinburg, Germany) using an adhesive
tape, and transferred onto a Si substrate with a 300 nm thick
Si0; insulating layer. This kind of graphene flakes is random
in shape and size, with a typical size of about 50 pm?.
Graphene derived by CVD (CVDG) was purchased on Si/
SiO, substrates (www.graphenea.com, San Sebastian, Spain).
Oxygen plasma etching was used to remove excess graphene,
forming graphene electrodes of about 0.04 mm? in size.
Reduced graphene oxide (rGO) was prepared by a slightly
modified Hummers method [8] with subsequent reduction
[22], which has been described in a previous work [23]. Brief-
ly, 1 g of China flake graphite (K. W. Thielmann & Cie KG,
Grolsheim, Germany) was mixed with 0.75 g NaNOj in
75 mL conc. H,SO,4 and 4.5 g KMnO, was added in small
portions under vigorous stirring and cooling in an ice bath.
The mixture was sonicated for 3 h and stirred for 3 days at
room temperature. After the addition of 75 mL of 5 % H,SO4
the mixture was heated at 100 °C for 2 h, followed by an
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addition of 15 mL of 30 % H,O, and constant stirring for 1 h
at room temperature. For purification, the product was washed
with the following solutions: four times in 3 % H,SO,4 con-
taining 0.5 % H,0,; two times in 3 % HCI; three times in
water. Finally it was dialyzed against 2 L water (14 kDa cut-
off) for 10 days, changing the water three times. For the chem-
ical reduction of GO, 7 mL of a GO suspension (0.5 g-L™")
were mixed with 31 puL of 32 % NHj;. After adding 5 pL of
98 % hydrazine hydrate the reaction mixture was refluxed for
1 h at 100 °C. The resulting black suspension was washed
with water and isolated by centrifugation.

Preparation of graphene modified electrodes

CVD-grown graphene was cut to a rectangular area employing
electron beam lithography and reactive ion etching (O,/Ar).
To provide an electrical contact, the graphene was partially
metallized through evaporation of Ti/Au (5 nm / 60 nm),
followed by an acetone/propanol lift-off process. Electrodes
consisting of rtGO were produced via drop casting of 1 puL of
an aqueous rGO suspension (0.25 g-L™") on microelectrodes
with interdigital structure of thin gold layers and dried at room
temperature. A final annealing step of 230 °C for 30 s was
applied afterwards. All gold areas in contact with the electro-
lyte were shielded by dipping the electrode into a solution of
100 pM 1-mercaptooctadecane in ethanol, to form a self as-
sembled monolayer. The successful shielding of the gold con-
tacts exposed to the electrolyte was proven by cyclic voltamm-
etry (Figure S1). The different types of graphene modified
electrodes on silicon substrates are depicted in Fig. 1.

Electrochemical characterization and measurements

The modified electrodes and the carbon disc electrode were
characterized with cyclic voltammetry, chronocoulometry,
electrochemical impedance spectroscopy (EIS) and
amperometry. For electrochemical experiments, the
supporting electrolytes were 0.1 M KCl or 10 mM phosphate
buffer with 140 mM NaCl (pH 7.4). Before each measurement
Argon was bubbled through the solutions to remove dissolved
oxygen. All experiments were performed at room tempera-
ture. The amperometric response towards H,O, was

Fig. 1 Microscopic pictures of
electrodes prepared with different
graphene materials: a SG, b
CVDG and ¢ rGO. In (A) and (B)
the graphene can be visualized by
the microscope due to the inter-
ference between reflection paths
of the air-Si0, and SiO,-Si inter-
face [24]

investigated in a continuously stirred electrolyte solution
(10 mM phosphate buffer, 140 mM NaCl, pH 7.4) by dou-
bling the concentration of peroxide after each injection. The
studied analyte concentration covers a range from 25 to
25.6 mM.

Results and discussion

Raman spectroscopy is established as a versatile characteriza-
tion method for 2D carbon nanomaterials. Information regard-
ing the number of layers, the amount of defects and impurities
can be obtained. Therefore all graphene modified electrodes
have been investigated by Raman microscopy. As can be seen
in Fig. 2, no observable D peak, which indicates defects in the
aromatic system of the graphene, is evident in the spectrum of
SG, which proves the high structural order for this type of
graphene. For CVDG a small D peak is observed at
1342 cm™' (Figure S2B) and especially for rGO the D band
at 1352 cm ! becomes dominant and broader, indicating a
high level of disorder [25]. A symmetric single 2D peak can
be found in the spectra of SG and CVDG at 2676 and
2684 cm !, respectively. Further, the significant higher inten-
sity compared to the G band at 1583 and 1590 cm ' indicate
that these materials consist of high quality single layer
graphene [26]. In rGO, the noticeable change in shape and
intensities of the D, G, and 2D band illustrates the significant
presence of multiple layers, lattice disorder and inhomogene-
ity in this type of graphene. Applying an empirical Tuinstra-
Koenig relation [27] which refers to the crystallite size of
graphite, the diameter of the sp® regions in rGO was calculated
to approximately 19 nm.

Electrochemical characterization of different graphene
electrode materials

Due to the different nature of the various types of graphene
one cannot prepare electrodes of the same size. But size has
huge influence on the sensitivity of the modified electrodes.
The geometric area gives only a rough estimation, therefore
chronocoulometric measurements in the presence of
0.1 mM Kj[Fe(CN)¢] were performed in order to estimate
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Fig. 2 Raman spectra of SG-, CVDG- and rGO-modified electrodes

the total electroactive area of each electrode. The effective
surface area of the carbon disc electrode was calculated to be
2.9-10% 2.6-10° pm? for rGO, 3.9-10* um?, for CVDG, and
51 um? for the SG electrode, respectively. These values were
further used for the calculation of current densities.
Electrochemical impedance spectroscopy provides infor-
mation of the interfacial properties of the electrodes. In
Fig. 3 the Nyquist and Bode plots of the three types of
graphene modified electrodes and the carbon disc electrode
in presence of 5 mM K4[Fe(CN)s] containing 0.1 M KCI at
0.2 V vs SCE are shown. Electrodes modified with SG,
CVDG and rGO cannot be fully described by a Randles equiv-
alent circuit, consisting of the electrolyte resistance R, in se-
ries with a parallel combination of double-layer capacitance
(Ca1), an impedance representing the charge transfer resistance
(R¢) and the Warburg element (Z,,) taking diffusion into ac-
count. The results from the electrochemical impedance spec-
troscopy do not take into account that there is a huge differ-
ence in the electrode surface area as can be seen from the
results of the chronocoulometric measurements. For high fre-
quencies the impedance (Z) for all systems is approaching the
electrolyte resistance. For small frequencies the charge-
transfer resistance increases for the different electrodes in the
order carbon disc, rGO, CVDG to SG. The behavior of the

CVDG can be explained by impurities adsorbed on the
graphene. These can be a consequence of the transfer process
[10]. Here, a polymer layer will is deposited on top of the
graphene layer; the metallic substrate where the graphene
was deposited is etched away so that the polymer modified
graphene flake swims on top of the solution. After transfer to
the silicon wafer the polymer on top of the graphene is washed
away by organic solvents. By this process it is likely that
polymer residues can remain. The Nyquist plot in Fig. 3a sug-
gests that additional impedance for adsorbates need to be ap-
plied to the equivalent circuit. For the rGO system, which
consists of multilayers and comprises many defects, it is ex-
pected that the impedance spectrum is not in accordance to the
simple model described by the Randles equivalent circuit. The
SG modified electrode as well as the carbon disc electrode
show a diffusion process for the redox species at low frequen-
cies. The higher double-layer capacitance of SG modified
electrodes in contrast to the carbon disc electrode as can be
seen from the imaginary part in the Nyquist plot (Z”) can be
attributed to the hydrophobic character of the aromatic system
which is repelling the redox species. After normalization of
the total impedance Z to the electroactive surface area the
charge transfer resistance of carbon disc electrode is approxi-
mately 1.2-10° times higher than for the SG modified elec-
trode, for CVDG R, per area is 1.7+ 10* times, for rGO 1.3
10° times higher. This shows that all graphene types enhance
the electron transfer of the ferro/ferricyanide redox system
compared to a plain carbon disc electrode. The differences
between the three different types are in accordance to the
increase of the number of defects of the two-dimensional car-
bon nanomaterial. The numbers given here are only rough
estimations not taking into account the influence of the border
of the CVDG and SG. A detailed investigation of different
flake sizes will complete this picture.

Direct amperometric detection of hydrogen peroxide

The reduction of H,O, on the various graphene electrodes was
studied by cyclic voltammetry (Fig. 4) in the presence of

Fig. 3 Nyquist plot (a) and Bode a 15 b 10°
plOt (b) derived from = Carbon Disc = Carbon Disc
1 hemical imped e rGO ° * GO
electrochemical impedance A CVDG . 4+ CVDG
spectroscopy in 0.1 M KCI and + SG o + SG
5 mM K4[Fe(CN),] for carbon -10 Lot . 10%
disc, rGO, CVDG and SG & o WA -
modified electrodes (at 0.2 V vs = o - .......MAA‘ [}
i i H o Lo ahT 00,
SCE with an amplitude of 5 mV) HEE o o oA oennenree N 10°
; ; : : . 10° -
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Fig. 4 Steady state current a b
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10 mM H,0O, in phosphate buffered saline at pH 7.4. Com-
parison of the cyclic voltammograms before and after apply-
ing 10 mM H,0, shows that after the addition of H,O,, the
cathodic current increased. The increase for electrodes modi-
fied with CVDG and SG can be already observed at low
potentials of —0.1 V vs SCE. This is at lower potentials than
for rGO and carbon disc electrode and can be attributed to an
electrocatalytic effect of the carbon nanomaterials.

The change in the current density under exactly the
same conditions is significantly higher for the graphene
materials than for the carbon disc electrode (Fig. 5). At a
working potential of -0.3 V vs SCE the current flow is
enhanced about 4 times for rGO, 5 times for SG and 8
times for CVDG. Especially CVDG electrodes provide
maximum response, maybe due to the best ratio of pris-
tine graphene lattice to defects and edges.

In order to get high selectivity in real sample analysis it is
desired to determine the analytes at potentials close to 0 V. We
found that at very low potentials graphene with low number of
defects, here CVDG and SG, show nearly the same enhance-
ment in the signal whereas rGO as very defective material
shows a behavior more like the carbon disc electrode
(Fig. 5). For more negative electrochemical potentials all four
types of carbon materials give an individual signal enhance-
ment. From this result one can conclude that for working
potentials lower than -0.1 V vs SCE it is mandatory to use
high quality graphene with low number of defects in order to
get any benefit in using a two dimensional carbon
nanomaterial as electrode in amperometric detection of H,O,.

Potential (V) vs SCE

All three types of graphene-modified electrodes have been
tested in an amperometric setup to detect peroxide (Fig. 6 and
S3A). A constant potential of —0.3 V vs SCE was applied.
From Figures S3B/C it can be observed that the reductive
current response of all electrodes increase with increasing
H,0, concentration. For low concentrations of the analyte
one can see that low-defect graphene (SG) does not exhibit
notable changes in the current. One reason is that the size of
these flakes is very small and therefore the total signal is very
small. After normalization of all signals to the total
electroactive surface area, the situation changed
(Figure S3D): the sensitivity of SG for low amounts of
H,0, can be seen. An increase of absolute sensitivity is ob-
served, starting from carbon disc (3.2 mA-M™-cm™) to 1GO

1.2

—— Carbon Disc
—rGO
——CVDG
—S8G

1.0
0.8 /

0.6

0.4+

A j (mAlcm?)

0.2+

0.0+
0.0

0.1 0.2 0.3

Potential (V) vs SCE

Fig. 5 Change in current density for H,O, reduction during the cyclic
voltammetry in phosphate buffered saline pH 7.4 with 10 mM H,O, vs
SCE (scanrate 0.1 Vs ')
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Fig. 6 Concentration dependency of the amperometric response at
—0.3 V vs SCE upon successive addition of 0.025-25.6 mM H,O, into
continuously stirred phosphate buffered saline pH 7.4. (n=3)

(25 mA-M"-em?) to CVDG (173 mA-M™'-em™), and SG
modified electrodes (202 mA-M™'-cm™). Again, a lower
number of defects lead to a higher sensitivity towards H,O,.
Nevertheless, the noise level of SG electrodes is higher than
the other electrodes which can be attributed to the low abso-
lute current values. Noise at an amperometric electrode is
closely associated with Cq and the quality of attachment to
the support. Calculating the limit of detection from a signal-to-
noise ratio of three, values of 9.2 uM for rGO, 15.1 uM for
CVDG and 651.5 uM for SG electrodes are obtained.

These findings indicate the great perspective of graphene in
amperometric detection systems. For comparison, the H,O,
sensing performance of different graphene based electrode
materials from previous reports are displayed in Table 1. All
these works are based on chemically derived graphene, which
has been further modified with metal or metal oxide
nanomaterials to improve sensitivity. One can clearly see that
hybrid nanomaterials lead to better sensitivity. From our study
one can suggest that there could be further improvement by
using graphene of low number of defects. For taking benefit of
the electrocatalytic effect of graphene as well as from the

signal enhancement it is mandatory to use electrodes
consisting of high quality graphene, which means, to use a
2D nanomaterial with as low number of defects and impurities
as possible. Up to now it is challenging to provide such a high
quality graphene on an insulating material with electric con-
tacts in reasonable quantities and of adequate size for devel-
oping sensor applications operated with a low cost
potentiostat. By taking a look to the relative signal changes
obtained with the different types of electrodes used in this
study one can see that SG performs best, but accompanied
by huge error bars due to an enhancement of the noise. This
could be overcome by using bigger graphene flakes or by
better potentiostats. Good signal enhancement can also be
obtained with CVDG. Nevertheless the fabrication of one of
such electrodes is a time consuming complex process. This
material is already commercially available. But the drawback
in using this material for an application is that there is a lack of
a technique for a clean and easy transfer of this material onto
microelectrodes providing a good electrical contact. This ma-
terial offers the possibility to be functionalized chemically
[33] or by plasma treatment [34]. It is expected that with this
technique selectivity can be introduced and functionalized
graphene for amperometric detection systems will be de-
signed. The rGO does not result in such great improvement
in contrast to the carbon disc electrode, but here processing of
the material as well as functionalization is easy. Therefore it
offers a pathway to interesting composite materials for elec-
trochemical sensors.

Conclusion

We have studied non-enzymatic detection of hydrogen perox-
ide using electrodes based on various types of graphene, with-
out utilizing any functionalization or modification steps. The
graphene materials studied include SG, CVDG and rGO. The

Table 1 Comparison of

analytical performance of various Electrode material Potential [V] Sensitivity [mA-M"-cm?]  LOD [uM]  Reference

graphene and graphene composite

materials used for the PB/Graphene —0.05 (vs Pt) 196.6 1.9 [28]

electrochemical detection of CoOxNPs/ERG 0.75 (vs SCE) 148.6 0.2 [19]

H;0, MnO,/GO ~03 (vs SCE) 8.2 0.8 [29]
AgNPs/PQI11/ Graphene  —0.4 (vs Ag/AgCl) 56.6 28 [30]
Polydopamine-rGO/Ag —0.5 (vs Ag/AgCl) 355.8 2.1 [31]
rGO-PMS/AuNPs —0.75 (vs Ag/AgCl) 392 0.06 [32]
rGO —0.3 (vs SCE) 25 9.2 This Work
CVDG —0.3 (vs SCE) 173 15.1 This Work
SG —0.3 (vs SCE) 202 651.5 This Work

PB Prussian Blue, CoOxNPs Cobalt oxide nanoparticles, ERGO Electrochemically reduced graphene oxide,
AgNPs Silver nanopatrticles, PQII Poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-
vinylpyrrolidone)], PMS Periodic mesopourous silica, AuNPs Gold nanoparticles, Ag/AgC! Saturated silver/

silver chloride reference electrode
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effects of the device fabrication and sensing performance were
investigated. Results reveal that all three graphene materials
exhibit sensitivity to the catalytic reduction of H,O, and are
able to detect HO, concentrations below 0.1 mM, showing
fast amperometric response upon successive additions of
H,0,. Moreover, it is clearly demonstrated that mechanically
exfoliated graphene as well as graphene prepared by CVD are
promising candidates for sensor applications, due to their ef-
ficiency in better detection of hydrogen peroxide with higher
sensitivity compared to rGO. However, due to the laborious
process needed for production of exfoliated graphene and its
irregularity in shape, size and location, this type of graphene is
more suitable for theoretical study and proof-of-concept dem-
onstration. In comparison, the CVDG suits commercial pur-
poses and mass production, since it offers uniform continuous
films at particular locations and with desired geometries, pro-
viding a superior candidate for fabrication of high sensitivity
biosensors and sensor arrays. Such carbon nanomaterials can
also be used as biosensors by further functionalization with
enzymes.
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