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Abstract Sensitive detection of engineered nanoparticles
(NPs) in air and in liquid samples is an important task and still
a major challenge in analytical chemistry. Recent work dem-
onstrated that it can be performed using surface plasmon mi-
croscopy (SPM) where binding of single NPs to a surface
leads to the formation of characteristic patterns in differential
SPM images. However, these patterns have to be discriminat-
ed from a noisy background. Computer-assisted recognition
of nanoparticles offers a solution but requires the development
of respective tools for data analysis. Hereby a numerical meth-
od for automated detection and characterization of images of
single adsorbing NPs in SPM image sequences is presented.
The detection accuracy of the method was validated using
computer generated images andmanual counting. Themethod
was applied for detecting and imaging of gold and silver NPs
adsorbing from aqueous dispersions and for soot and NaCl
NPs adsorbing from aerosols. The determined adsorption rate
was in range 0.1–40 NPs per (s mm2) and linearly dependent
on the concentration of nanoparticles. Depending on the type
of NPs and signal to noise ratio, a probability of recognition of
90–95 % can be achieved.
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Introduction

The thriving production and application of nanomaterials re-
sults in an increasing release of new types of these potentially
hazardous materials into the environment. Active absorption
of some classes of nanoparticles by biological cells makes
liquid suspensions or aerosols containing these materials more
toxic than their molecular or ionic forms. It necessitates a
development of analytical techniques for highly sensitive de-
tection and determination of nanoparticles. Different methods
were suggested for this purpose [1]. One of them is based on
Surface Plasmon Microscopy (SPM) [2–8]. SPM [9] is based
on the transduction of changes of deviation from the surface
plasmon resonance conditions into the changes of the reflected
light intensity which is captured by a two-dimensional image
sensor.

In the typical SPM arrangement, incident light is
coupled to the plasmonic sensor layer through a glass prism.
Under the conditions of surface plasmon resonance (SPR),
where the wave vector of impinging light corresponds to the
wave vector of surface plasmons, the energy of the incident
light is coupled to the surface plasmon wave which is propa-
gating along the interface and decays exponentially to both
sides of it creating an evanescent field. The plasmon propaga-
tion and resonance conditions are influenced mainly by the
dielectric permittivity of dielectric medium, which is
contacting metallic layer, but only within the volume of pen-
etration of evanescent field. Since the penetration depth value
is a fraction of the wavelength of incident light, SPM provides
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an exceptional sensitivity for the nanoscale changes on this
metal/dielectric interface. Due to these properties SPM is
widely used in surface science and in bioanalytical chemistry,
particularly in chemo- and bio-sensors [10, 11].

Because the matching of the wave vectors is only possible
in conditions of total internal reflection, which implies large
incidence and reflection angle of the light beam, the resonance
occurs only in the small angular range. This leads to the low
numerical aperture of this optical system and to the corre-
spondingly low optical resolution of SPM in comparison with
classical optical microscope. Due to this reason SPM is ap-
plied mainly for characterization of homogenous films when a
high resolution is not required [11] and is frequently called as
SPR-imaging instead of SPM or SPR-microscopy. On the
other hand, the low lateral optical resolution, which is com-
plicated by plasmon propagation, can be outweighted by ex-
tremely high sensitivity in transversal direction. A complex
interaction of propagating surface plasmons with nanoscale
objects on the sensor interface leads to intensive scattering
which can be detected by image sensor. This effect allows
one to use SPM for detection of single nanoparticles adsorbed
on the sensor surface.

Two approaches for the application of SPM for detection of
single nanoparticles were reported. While both are based on
the excitation of surface plasmons in Kretschmann configura-
tion, the optical system used for coupling and imaging of
sensor surface under conditions of plasmon resonance can
be either implemented by using separate objectives and cam-
era tilted according to Scheimpflug principle (Fig. 1, left) [2,
3] or by using the high-numerical aperture (high-NA) micros-
copy objective which is applied simultaneously for the exci-
tation and imaging (Fig. 1, right) [12, 13]. The latter approach
allows one to reach a co-planarity of all optical planes thus
leading to highly resolved low distortion images. However,
this leads to the severe limitation of the field of view which is
in this case typically smaller than 100×80 μm (<0.01 mm2).
Using high-NA objective approach, a detection of single or-
ganic and metallic nanoparticles [4], viruses and DNA mole-
cules [5, 6] as well as of electrochemical reactions catalyzed
by single nanoparticles [7, 8] were demonstrated.

The classical SPM (Fig. 1, left) has essentially lower mag-
nification and resolution of optical system but corresponding-
ly much larger field of view: typical SPR-imaging setups
monitor SPR signals from the surface of over 20×20 mm
(400 mm2) which is four orders of magnitude larger than that
of the high-NA based SPM setups. The relative light intensity
changes due to adsorption of single nanoparticles are small
and only a few times higher than the background noise [2,
3]. However, despite the lower resolution and signal to noise
ratio (SNR), classical SPM has the advantage of the larger
field of view. This leads to the lower detection limit in analysis
of diluted suspensions of nanoparticles, to the higher dynamic
range of counting of single nanoparticles which increase

essentially the concentration range of analyzed suspensions
and to the possibility to make quantitative statistical analysis.
In the current work the optical setup with a compromised
value of the field of view of about 1.0×1.5 mm was used.
This is more than hundred times larger than that in the high-
NA based SPM setups. Correspondingly hundreds times more
nanoparticles—over tens of thousands of adsorbed nanoparti-
cles—can be detected in one measurement, still maintaining a
single nanoparticle resolution. Such a boost of dynamic range
makes the manual data analysis impractical and necessitates
the development and application of highly efficient algorithms
for automated image analysis [3, 14].

In this work we present a computer assisted method for
detection and characterization of single nanoparticles,
adsorbing on the sensor surface. The method was validated
on computer generated images and by comparison with man-
ual image analysis. Then it was applied for analysis of SPM
data on adsorption of gold and silver nanoparticles from aque-
ous suspensions as well as soot and NaCl nanoparticles from
air. The suggested computer assisted detection and quantifica-
tion of NPs in combination with the large detection area of
SPM in classical arrangement allows one a high-throughput
and accurate assessment of very different NPs samples in the
wide concentration range.

Experimental

The slope of the SPR curve and, correspondingly, the absolute
value of SPR reflected light intensity signal is maximal at
approximately 0.3–0.5 of SPR reflectivity [11]. However, tak-
ing into account the relative changes (the ratio of signal chang-
es to the mean signal value), SPR conditions much closer to
the SPRminima are preferred [15].Moreover, in close vicinity
to SPR conditions, the intensity of the reflected light tends
towards zero thus decreasing the background level at which
the small changes, caused by nanoparticles adsorption, are
registered. Because of sharp dependence of the SPR dip on
the wavelength and angle of the incident light, an application
of a low divergence monochromatic light is required. The
measurements were performed at the angle of SPR minima
or at 0.1–0.3° smaller angle.

A description of the principal set-up is given elsewhere [2].
For the current application in liquid samples the redesigned
and optimized setup, developed within NANODETECTOR-
project (www.nanodetector.eu), was used. In this case the
642 nm SM-fiber coupled laser diode (LP642-SF20 from
Thorlabs, www.thorlabs.com) was used as a light source.
The collimated and polarized light beam is directed onto the
plasmonic sensors consisting of SF-10 glass prism (n=1.72)
coated by 45–50 nm gold layer with 3 nm Ti adhesive layer
(provided by Phasis, www.phasis.ch). Image sensor chip
BAptina MT9P031I12STM^ with resolution of 2592×1944
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and pixel size of 2.2 μm was used (www.aptina.com). The
images were collected at the frequency of 15 frames per
second by Beagleboard-XM single-board computer (www.
beagleboard.org) and averaged over 16 consecutive frames.
Then the averaged frame was transferred to PC and saved
for further analysis.

Before measurements the gold surface was cleaned using
freshly prepared Bpiranha solution^ (1:3 (v:v) mixture of
H2O2/H2SO4).Caution: Piranha solution reacts violently with
most organic materials and must be handled with extreme
care. Then the sensors were rinsed thoroughly with water
and dried at room temperature. For the better adsorption of
negatively charged nanoparticles the gold surface was func-
tionalized by deposition of self-assembled monolayer of
amino-modified 16-amino-1-hexadecanethiol (Prochimia,
www.prochimia.com) from 1 mM solution in ethanol during
12 h. Citrate stabilized silver and gold nanoparticles of
different sizes were purchased from Sigma-Aldrich (www.
sigmaaldrich.com). The optical setup was installed so that
the gold coated sensor faces upwards. The measurements in
liquid were performed in a droplet of buffer solution
containing 1.2 mM phosphate and 0–50 mM NaCl, pH 7.4.
After adjustment of the SPR angle associated with the used
buffer, nanoparticles suspended in the same buffer were
injected carefully into the droplet to reach the final

concentration in the range of 107–109 particles/mL in the
droplet. During the adsorption of nanoparticles the sequence
of images from SPM was captured and saved. The stock con-
centrations of nanoparticles were taken from supplier data.
Before measurements, ξ-potentials of nanoparticles and size
distributions were controlled using Zetasizer Nano ZS
(Malvern Instruments, www.malvern.com) and found to be
in agreement with values provided by supplier.

For aerosol measurements, the SF-10 prism was replaced
by BK-7 glass prism. The surface was imaged by a
macroobjective Canon EF 50/2.5^ (Canon, www.canon.
com) with the magnification factor ~2 onto a CMOS-
Camera. Laser diode HL6750 (λ=685 nm, Oclaro/Optnext
www.oclaro.com) was used as the light source. The driving
current was modulated at a frequency of about 500 MHz in
order to remove speckles. The gold layer was deposited on a
1 mm thick slide of SF-10 using 5 nm Ti adhesive sublayer
(see above). The slide was contacted with prism using RI
matching immersion oil (Cargille, www.cargille.com). The
aerosol nanoparticles were charged and moved to the sensor
surface by electric field applied between gold layer and an
electrode placed at the distance of ~10 mm parallel to the
sensor surface. Modified LaMer-Sinclair generator [16] was
used for generation of airborne sodium chloride particles. Soot
particles were produced applying a spark discharge generator

Fig. 1 Two arrangements for surface plasmon microscopy. Inset: averaged differential SPM image of gold nanoparticle
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(Gfg 1000, Palas, www.palas.de). Size selection and
quantification of aerosol particles was performed using
differential mobility analyzer (type 3071) and condensation
particle counter (type 3775, both TSI, www.tsi.com).

For the validation and benchmarking purposes, the separate
software for manual processing and counting of nanoparticles
as well as for generation of simulated image sequences was
developed. The software for manual counting provides a reg-
istration of coordinates of each visually detected nanoparticle.
The computer generated images were formed by random dis-
tribution of averaged patterns of nanoparticles (e.g., Fig. 1,
inset) with defined signal to noise ratio over the noisy back-
ground image.

Data analysis

Image enhancement Detection of nanoparticles in SPM re-
cords is based on analysis of collective temporal and spatial
intensity variations [2]. However, the amplitude of the inten-
sity step for small particles exceeds the background noise level
only slightly; therefore the patterns from adsorbed nanoparti-
cles are not visible in the raw SPM images [14]. The main goal
of the image enhancement is an improvement of signal to
noise ratio. In order to decrease the camera noise and to min-
imize variations caused by fluctuations and drifts of the image
of the sensor surface, pixel by pixel averaging over several
frames and referencing of the averaged image to preceding
averaged image was performed. The resulting sequence of
differential averaged images displays only changes between
subsequent averaged frames. The performed suppression of
static and slightly drifted background makes possible a visu-
alization of adsorption of nanoparticles as an appearance of
bright or dark spots (Fig. 2 left) which are sometimes
surrounded by rings [2, 3, 14].

The next step includes a digital filtration based on charac-
teristic features of patterns of nanoparticles. There are several
specific features of particle detection on SPR images. The
signals of bond particles are strongly localized in time and
space while the intensity value of the central blob can be close
to the noise level of background, and the magnitude of the
variation of the ring pattern has the same scale as that for the
background pattern (Fig. 2, left).

A number of spatial filters [17, 18] for enhancement of SPR
images were evaluated: mean, Gaussian, DoG (difference of
Gaussians), median and fast Fourier transform (FFT)-based
frequency methods. The main criterion for the selection of
the enhancement methodwas an increase of the signal to noise
ratio (SNR). Global FFT methods amplified not only the par-
ticle pattern but also structural noise. The best results were
obtained by local averaging methods (Fig. 2 right). Such a
mean filter is a scale dependent local averaging operation
where the value of each pixel is replaced by the average value

through all values of the local neighborhood. Gaussian filter
can be regarded as weighted averaging with the weights cho-
sen according to the shape of the Gaussian function: the orig-
inal pixel in center receives the highest weigh and with an
increase of the distance from the central pixel the weight de-
creases. Both averaging filters can be implemented as the
convolution of the image I(x,y)

I x; yð Þ*m x; yð Þ ¼
Xw=2
i¼−w=2

Xw=2
j¼−w=2

I xþ i; yþ ið Þm i; jð Þ

with normalized mask of size w calculated asm(x,y)=1/w2 for
mean filter and

m x; yð Þ ¼ G x; yð Þ ¼ 1

2πσ2
e−

x2þy2

2σ2

for Gaussian filter [17, 18]. They work as low pass filters, i.e.,
remove higher frequency components, blur sharp elements
and edges. They reduce contrast but allow the low-
frequency features to Bpass^ through the filter unchanged.
Local space filters are very sensitive to the choice of scale:
an application of the mask with a wrong scale may vanish
particle signals with the background. In order to let all parti-
cles patterns to pass through the average filters, the size of
convolution mask should not exceed the radius of the smallest
particle pattern in the SPM record. In the current work
Gaussian and mean filters were used with kernel size of the
order of optical resolution of SPM.

Particles detection Typical pattern of adsorbed nanoparticle
can be represented as a central blob (bright or dark)
surrounded by one or more rings [2, 3, 14]. Such patterns vary
for different imaging conditions and different nanoparticles.
Depending on the signal intensity and background noise ratio,
the rings and the brightness of the blob can be severely sup-
pressed. While some images of nanoparticles look like just as
large white or black blobs of different intensity and diameter
without surrounding ring pattern, others display only a part of
the rings etc. To detect all kinds of these images several nu-
merical methods were evaluated and combined.

The detection of nanoparticles starts by selection of
pixels which can be a part of the image of adsorbed
nanoparticle, this is performed using threshold of inten-
sity histogram of differential images. However, an inten-
sity increase can be caused not only by binding particle
but also by an increase of the local noise or by an
appearance of some unrelated disturbances. Therefore,
all candidate pixels should be checked for the presence
of blob or rings. Statistical analysis of pixels intensity
in several consecutive frames allows us to exclude a
random temporal intensity increase. To satisfy sufficient
spatial extent of the detected spot with intensity

104 I. Sidorenko et al.

http://www.palas.de/
http://www.tsi.com/


increase, the pixel-by-pixel analysis of intensity was
followed by the nearest neighbor classification using
seed-growing algorithm. The obtained spots which have
smaller or larger size than the predefined patterns of
nanoparticles can be neglected. If the group of connect-
ed pixels satisfies particle size criterion, the local signal
to noise ratio (SNRmax) is checked to satisfy an intensity
step criterion: if SNRmax overcomes statistical standard
deviation of the background noise, the intensity change
in this group is considered as the signal caused by ad-
sorption of nanoparticle.

Intensity threshold An identification of prominent pixels
which may be a part of the image of adsorbed nanoparticles,
reduces significantly the amount of positions for further anal-
ysis and classificationwith numerically expensive methods. In
order to avoid an exhaustive numerical analysis and to de-
crease a number of false detections, the prominent pixels are
identified beforehand by maximum intensity threshold. The
threshold value Ith for numerical calculations is determined by
the input parameter k, standard deviation stdev and average
value of the pixel intensity Imean as: Ith = Imean + k*stdev. The
pixels where I > Ith have intensity changes at least k-times
stronger than the standard deviation caused by pixel noise.
Such pixels constitute a set of pixels selected for the further
analysis and form a binary image, which strongly depends on
the quality of the input greyscale images and determines the
computational speed and accuracy of detection. A nanoparti-
cle missed at this step cannot be recovered later on. Therefore
this step is crucial to all further processing and a low value of
the intensity threshold (k≤4) was chosen. It elevates the num-
ber of false positive events which will be filtered out during
the further analysis steps.

Blob recognition The spatial criteria for detection of
nanoparticle images in differential SPM image is change
of brightness of a small group of neighboring pixels,
which form a blob with a spatial extent with some ra-
dius r. Usually objects display not a sharp drop-off
edges but rather a gradual transition between different
intensity levels. To describe the variation of the gradient
caused by a random noise one can consider differentiat-
ed Gaussian. A differentiation of the gradient gives the
second derivative, i.e., Laplacian of Gaussian. The white
(black) blob can be detected by convolution of the input

image I(x,y) with negative (positive) normalized
Laplacian of Gaussian (LoG),

ψσ ¼ −σ2∇2G ¼ 1

πσ2
1−

x2 þ y2

2σ2

� �
e−

x2þy2

2σ2

which is known as Marr-Hildreth Operator (due to
shape of this function it is also called as Mexican Hat
Wavelet) [19]. Defining the scales of interest we do not
need to perform the total transformation but only con-
volve the image using the kernel functions with corre-
sponding scale.

Ring pattern recognition To find weaker patterns (e.g., with-
out pronounced central blob), an image analysis based on the
Scaling Index Method (SIM [20]) was applied. The SIM al-
lows us to distinguish points, lines and unstructured back-
ground. A 2D image is described in the SIM as a set of points
in virtual 3D space with two spatial coordinates (x, y) and a
value of the intensity of each pixel I(x, y) as a third dimension.
Thus, both space and intensity information can be combined
in the three-dimensional vector p!i ¼ x; y; νð x; yð ÞÞ while the
image can now be regarded as a set of N points P ¼ p!i

� �
; i ¼ 1;…;Npixels. For each pixel pi the logarithmic gradient
αi, called scaling indices, is calculated as:

αi ¼
∂logρ p!i; r

� �
∂logr

; ρ p!i; r
� �

¼ ρ p!i; r
� �

¼
X
j¼1

Npixel

e
− di j

.
r

� �2

:

Here di j ¼ p!i− p! j

�� ��
2 is the Euclidean distance between

two points in the virtual 3D space, and r is the radius of
interest which is equal to the thickness of the ring line in
particle pattern. Due to its Gaussian shape the weighted cu-
mulative point distribution ρ causes SIM to be a local method:
the value of the scaling index depends on the number of the
neighbors only in a small vicinity of the point for which the
gradient α is calculated. The SIM gives an alternative repre-
sentation of the images: the value of α≈0 corresponds to un-
structured background, while α≈1 corresponds to line struc-
ture (ring patter in our case) and α≈2 corresponds to 2D spot.

Intensity step The basic evidence for nanoparticle adsorption
is an intensity step within few consecutive frames [2].
Student’s Two Mean t-Test was applied to the time-averaged
intensity of several predecessor and successor frames of the
currently observed image to detect statistically significant

Fig. 2 Grouped, normalized and standardized differential images with one intensive and two weak footprints from adsorbed nanoparticles before (left)
and after (right) enhancement by Gaussian filter
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increase of pixels intensity. t-statistic for the most general case
of unequal sample size and unequal variances (Welch’s t-test
[21]) was calculated:

t ¼ X a−X b

� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2a1
Na

þ s2b
Nb

s

Here X i; s2i ;Ni are the mean value, the variance and the
size of the intensity value before (i = b) and after (i = a) the
intensity step. Giving the value of the intensity step and the
significance level, one can use this approach as a time-domain
binary filter to find pixels probably belonging to the images of
adsorbed nanoparticles.

Seed growing algorithm To group pixels with increased in-
tensity the seed growing algorithm [22] was applied. The
pixels selected as probably belonging to the nanoparticle im-
ages in the previous steps, were used as seeds for the region
growing process. According to the region membership crite-
rion, connected pixel groups grow from these seed points. In
this work 4-connected neighborhood (each pixel with coordi-
nates (x ± 1, y) or (x, y ± 1) is connected to the pixel at (x, y))
was applied. By examining pixels in 4-connected neighbor-
hood of seed points pixels are merged into groups.

Validation of the numerical detection
of nanoparticles

The validation of the presented numerical procedure for par-
ticle detection was performed by two ways: i) a comparison
with computer generated images consisting of background
and random spatial/temporal distribution of images of bound
nanoparticles; ii) a comparison with a manual assessment of
actual experimental images. The coincidence of the detected
nanoparticles was counted as a true-positive event, the non-
intersected numerically detected nanoparticle was considered
as a false-positive and the non-intersected manually detected
nanoparticle was considered as a false-negative.

Validation by comparison with simulated images was per-
formed using two sequences consisting of 200 images. The
background with the size of the actual SPM images was filled
with a white random noise. For the temporal distribution the
Poisson distribution around the mean value of ten nanoparti-
cles per frame and signal to noise ratio of 3.0 and 1.0 (Fig. 3
first row) was used. The determined amount of real nanopar-
ticle images (extracted from the experimental images and av-
eraged) was randomly distributed over the background image.
In Fig. 3 the number of the detected nanoparticles in the cur-
rent frame (Np, second row) and the cumulative number of the
detected nanoparticles up to the current frame (Np_cum, third
row) are shown. In both cases the number of the detected

nanoparticles per frame oscillates around the defined average
value Np=10±7 (Fig. 3 second row). The calculated cumula-
tive number of nanoparticles per 200 frames is Np_cum≈
2000, which is approximately equal to the product of the given
average number of nanoparticles per frame multiplied to the
number of frames (200), with 6% underestimation for SNR=3
and 5 % overestimation for SNR=1 (Fig. 3, third row).

Validation with simulated differential SPM images demon-
strated two main sources for the false positive detections
which limit the accuracy of numerical detection. The under-
estimation of the nanoparticles quantity in the case of SNR=3
is mainly due to nanoparticles which bind very close to each
other. In this case their images coalesce and a single nanopar-
ticle is detected. In the case of high background noise (SNR=
1) the ring pattern, usually much weaker than the central blob,
are suppressed to the noise level so that the nanoparticles are
detected only by their central blobs. At the same time, the
background noise at low SNR can also form bright spots, thus
leading to false-positives and overestimation of total amount
of adsorbed nanoparticles.

Validation by comparison with manual detection in real
experiments was performed for three series containing 500–
1000 frames each, with different number of adsorbed nano-
particles per frame. Some of these image sequences contain
large regions with structured background noise. The number
of nanoparticles in the current frame (Np) and the cumulative
number of all nanoparticles (Np_cum) for one of experiments
is shown in the Fig. 4: the left panels were obtained bymanual
detection of nanoparticles while the right panels present the
results of numerical detection. In both cases the average value
of Np oscillates around the same average value, and the ob-
tained dependencies of Np_cum for manual and numerical
detections are very close: the difference between the quantities
of manually and numerically detected nanoparticles in all ex-
perimental images was below 9 %.

It is to note that in current work the focus is on the image
analysis aspect. The phenomenology of the experimentally
observed behavior of nanoparticles sorption is quite complex:
some nanoparticles slide across the surface or oscillate near it.
Such nanoparticles may be detected several times giving a
small additional source of false positive events.

Application examples

Theoretical analysis of SPM images of adsorbed nanoparticle
predicts that the image shape and intensity are dependent on
the material and size of the nanoparticle [23]. However, be-
cause of the finite resolution and inevitable aberrations of
optical system and substantial level of the background noise,
an analysis of the exact image shape can be hardly done.
Principal Component Analysis did not find any hidden
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features within introduced image descriptors and showed the
best clustering in the feature space of maximal signal to noise
ratio (SNRmax) for the detected images of NPs. This value
represents the ratio of intensity step, which is caused by nano-
particle adsorption, to the local level of background noise.
Thus the image intensity was proved to be the best descriptor.

Experimental images obtained for gold NPs, adsorbing
from the mixture of 40 to 100 nm, is shown in Fig. 5 (left).
According to previous experimental data [2, 3] and theoretical
analysis [23], the smaller is the particle, the weaker and small-
er is its image in differential SPM image. In Fig. 5 the 40 nm
nanoparticles produce weak signals which look like small
white spots without ring patterns. The 100 nm nanoparticles
provide strong signals in the form of large black central blob
surrounded by ring pattern.

More detailed analysis can be performed using histograms
of intensity. Figure 5, right, demonstrates the results of auto-
mated analysis of SPM records for these types of gold NPs:
two obvious peaks of SNRmax corresponding to these types of
NPs are clearly seen. The same approach was applied also for
aerosols (Fig. 6). The large difference in the refractive index of
salt and air as well as soot and air leads to high signals from
adsorbed nanoparticles. For airborne NaCl—NPs the image
intensity depends linearly on the size of nanoparticles (Fig. 6
left, middle). The soot particle counting rate depends linearly
on the number concentration of the nanoparticles in the aero-
sol (Fig. 6, right). Application of the threshold to the histo-
gram allows the suppression of the weak false positive signals
caused by background fluctuations. The linear dependence of
adsorption rate of nanoparticles on their number concentration

Fig. 3 Validation of nanoparticle
detection using computer
generated images. Detected
nanoparticles are indicated by
circles (upper row, SNR=3 (left)
and SNR=1 (right)). The number
of numerically detected
nanoparticles in the current
frames Np (middle row). The
bottom row indicates the
cumulative number of the
detected nanoparticles up to the
current frame Np_cum

Fig. 4 Comparison of manual
(left) and numerical (right)
detection of images of
nanoparticles in experimental
SPM records in the frames (upper
panels) and cumulative values for
the whole SPM record (lower
panels)
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provides a possibility to use this approach for quantitative
measurements of number concentrations of nanoparticles.

The adsorption rate of NPs from aqueous suspensions is de-
fined by their free diffusion due to Brownian motion and was in
the range 0.1–10 NPs per s per mm2 for number concentration in
range 106–108 particles/mL. To avoid diffusion limitations, soot
and NaCl nanoparticles in air were ionized and attracted to the
surface by the external electrical field. Correspondingly, the
counting rate reached to 5 NPs per s per mm2 already at the
number concentration of 103 particles/mL (see Fig. 6).

The presented method of analysis was also applied for
many other types of nanoparticles, for example for silver
and polysterene NPs of different size. The lowest size of nano-
particles which can be detected using the presented computer
assisted analysis depends on the difference in dielectric per-
mittivity of the material of nanoparticle and environment and
is about 30 nm for plasmonic nanoparticles and 60 nm for
polysterene nanoparticles.

Conclusions

We describe computer assisted numerical method for automat-
ed detection and quantification of NPs imaged by differential
SPM during adsorption from aqueous suspensions and aero-
sols. The method consists of frame-by frame image process-
ing, which includes an image enhancement, a global statistical
analysis of images followed by detection and a local analysis

of images of individual nanoparticles. Different image en-
hancement methods were evaluated; the local mean- and
Gaussian filters were found to be the most useful for detection
of nanoparticles. The detection is based on the fast temporal
and spatial intensity change and specific spatial pattern in
differential SPM images caused by adsorption of nanoparticle.
However, not all nanoparticles have identical image patterns.
The central blob or surrounding ring structure can be sup-
pressed or distorted by background noise and experimental
artifacts. The suggested combination of different image anal-
ysis approaches provides a reliable detection of even weak or
distorted images of NPs. For the characterization of images of
detected nanoparticles different statistical characteristics were
evaluated; SNRmax was found to be the most informative.
Clustering of its value for detected nanoparticles allows one
to distinguish NPs from false detected background artifacts.

The numerical method was validated by an independent
manual analysis of experimental data and by using computer
generated image sequences with a randomized amount and
positions of NPs. Depending on the type and size of NPs
and on the level of the background noise, a probability of
recognition of up to 90–95 % can be reached. The use of
classical SPM configuration with a large sensor area allows
one a surface patterning [24–26] for preparation of SPR-
sensor arrays. Different functionalization of sensing elements
opens the way for analysis of materials of nanoparticles. Also
in this case can be used the suggested method for detection
and identification of NPs.

Fig. 5 Example of the
experimental image obtained for
the mixture of 40- and 100 nm
gold nanoparticles (left, images of
nanoparticles are indicated by
circles) and a histogram of
maximum of signal to noise ratio
SNRmax for the detected images
(right)

Fig. 6 The histogram of SPR signals due to adsorption of NaCl
nanoparticles from aerosol (left), the dependence of the mean signal
value on the size of these nanoparticles (middle) and the concentration

dependence of the adsorption rate on the aerosol number concentration
(right) before (circles) and after (squares) correction of background
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