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Nonenzymatic amperometric sensing of glucose using a glassy
carbon electrode modified with a nanocomposite consisting
of reduced graphene oxide decorated with Cu2O nanoclusters
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Abstract We describe a simple solvothermal method for
preparation of reduced graphene oxide nanosheets decorated
with uniform Cu2O nanoclusters by using poly(vinyl pyrrol-
idone)-poly(methacrylamide)-poly(vinyl imidazole) triblock
co-polymer as a shape-directing agent and L-glutamic acid
as a reducing agent. The resulting nanocomposite was depos-
ited on a glassy carbon electrode where it displays improved
electrocatalytic activity toward glucose oxidation in 0.5 M
NaOH. This observation was exploited to construct a non-
enzymatic amperometric sensor for glucose. It has a detection
limit as low as 1.0 μM, high sensitivity (23.058 μA mM−1),
and a dynamic (analytical) range that extends from 5.0 to
9595 μM at a working potential of 600 mV (vs. SCE).

Keywords Reducedgrapheneoxide .Nanoclusters .Triblock
copolymer . Glucose . Electrocatalysis

Introduction

Avariety of noble metal nanostructures with desired physical
and/or chemical properties has been prepared [1], but their

high price and rare storage seriously confine their commer-
cial applications. Therefore, it is essential to search for low-
cost and plentiful metals (e.g., Ni, Cu, Co, and Fe) as
alternatives.

Cu2O is one of the most investigated semiconductors
and has wide applications in CO oxidation, biosensors,
solar energy conversion, and photocatalysis [2]. Its catalyt-
ic properties are tightly correlated with the respective
structural features, size, and morphology [3]. As a result,
it is highly desired to prepare novel Cu2O nanocatalysts
with fine-controlled structure, dimension, and shape [4].
Accordingly, many shape-controlled Cu2O nanostructures
have been prepared, including cages [5], cubes [6], and
spheres [7].

Many supports have been introduced to endow the above
catalysts with well distribution, especially graphene oxide
(GO) nanosheets [7] or reduced graphene oxide (r-GO) [7],
owing to their enlarged surface area, high electrical conduc-
tivity, better chemical stability, and strong adhesion to the
catalysts [8]. To date, many nanocomposites, especially metal
oxide-graphenes, have been synthesized, including Cu2O-
graphene [9], NiO-graphene [10], TiO2-graphene [11], and
MnO2-graphene [12].

Enzyme-based electrochemical biosensors display high sen-
sitivity and selectivity [13]. Nevertheless, they suffer from poor
stability and reproducibility. Alternatively, non-enzymatic sen-
sors possess better durability and stability against external en-
vironment toward glucose oxidation [14]. For example, Zhou
et al. fabricated monodisperse porous Cu2O/r-GO, which
showed excellent catalytic activity and good selectivity for glu-
cose detection [15]. In another example, Gao’s group prepared
mesocrystalline Cu2O hollow nanocubes for construction of
glucose sensors [14]. However, their relatively higher detection
limit and narrow linear range are unsatisfied during accurately
monitoring glucose.
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Polymers have strong interactions and sometimes
form coordination complexes with nanocrystals, and
thereby influence the growth kinetics of the nanocrystals
as capping agents and shape-directing agents [16]. A
variety of polymers (e.g., cationic, anionic and nonionic
polymers) has been used for shape-controlled synthesis
of nanocrystals [17]. Polyvinylpyrrolidone (PVP) is the
most frequently used nonionic polymer in this field
[18]. Copolymers, containing two or more different
monomers, have more functional properties [19]. For
example, poly(ethylene glycol)-block-poly(propylene
glycol)-block-poly(ethylene glycol) Pluronic® P123 was
used as a shape-directing agent for shape-controlled
synthesis of mesoporous silica [20].

Herein, a facile solvothermal method is described for syn-
thesis of uniform Cu2O nanoclusters on r-GO (denoted as
Cu2O NCs/r-GO), using poly(vinyl pyrrolidone)-
poly(methacrylamide)-poly(vinyl imidazole) triblock copoly-
mer (Fig. S1, Electronic Supplementary Material, ESM)
and L-glutamic acid as a shape-directing agent and a
reducing agent. The catalytic performance of Cu2O NCs/r-
GO was investigated through the fabrication of a non-
enzymatic glucose sensor.

Experimental

Reagents and materials

Copper(II) nitrate trihydrate, sodium hydroxide, and glucose
were purchased from Shanghai Sigma-Aldrich (Shanghai,
China, www.sigmaaldrich.com). Poly(vinyl pyrrolidone)-
poly(methacrylamide)-poly(vinyl imidazole) triblock
copolymer (LuvisetR Clear), graphite powder (99.95 %,
8000 mesh), L-glutamic acid, ascorbic acid (AA), dopamine
(DA), uric acid (UA), lact ic acid, glutaric acid,
acetaminophen, and NaBH4 were bought from Shanghai
Aladdin Chemical Reagent Company (Shanghai, China,
www.chemicalbook.com). The other chemicals were of
analytical grade and used without further purification.
Double distilled-water was used to prepare all of the aqueous
solutions throughout the whole experiments.

Preparation of Cu2O NCs/r-GO and of Cu2O
nanoparticles

Typically, GO was prepared from natural graphite powder by
a modified Hummers’ method, and experimental details are
given in the previous work [21].

For typical preparation of Cu2O NCs/r-GO, 0.5 g of poly(-
vinyl pyrrolidone)-poly(methacrylamide)-poly(vinyl imidaz-
ole) triblock copolymer was dissolved into 15 mL of ethanol
under stirring. Then, 5 mL of GO (1 mg mL−1), 0.121 g

of Cu(NO3)2·3H2O, and 0.3 g of L-glutamic acid were put
into the mixed solution, respectively. After homogeneously
stirring, the mixed solution was transferred into a Teflon lined
stainless steel autoclave (25 mL), heated at 160 °C for 6 h, and
cooled to 25 °C in air. The final black precipitates were col-
lected by centrifugation, thoroughly washed with water and
ethanol for several times, and dried in vacuum at 60 °C for
further characterization.

Similarly, Cu2O nanoparticles were fabricated without GO
for comparison, and pure r-GOwere obtained by reducing GO
with NaBH4, while other conditions were kept unchanged.

Characterization

The morphology of the samples was characterized by trans-
mission electron microscopy (TEM) and high-resolution
transmission electron microscopy (HRTEM), which were per-
formed on a JEM-2100 F transmission electron microscope
(www.jeol.co.jp/en.com) equipped with the selective area
electron diffraction (SAED). The crystal structures were
determined by X-ray diffraction (XRD, Rigaku Dmax-2000
diffractometer) using Cu-Kα radiation (Bruker Co., Germany,
www.rigaku.com). X-ray photoelectron spectra (XPS) were
recorded on a Thermo Scientific Escalab 250 XPS spectrom-
eter (www.pharmaceuticalonline.com) with Al Kα X-ray ra-
diation (1486.6 eV). Fourier transform infrared (FT-IR) anal-
ysis was performed on a Nicolet NEXUS670 spectrometer
(http://web.ysu.edu/gen/stem). Raman spectra were acquired
on a micro-Raman system (Renishaw RM1000 spectrometer)
with an excitation wavelength of 633 nm (www.antpedia.
com). Thermogravimetric analysis (TGA)was conducted with
a simultaneous thermo-gravimetric analyzer (Netzsch, STA
449C, www.brain-power.com). The samples were heated in
air from 25 to 800 °C at a heating rate of 10 °C min−1.

Electrochemical measurements

The electrochemical measurements were conducted on a
CHI660D electrochemical workstation (Chenhua Instruments
Co., Shanghai, China, www.chinstruments.com), and
performed with a conventional three-electrode system, includ-
ing a platinum wire as the counter electrode, a saturated calo-
mel electrode (SCE, saturated KCl) as the reference electrode,
and a bare or modified glassy carbon electrode (GCE, 3.0 mm
in diameter) as the working electrode.

For typical construction of Cu2O NCs/r-GO modified
electrode (Cu2O NCs/r-GO/GCE), 2.0 mg of Cu2O NCs/r-
GO was dispersed into 1.0 mL water under ultrasonication
to form a homogeneous suspension. Next, 8 μL of the suspen-
sion was casted on the clean GCE and dried naturally, follow-
ed by casting another layer of Nafion (0.05 wt %) with the
volume of 5 μL to fix the deposit on the electrode surface. For
comparison, individual r-GO and Cu2O modified electrodes
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were prepared in a similar way, denoted as r-GO/GCE and
Cu2O NCs/GCE, respectively.

The electrocatalytic activity of the above catalysts modified
electrodes was determined by linear sweep voltammetry to-
ward glucose oxidation in 0.5 M NaOH at a scan rate of
50 mV s−1. The stability of Cu2O NCs/r-GO/GCE was exam-
ined by amperometry at an applied potential of 600 mV in
0.5 M NaOH. The electrochemical experiments were carried
out at 25 °C, if not stated otherwise.

Results and discussion

Characterization

As seen from TEM images (Fig. 1a and b), the product mainly
consists of numerous well-defined nanoclusters across the
whole section, without any agglomerating, which are uniform-
ly dispersed on r-GO. The nanoclusters have a very narrow
size distribution from 1.2 to 3.9 nm (Fig. 1d), with the average
size of 2.6 nm. Their polycrystalline nature is demonstrated by
the corresponding SAED pattern (inset in Fig. 1b). HRTEM
image (Fig. 1c) shows the well-defined lattice fringes with the
inter-planar spacing of ca. 0.19 nm, which is in good accor-
dance with the (200) crystal planes of Cu2O.

It is known that surfactants have great effects on the mor-
phology and size of nanocrystals [16, 17]. As expected, only
some irregular, agglomerated, and large Cu2O particles
(Fig. 2a, b) are obtained without or using smaller amount of
the triblock copolymer (0.1 %). When the amounts of the

triblock copolymer are 0.5 % (Fig. 2c) and 1.0 % (Fig. 2d),
numerous Cu2O nanoparticles with decreased sizes are ob-
served on r-GO. These results indicate that the amounts of
the triblock copolymer played the essential role in controlling
the morphology and size of Cu2O NCs.

Fig. S2 (ESM) provides the XRD pattern of Cu2O NCs/r-
GO, using r-GO as a reference. Clearly, there are four repre-
sentative diffraction peaks emerged at 36.5, 42.6, 61.5, and
73.6°, which are well assigned to the (111), (200), (220), and
(311) planes of the face-centered cubic (fcc) structure of Cu2O
[22, 23]. These values are matched well with the Joint
Committee Powder Diffraction Standard of pure Cu2O
(JCPDS No. 05–0667). The corresponding (111) diffraction
peak is stronger and sharper than those of the other planes,
showing the preferential growth of Cu2O NCs along the (111)
directions [15]. Furthermore, there are no any other peaks of
impurities (e.g., CuO and Cu) emerged, indicating high purity
of Cu2ONCs. In addition, a new broad peak is observed at
2θ =19.4° for Cu2O NCs/r-GO (Fig. S2, ESM, curve a),
which is consistent with that of r-GO (Fig. S2, ESM, curve
b, 2θ=20.9°), suggesting the efficient removal of oxygen-
containing functional groups and well dispersion of Cu2O
NCs on r-GO [24].

The composition and surface states of Cu2O NCs/r-GO
were examined by XPS measurements. The XPS survey spec-
trum (Fig. 3a) demonstrates the coexistence of Cu, O, N, and
C elements in Cu2O NCs/r-GO. As for high-resolution Cu
XPS spectrum (Fig. 3b), there are two peaks detected at
933.7 and 953.8 eV, which are assigned to the binding ener-
gies of Cu 2p3/2 and Cu 2p1/2 of Cu(I) [25, 26], respectively. A
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weak peak shows up at 943.7 eV, suggesting that there is a
very minimal amount of Cu(II) present in this system,
which may be derived from the un-reacted precursor of
Cu(NO3)2 [27]. By measuring their relative intensities,
Cu(I) is the predominant species, revealing the formation
of Cu2O NCs.

High-resolution C 1 s XPS spectrum of Cu2O NCs/r-GO
(Fig. 3c) can be well fitted into four peaks at 284.70, 285.70,
287.58 eV, and 288.67 eV, which are attributed to the C-C
(sp2), C-O, C = O, and O-C = O groups, respectively [28].
Particularly, the peaks related to the oxygen functionalities are
much weaker in comparison with those of GO (Fig. 3d),
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showing the formation of r-GO under hydrothermal condi-
tions. This assumption is strongly supported by FT-IR spectra
of Cu2O NCs/r-GO (Fig. 4A). Notably, the peak intensities at
1046 cm−1 (O–H) and 1730 cm−1 (C = O) are greatly de-
creased for Cu2O NCs/r-GO (curve a) as compared to those
of GO (curve b).

Similarly, Raman spectra (Fig. 4B) display two character-
istic peaks at 1362 and 1608 cm−1 for the D and G bands in
Cu2ONCs/r-GO (curve a) and GO (curve b), respectively. The
integral area ratio of the two bands (denoted as ID/IG) is 1.5 for
Cu2O NCs/r-GO, which is larger than that of GO (0.82), indi-
cating the efficient formation of r-GO [29].

TGA analysis was performed to test the thermal stability
and estimate the metal loading of Cu2O NCs/r-GO
(Fig. S3, ESM). After heating from 25 to 800 °C, there
is no weight left for GO because of the evaporation of
water molecules, the removal of some oxygen-containing
functional groups, and the decomposition of the carbon
skeleton groups [30]. However, Cu2O NCs/r-GO exhibit
much lower mass loss and faster achievement of the
thermal plateau under the identical conditions, manifest-
ing their better thermal stability and efficient reduction
of GO to r-GO [31]. Additionally, the mass loading of
Cu2O is 30.7 wt. %.

Electrochemical properties of Cu2O NCs/r-GO/GCE

Firstly, Cu2O NCs/r-GO modified electrode was constructed
to examine their electrocatalytic properties, using GCE and
pure r-GO/GCE as referenced electrodes. Electrochemical im-
pedance spectroscopy was employed to investigate the elec-
trical conductivity of the nanocomposites to study the syner-
gistic effects between r-GO and Cu2O. Figure 5 shows
Nyquist plots obtained on GCE (curve a), r-GO/GCE (curve
b), and Cu2O NCs/r-GO/GCE (curve c) in 0.1 MKCl contain-
ing 5.0 mM [Fe(CN)6]

3–/4–(1:1) solutions. The diameter of a
semicircle of Cu2O NCs/r-GO modified electrode in high-
frequency zone is larger than those of r-GO/GCE or bare
GCE under the identical conditions. It means the larger

resistance for electron transfer on Cu2O NCs/r-GO modified
electrode as compared to those of the other two cases. This is
ascribed to the fact that the decorated Cu2O NCs as a semi-
conductor increase the resistance in Cu2O NCs/r-GO as con-
trast to that of r-GO, reflecting the decreased conductivity of
Cu2O NCs/r-GO in the present work.

Herein, a non-enzymatic glucose sensor was constructed to
investigate the electrocatalytic activity of Cu2O NCs/r-GO
(Fig. 6A, curve a) in 0.5MNaOH containing 5.0 mMglucose,
using individual r-GO (curve b) and Cu2O NCs ( curve c) as
references. There is almost no anodic current observed at bare
GCE. Clearly, Cu2O NCs/r-GO modified electrode shows
more negative onset potential and higher anodic currents
in contrast to r-GO and Cu2O NCs. It means the enhanced
electrocatalytic performance of Cu2O NCs/r-GO. This is
attributed to the fact that the present redox pair of Cu(II)/
Cu(III) leads to the easy oxidation of glucose in
strongly alkaline media [32] and the fast electron transfer
provided by r-GO [33].

Figure 6B illustrates a series of linear sweep voltammo-
grams (LSVs) at Cu2O NCs/r-GO modified electrode,
displaying the enhanced anodic peak currents with glucose
in the range of 10.0~35.0 mM. This observation confirms
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the improved catalytic activity of Cu2O NCs/r-GO for glucose
oxidation. The maximum catalytic current is observed at the
applied potential of 600 mV upon the addition of glucose,
which is applied for amperometric determination of glucose.

Determination of glucose

Typical amperometric curves of Cu2O NCs/r-GO modified
electrode were recorded at 600 mV with successive addition
of glucose into 0.5 M NaOH under constant stirring. As
depicted in Fig. 7a, the amperometric response is less than
3 s, indicating rapid responses toward glucose, owing to the
improved catalytic activity and fast electron transfer of Cu2O
NCs/r-GO with the electrode [4]. The plot shown in Fig. 7b
does not fit a conventional linear equation in the whole
concentration range. The linear regression equations are
I (μA) =1.6301+37.5518C (R2=0.9950) and I (μA)
=37.7961+23.0580 C (R2=0.9968) for determining glucose
over the two linear concentration ranges of 0.005~
2.095 mM and 2.595~9.595 mM, respectively. The detec-
tion limit is 1.0 μΜ at the signal-to-noise ratio (3S/N), which
is much lower than most previously reported values [14, 15,
34–37]. It is notable that Cu2O NCs/r-GO modified electrode

displays the enhanced catalytic performance for glucose sens-
ing in terms of sensitivity and the limits of detection (LOD),
compared to those of Cu2O-based materials previously report-
ed (Table 1) [14, 15, 34–37].

Repeatability and stability

The repeatability of the sensor used in the measurement was
obtained by recording the responses to 5.0 mM glucose in
0.5 M NaOH. The relative standard deviations (RSDs) were
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Table 1 Comparison of Cu2O-based sensors for glucose determination

Electrodes Sensitivity
(μA mM−1)

Linear range
(mM)

LOD
(mM)

Ref.

Porous Cu2O
nanosphere- r-GO

185 0.01~6.0 0.05 [14]

Hollow Cu2O
nanocubes

52.5 0.001~1.7 0.87 [15]

Cu-Cu2O NWs 859.14 0.1~12 0.05 [33]

Cu/Cu2O 33.63 0.22~10.89 0.05 [34]

Au/LDH-CNTs-G 141.22 0.01~6.1 0.001 [35]

MCo-CFs (M=Cu,
Fe, Ni, and Mn)

35.82 0.02~11 0.001 [36]

Cu2O NCs/r-GO 37.55; 23.06 0.005~2.095;
2.595~9.595
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calculated to be 2.0 % (n=5) for Cu2O NCs/r-GO/GCE.
Additionally, to evaluate the electrode-to-electrode reproduc-
ibility, they were independently prepared using the same way
and revealed an acceptable reproducibility with low RSD
values of 1.4 % (n=5). The stability of the sensor was exam-
ined by intermittently measuring the current responses to
5.0 mM glucose over a 35-day storage period (Fig. S4,
ESM). The sensors were stored at 25 °C when not in use.
The amperometric responses remained 95.2 % of their initial
values after a storage period of 35 days, revealing long-term
stability of the resulting sensor. The obtained sensor can be
continuously detected without regenerating between each
measurement.

Interference study and applications to human serum
samples

To evaluate the selectivity of the sensor, potentially interfering
biomolecules (i.e., UA, AA, and DA) were detected at Cu2O
NCs/r-GO modified electrodes, which usually coexist with
glucose in real samples such as human blood. The interference
study was investigated in the presence of 5.0 mM glucose.
The criterion for interference was a relative error of less
than±5 %. It was found that 500 folds of CaCl2, MgCl2,
KCl, and NaCl, 50 folds of lactic acid and glutaric acid, 15
folds of UA and AA, 10 folds of DA and acetamino-
phen, and 5-fold concentrations of fructose and maltose
had no interference in the determination of glucose.
These results demonstrate good selectivity of the
resulting sensor for glucose assay.

Glucose in human serum samples were determined by
Cu2O NCs/r-GO modified electrode at 600 mV. As shown in
Table S1 (ESM), the as-obtained results are consistent with
those determined by a hospital-used blood sugar instrument
(Accu-Chek Performa), and the RSD values range from 1.23
to 2.37 %. These results display that the nonenzymatic sensor
can be employed practically for routine analysis of glucose in
real biological samples.

Conclusions

In summary, a facile solvothermal method was developed for
preparation of Cu2O NCs/r-GO, with the assistance of the
triblock copolymer (LuvisetR Clear) and L-glutamic acid as
a shape-directing agent and a reducing agent, respectively.
The nanocomposites exhibit better catalytic activity than those
of Cu2O nanoparticles and r-GO toward glucose oxidation.
The sensor has wide linear range (0.005 to 9.595 mΜ), high
sensitivity (23.058 μA mM−1), and selectivity. The improved
performances of Cu2O NCs/r-GO make it a promising candi-
date for the assay of glucose.
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