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Abstract We report on a novel electrochemical dopamine
(DA) sensor based on a glassy carbon electrode (GCE)modified
with a hybrid material composed of Cu(I) oxide hollow micro-
spheres and carbon black. The hybrid material was synthesized
in a mixed solvent composed of water and the deep eutectic
solvent choline chloride/urea, and by in-situ reduction of Cu(II)
by ascorbic acid. The surface morphology and structure of the
materials were characterized by scanning electron microscopy,
transmission electron microscopy and X-ray diffraction. Cyclic
voltammetry and chronoamperometry were used to evaluate the
electrocatalytic properties of the modified GCE toward DA ox-
idation in phosphate buffer solution of pH 5.7. The sensor dis-
plays a higher electrocatalytic activity toward DA oxidation
compared to other modified electrodes. At a working potential
of 0.25 V (vs. SCE), the sensor exhibits a rapid response (<3 s)
and a wide linear range from 9.9×10−8 to 7.08×10−4 mol L−1.
The detection limit is as low as 3.96×10−8 mol L−1 (S/N=3). In
addition to its high sensitivity, the sensor displays good repro-
ducibility, long-term stability and fair selectivity.
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Introduction

Dopamine (DA) is an important catecholamine neurotrans-
mitter in the mammalian central nervous system and plays

a key role in the function of central nervous, renal, hor-
monal and cardiovascular systems [1–3]. The DA concen-
tration in biological systems is usually in the range of
10−8 M to 10−6 M [4]. Abnormal levels of DA have been
associated with several neurological disorders such as
Parkinson’s disease, schizophrenia, Alzheimer’s disease,
Huntington’s disease, attention deficit hyperactivity disorder
and drug addiction [3, 5, 6]. Therefore, the rapid and sen-
sitive detection of DA in biological system is of great clin-
ical importance. At present, various analytical techniques
have been developed for the determination of DA that in-
cludes mass spectrometry [7], spectrophotometry [8], high
performance liquid chromatography (HPLC) [9, 10], chemi-
luminescence [11] and electrochemical methods [3, 5,
12–15]. Among them, the electrochemical method is con-
sidered as a useful approach owing to its high sensitivity,
fast response, easy operation, cost-effectiveness and capa-
bility of in situ detection [2, 16]. Moreover, the electro-
chemical detection of DA can be easily realized since it
has good electrochemical activity [5].

Transition metal oxides, such as MnO2 [16], Fe3O4 [17],
Co3O4 [18] and TiO2 [19] have been used as electrocatalysts
for the detection of DA. At the same time, copper oxides
including CuO and Cu2O have attracted intensive interest as
promising candidates for electrochemical sensors due to their
low cost, environmental friendship and significant catalytic
activities [20–24]. For example, Song et al. [21] reported a
non-enzymatic H2O2 sensor based on CuO nanoflowers
whose linear range was from 4.25×10−5 to 4×10−2 mol L−1,
with a detection limit of 0.167 μmol L−1. Liu et al. [24] con-
structed an electrochemical sensor with the hybrid
nanomaterial of Cu2O nanocubes wrapped by graphene nano-
sheets, which exhibited the excellent performance toward the
detection of glucose and H2O2. In particular, several research
groups have also explored CuxO nanocomposites modified
electrodes for the detection of DA [25–27]. Reddy et al. [25]
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synthesized the flake-shaped CuO nanoparticles with en-
hanced current response for DA. Zhang et al. [27] reported
an electrochemical DA sensor based on the Cu2O/graphene
nanocomposite. It is noted that the detection of DA at these
CuxO-based modified electrodes is almost limited to the volt-
ammetry method. On the other hand, the size and structural
morphology of nanoparticles are known to have a significant
effect on enhancing the electrochemical response of sensors,
and well-controlled nanostructures are thereby essential for
achieving efficient electrocatalysts [28]. From this prospect,
the shape-controlled synthesis of CuxO nanoparticles has
attracted enormous attention, and CuxO nanoparticles with
different shapes were obtained, such as cubes [20, 24], rods
[29], nanowires [30, 31], nanoflowers [21, 32] and polyhedra
[33]. It is found that the detection performance of sensing
electrodes can be improved by changing the morphology of
the CuxO nanostructures. However, among the various mor-
phologies of CuxO nanoparticles, hollow structures have re-
ceived considerable attention due to their high specific surface
area, low density and potential applications in the area of
sensing [34–36]. To the best of our knowledge, the studies
on CuxO hollow microspheres for the amperometric determi-
nation of DA have not yet been reported.

Deep eutectic solvents (DESs) are the promising solvents
to be used in the shape-controlled synthesis of functional ma-
terials due to their unique physicochemical properties, such as
high conductivity, viscosity, surface tensions, polarity, thermal
stability and negligible vapor pressure [37, 38]. Herein we
report the synthesis of Cu2O hollow microsphere (HMS)/car-
bon black (CB) hybrid material (Cu2O HMS/CB) in the
DESs/H2O mixed solvent and its application in the electro-
chemical determination of DA. The materials were character-
ized by XRD, SEM and TEM. The Cu2O HMS/CB compos-
ites were used for the fabrication of the modified glassy car-
bon electrode (GCE) and thus for the electrochemical investi-
gation of DA in PBS solution (pH=5.7). By taking advantages
of high electronic conductivity of carbon black and high elec-
trocatalytic activity of Cu2O hollow microsphere, the Cu2O
HMS/CB composites exhibit strong and sensitive current re-
sponses to DA.

Experimental

Reagents

Vulcan XC-72 carbon black (CB) was supplied from Cabot
Corporation (http://shminxing027203.11467.com).
Dopamine (DA), uric acid (UA) and 5 wt.% Nafion solution
were purchased from Sigma-Aldrich (http://www.
sigmaaldrich.com/china-mainland/chemistry-product.html).

(−)–Epinephrine (+)–bitartrate salt was purchased from J&K
Scientific Ltd (Beijing, China) (http://www.jkchemical.com).
Choline chloride, urea, absolute ethanol, polyvinylpyrrolidone
(PVP), ascorbic acid (AA), CuSO4, NaOH, H2O2 and D–
glucose were obtained from Sinopharm Chemical Reagent
Co. Ltd (Shanghai, China) (http://www.sinoreagent.com).
Phosphate buffer saline (PBS, 0.1 mol L−1, pH 5.7) was used
as the supporting electrolyte. All the chemicals are of analytical
grade and used as received without further purification. All
aqueous solutions were prepared using tridistilled water.

Apparatus and measurements

The size and morphology of Cu2O samples were analyzed by
scanning electron microscopy (SEM, LEO-1530) and trans-
mission electron microscopy (TEM, FEI Tecnai-F30). Energy
dispersive X-ray (EDX) spectroscopy characterization was
conducted on the same apparatus (SEM, LEO-1530), and
the Cu2O content of the Cu2O HMS/CB composites could
be obtained according to the EDX results. X-ray diffraction
(XRD) measurements were carried out on an X-ray diffrac-
tometer (Rigaku D/MAX 2500 v/pc, Japan) with a Cu Kα
radiation source (λ=1.5406 Å). Electrochemical experiments
were performed on a CHI 660D electrochemical workstation
with a standard three-electrode system comprising a piece of
Pt foil (1 cm2) as auxiliary electrode, a saturated calomel elec-
trode (SCE) as reference electrode, against which all poten-
tials were quoted, and the prepared modified electrode as
working electrode. All experiments were carried out at room
temperature around 25 °C.

Synthesis of Cu2O hollow microsphere/carbon black
composite

The choline chloride/urea DESs were synthesized according
to the previously reported method [38]. In a typical procedure
for the synthesis of Cu2O HMS/CB composite, a DESs/H2O
mixed solvent was first prepared by ultrasonically mixing the
DESs and tridistilled water (1:2 in volume). 16 mg ascorbic
acid was completely dissolved into 10 mL DESs/H2O mixed
solvent, and the pH value of system was adjusted by the
NaOH/DESs solution to 11 (denoted as solution A). Then,
22.3 mg CuSO4, 0.9 g PVP and 25 mg Vulcan XC-72 were
added in 20 mL DESs/H2O mixed solvent under ultrasonic
treatment for 30min, and the pH value of systemwas adjusted
by the NaOH/DESs solution to 11 (denoted as solution B).
Subsequently, the solution B was stirred for 15 min at 40 °C,
and then the solution Awas added dropwise into the solution
B. After reaction for 3 h under constant stirring, the as-
obtained suspension was allowed to stand overnight. The re-
sultant Cu2O HMS/CB products were collected by
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centrifugation, washedwith tridistilled water and absolute eth-
anol for several times, and dried in vacuum at 60 °C for 24 h.
As a comparison, the Cu2O HMS was prepared with the sim-
ilar procedure as described above except for the addition of
Vulcan XC-72.

Fabrication of modified electrodes

The modified electrode substrate was a glassy carbon elec-
trode (GCE, 5 mm diameter), which was polished sequentially
with 5.0 μm, 1.0 μm, 0.3 μm Al2O3 powder and then washed
ultrasonically in tridistilled water before each experiment.
Then 1 mg of the prepared Cu2O HMS/CB was dispersed
ultrasonically in 400 μL Nafion solution (2 wt.%), and 5 μL
of the suspension was pipetted and air-dried on the pretreated
GCE at room temperature. The resulting modified electrode
was denoted as Cu2O HMS/CB/GCE. In addition, the Cu2O
HMS/GCE and CB/GCE electrodes were also prepared with
the similar procedure.

Results and discussion

Physical characterization

In order to analyze the crystal structure and phase purity of the
Cu2O products, the X-ray diffraction measurements were car-
ried out. As shown in Fig. 1, in the case of Cu2O HMS (curve
a), the diffraction peaks at ca. 29.7°, 36.4°, 42.5°, 61.6° and
73.8° originate from the crystal planes of (110), (111), (200),
(220) and (311) of the cubic symmetry Cu2O, respectively
[33, 39]. No impurity is detected in this curve, which demon-
strates that the high-purity Cu2O product is successfully syn-
thesized. The average crystallite size was estimated to be
9.7 nm by the Scherrer’s equation based on the peak assigned
to the (220) plane [40], suggesting that the Cu2Omicrospheres

are constructed by smaller nanoparticles. For the Cu2O
HMS/CB composite (curve b), the strong peak located at
the 2θ value of ca. 24.6° is evidently attributed to the
(002) phase of Vulcan XC-72 carbon black [41, 42], and
the other three peaks at ca. 36.4°, 42.5° and 63.7° can be
ascribed to the diffractions of Cu2O(111), Cu2O(200) and
Cu2O(220) planes, respectively. It is noted that, due to the
coating of CB, the diffraction signals of Cu2O become
weaker or even disappear.

The morphology of Cu2O products were further inves-
tigated by SEM and TEM methods, and their size distri-
bution was evaluated statistically by measuring the diam-
eter of 200 Cu2O microspheres in the magnified TEM
images. As can be seen from the SEM image of Cu2O
HMS (Fig. 2a), the obtained Cu2O HMS particles are
spherical. The corresponding high magnification SEM im-
age (inset of Fig. 2a) indicates that the Cu2O microsphere
is in fact an agglomerate of abundant Cu2O nanoparticles.
The broken sphere suggests that the spheres are hollow.
However, in the SEM image of Cu2O HMS/CB composite
(Fig. 2b), the Cu2O microspheres are difficult to be ob-
served, which may be due to the embedding of Cu2O
microspheres in CB nanoparticles. Additionally, the
TEM image of Cu2O HMS is shown in Fig. 2c and its
particle size distribution is shown in Fig. 2e. The micro-
spheres exhibits paler contrast in the middle region com-
pared to the dark edges, further confirming their hollow
structure. The average diameter of the hollow spheres is
about 371 nm. The TEM image of Cu2O HMS/CB com-
posite is shown in Fig. 2d and its particle size distribution
is shown in Fig. 2f. It is found that the Cu2O micro-
spheres are embedded in the CB aggregation, which is
in agreement with the XRD results. Their average diame-
ter is about 198 nm, much smaller than that of the Cu2O
HMS product. These results demonstrate that the coating
of CB in the Cu2O HMS/CB composite can not only
reduce the size of Cu2O HMS but also improve the elec-
tronic conductivity of the hybrid material effectively. It
will be responsible for the enhanced electrocatalytic prop-
erties of Cu2O HMS/CB composite discussed below.

Electrochemical behavior of modified electrodes

The electrochemical behaviors of different modified elec-
trodes were studied by cyclic voltammetry (CV) measure-
ments. Figure 3 shows the CV curves of CB/GCE, Cu2O
HMS/GCE and Cu2O HMS/CB/GCE electrodes in
0.1 mol L−1 PBS (pH=5.7) solution containing 50 μmol L−1

DA at a scan rate of 50 mV s−1. As can be seen from the inset
of Fig. 3, the Cu2O HMS/CB/GCE has no redox peaks in
blank PBS solution, implying that the Cu2O HMS/CB/GCE
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Fig. 1 XRD patterns of Cu2O HMS (a) and Cu2O HMS/CB (b)
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is non-electroactive in the selected potential region. Upon the
addition of 50 μmol L−1 DA, it can be observed that the Cu2O
HMS/CB/GCE shows a pair of well-defined peaks with anod-
ic peak potential (Epa) at 0.248 V and cathodic peak potential
(Epc) at 0.193 V (Fig. 3a). The corresponding peak potential
separation (ΔEp) is 55 mV, much smaller than that of the
Cu2O HMS/GCE (Fig. 3b, 108 mV) and CB/GCE (Fig. 3c,
78 mV) electrodes, suggesting a fast electron transfer kinetics
on the Cu2O HMS/CB/GCE electrode [27, 43, 44]. Moreover,
the anodic and cathodic peak currents of DA on the Cu2O
HMS/CB/GCE are 12.7 and −13.3 μA, respectively, much
larger than those on the CB/GCE (3.3 and −3.3 μA) and
Cu2O HMS/GCE (5.8 and −7.6 μA) electrodes. These results
indicate that the coating of CB significantly improve the elec-
tron transfer rate of Cu2O HMS and thus enhance the electro-
catalytic activity towards DA.

The influence of scan rate on the CV response of Cu2O
HMS/CB/GCE in 0.1 mol L−1 PBS solution (pH=5.7) with
50 μmol L−1 DA is shown in Fig. 4a. It can be observed that
the scan rate affects the positions of the redox peaks and the
values of the redox peak currents. With increasing scan rates
from 10 to 200 mV s−1, the peak potentials shift to more
positive and more negative values for the anodic and cathodic
peaks, respectively, and the redox peak currents also increase
gradually. The peak potential separation (ΔEp) become higher
with increasing scan rate owing to the increased irreversibility
of the electrode process [27, 45]. Furthermore, both the oxi-
dation and reduction peak currents (Ipa and Ipc) increase line-
arly with the square root of scan rates (Fig. 4b, linear regres-
sion equations: Ipa (μA)=3.516 ν1/2–9.995, R2=0.9929; Ipc
(μA)=−3.9166 ν1/2+12.5316, R2=0.9913). These character-
istics indicate that the redox behavior of DA at the Cu2O
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HMS/CB/GCE is a typical diffusion-controlled electrochemi-
cal process [44, 45].

Effect of solution pH

The effect of pH on the determination of DA in 0.1 mol L−1

PBS solution at the Cu2O HMS/CB/GCEwas carefully inves-
tigated in the pH range of 4.0–9.5. As shown in Fig. 5a, both
anodic and cathodic peak potentials are shifted negatively
with the increasing pH values, and the peak current of DA
reaches a maximum at about pH=5.7. The results indicate that
the electrocatalysis of DA at the composite electrode is a pH
dependent reaction and pH 5.7 should be selected as the opti-
mum condition for the electrochemical determination of DA.
Figure 5b shows the calibration curve of anodic peak potential
versus different pH value. It is found that, in the pH range of
4.0–9.5 the anodic peak potential (Epa) decreases linearly with
the increase of pH. The linear regression equation is Epa (V)=
0.6079–0.0639pH with a correlation coefficient of R2=
0.9951. In addition, the slope value can be calculated to be
−63.9 mV/pH using the regression equation, which is close to
the theoretical value of −59mV/pH at 25 °C, indicating a two-
proton reaction coupled with a two-electron transfer process
[14, 26, 27]. Therefore, the electrochemical reaction of DA at
the Cu2O HMS/CB/GCE electrode can be expressed as the
following:

OH

HO NH2

-2e--2H+

O

O NH2

Effect of Cu2O content in the Cu2O hollow
microsphere/carbon black composite

The Cu2O content in the Cu2O HMS/CB composite should
play a significant role in the oxidation of DA at the composite

modified electrode, so we studied the effect of different Cu2O
mass contents on the current response of Cu2O HMS/CB/
GCE to 50 μmol L−1 DA in 0.1 mol L−1 PBS solution (pH=
5.7) at a scan rate of 50 mV s−1. We synthesized five Cu2O
HMS/CB samples with different Cu2O mass content by
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changing the amount of CuSO4 precursor, and from the
corresponding EDX results their Cu2O mass contents were
determined to be 4.84, 20.46, 27.73, 30.79 and 42.83 %,
respectively. As depicted in Fig. 6, the current density was
expressed by the normalized current per milligram of Cu2O
loading. It can be seen that, the anodic peak current density
increases evidently with the increased Cu2O mass content,
and the maximum response is approached at the Cu2O
content of 20.46 %. Moreover, as described above, smaller
peak potential separation (ΔEp) between the anodic and
cathodic peaks responds to faster electron transfer kinetics.
When the mass content of Cu2O in the composite is
20.46 %, the ΔEp value reaches the minimum, suggesting
the fastest electron transfer rate. Thus, 20.46 % Cu2O was
chosen as the optimal mass content for the sensor
fabrication.

DA determination of the Cu2O hollow microsphere/carbon
black/GCE sensor

The experiment was performed under the optimized condi-
tions in a stirred system. Figure 7a displays the current-time
plot for the Cu2O HMS/CB/GCE with successive addition of

DA into a stirring PBS solution (pH 5.7). As can be seen, the
response time is very fast and the steady-state current reaches
another steady-state value within 3 s. The present sensor ex-
hibits good linear amperometric response to DA concentration
ranging from 9.9×10−8 to 7.08×10−4 mol L−1 (R2=0.9979),
with the sensitivity of 0.0492 μA μM−1 and detection limit of
3.96×10−8 mol L−1 at signal to noise ratio of 3 (Fig. 7b). The
performance of the Cu2O HMS/CB/GCE sensor is com-
pared with those of other published DA electrochemical
sensor in Table 1. It can be observed that our proposed
sensor exhibits better performance in terms of wide linear
range, low detection limit, high sensitivity and fast re-
sponse time.

Reproducibility and stability of the Cu2O hollow
microsphere/carbon black/GCE sensor

The Cu2O HMS/CB/GCE sensor had a good reproduc-
ibility. For eleven electrodes modified identically, the
relative standard deviation (RSD) of the current re-
sponse to 50 μmol L−1 DA was 4.67 %. In addition,
the storage stability of the sensor was also investigated.
When the sensor was stored at the ambient environment
and measured intermittently the current response to
50 μmol L−1 DA, it still retained 80.3 % of its initial
activity after 22 days, indicating that the sensor had a
satisfactory stability.

Selectivity of the Cu2O hollow microsphere/carbon
black/GCE sensor

The selectivity of the Cu2O HMS/CB/GCE sensor was also
investigated by using the chronoamperometry technique at the
operating potential of 0.25 V. In order to check the effect of
substances that might interfere with the sensor performance,
five kinds of possible interfering substances, H2O2, uric acid,
ascorbic acid, glucose and epinephrine were used for measure-
ment in our experiments and the results are shown in Fig. 8. It
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can be observed that the five tested interferents could not
cause obvious interference to the determination of DA, dem-
onstrating the high selectivity of the Cu2O HMS/CB/GCE
sensor.

Conclusion

The synthesis of Cu2O HMS/CB hybrid material in the
DESs/H2O mixed solvent and its use in the preparation of
amperometric sensor for the detection of DA are reported.
SEM, TEM and XRD results reveal that the Cu2O micro-
spheres are embedded in the CB aggregation and the presence
of CB in the Cu2O HMS/CB composite obviously reduces the
size of Cu2O HMS. The electrocatalytic properties of modi-
fied electrodes were studied by using cyclic voltammetry and
chronoamperometry methods. Due to high electronic conduc-
tivity of CB and high electrocatalytic activity of Cu2O HMS,
the Cu2O HMS/CB/GCE electrode exhibits higher electrocat-
alytic activity to DA oxidation compared to other modified
electrodes. The Cu2O HMS/CB/GCE has been employed as
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Table 1 Comparison of present work with other published electrodes for DA determination

Electrode material Linear range (mol L−1) Detection limit (mol L−1) Response time (s) Sensitivity (μA μM−1) Reference

TC8A/Au 1×10−6~1×10−3 5×10−7 N/A 0.106 [13]

Fe3O4@Au NPs/MCPE 2.0×10−6~9.2×10−4 6.4×10−7 3 N/A [17]

CuO nanoparticles/MCPE N/A 5.5×10−8 N/A N/A [25]

CuO/MWNTs/Nafion/GCE 1×10−6~8×10−5 4×10−7 N/A 3.0943 [26]

SWNT/NH-GME 9.9×10−7~3.0×10−4 4.2×10−7 N/A 6.04×10−5 [46]

SiO2/C/CuPc 1.0×10−5~1.4×10−4 6.0×10−7 N/A 1.26×10−4 [47]

MIPs/MWNTs/GCE 6.25×10−7~1.0×10−4 6.0×10−8 N/A N/A [48]

LaPO4 nanowires/CPE 2.6×10−7~1.04×10−4 9×10−8 N/A 0.018 [49]

Pt/PEDOT-PB 2×10−6~1×10−4 1.0×10−5 N/A 0.116 [50]

PEDOT/RGO 1×10−7~1.75×10−4 3.9×10−8 N/A N/A [51]

Cu2O HMS/CB/GCE 9.9×10−8~7.08×10−4 3.96×10−8 2.95 0.0492 Present work
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Fig. 8 Chronoamperometry curve of Cu2O HMS/CB/GCE in
0.1 mol L−1 PBS solution (pH=5.7) with successive addition of
1.0 mmol L−1 DA, 1.0 mmol L−1 H2O2, 1.0 mmol L−1 UA,
1.0 mmol L−1 glucose, 0.1 mmol L−1 AA , 0.05 mmol L−1 epinephrine
and 1.0 mmol L−1 DA at applied potential of 0.25 V
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an electrochemical sensor for determination of DA in the wide
range from 9.9×10−8 to 7.08×10−4 mol L−1 with a low detec-
tion limit of 3.96×10−8 mol L−1 (S/N=3). In addition, the
sensor also displays advantages including high sensitivity,
good reproducibility, long-term stability and selectivity. The
work reported here provides a new platform for preparing an
amperometric DA sensor with high performance and low cost.
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