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Abstract Porous gold nanosheets modified glassy carbon
electrode (GCE) was facilely prepared by one-step electrode-
position, using N-methylimidazole as a growth-directing
agent. The porous gold nanosheets modified GCE was char-
acterized by scanning electron microscopy, transmission elec-
tron microscopy, and X-ray diffraction spectroscopy. The
modified electrode displayed improved sensitivity for individ-
ual and simultaneous differential pulse voltammetric determi-
nation of dopamine (DA; at 180 mV) and acetaminophen
(AC; at 450 mV vs. Ag/AgCl) even in the presence of ascorbic
acid. The oxidation peak currents linearly increased with the
concentrations of DA and AC in the ranges from 2.0 to
298.0 μM and 3.0 to 320.0 μM, respectively, and the
detection limits are 0.28 μM for DA and 0.23 μM for
AC. The relative standard deviations (n=20) are 1.5 % for
DA and 0.4 % for AC.
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Introduction

Dopamine (DA) is an important electroactive neurotransmit-
ter, which provides communicating link between neurons [1].

As a medicine, its deficiency or sufficiency would cause brain
disorder disease such as Parkinson’s disease and schizophre-
nia [2, 3]. As a result, DA is usually used to treat the depres-
sion for its function of transmission the mood of fun and
excitement. Thus, the detection of DA is a key point in
biomedical chemistry, diagnostic and pathological research.

However, the assay of DA in body fluid is seriously affect-
ed by many coexisted interfering compounds such as acet-
aminophen (AC) and ascorbic acid (AA) [4]. Specifically, AC
is an antipyretic and analgesic drug used for relief of fever,
headaches, and other minor aches and pains [5]. Besides, it
has wide applications in osteoarthritis and ovarian cancer
therapy [6]. Nevertheless, its surplus will induce toxic metab-
olite accumulation, causing acute hepatic necrosis [7]. Addi-
tionally, AA is a vital vitamin in human diet and very popular
in foodstuffs for its antioxidant property, which can be applied
to prevent and treat common cold, mental illness, infertility,
cancer, and AIDS [8, 9].

It is essential for selective and/or simultaneous detection of
DA and AC in the presence of AA, because AA, DA, and AC
usually coexist in real biological samples [4]. Up to now,
several methods have been developed for detection of DA
and AC, including capillary electrophoresis [10], chromatog-
raphy [11], chemiluminescence [12], spectrophotometric [13],
and electrochemical method [14, 15]. Among them, electro-
chemical methods are widely used, owing to their intrinsic
advantages such as rapid response, high sensitivity, easy op-
eration, and low cost.

The electrochemical oxidation peaks of AA, DA, and AC
are usually overlapped on a bare glassy carbon electrode
(GCE), leading to poor selectivity and reproducibility [16].
For simultaneous determination of DA and AC, several mod-
ified electrodes have been constructed with multiwall carbon
nanotubes [17], nano-TiO2/polymer [18], polypyrrole/
aszophloxine/Au [19], and Fe3O4@Au-S-Fc/GS-chitosan [4]
as electrode modifiers. It is still a challenge for their
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electrochemically selective or simultaneous determination
without the interference with each other.

Gold nanostructures become extremely popular in a wide
range recently, due to their optical, electrical, and chemical
properties [20, 21]. For instance, gold nanoparticles have been
widely used in surface plasmonics [22], surface-enhanced
Raman scattering (SERS) [23], chemical and biological
sensing [24].

We prepared porous gold nanosheets modified GCE by one-
step electrodeposition, which is simple, feasible, facile, cost-
effective, and environmental benign, along with high purity and
uniform structures of the deposits [25]. The electrocatalytic
properties of the modified GCE were examined by selective
and simultaneous detection of DA and AC as model systems.

Experimental

Materials

HAuCl4, N-methylimidazole, AA, DA, and AC were pur-
chased from Shanghai Aladdin Chemical Reagent Company
(Shanghai, China, www.aladdin-reagent.com). All the other
reagents were of analytical grade and used without further
purification. The aqueous solutions were prepared with twice-
distilled water (18.2MΩ, 1~2 μS cm−1) throughout the whole
experiments.

Preparation of porous gold nanosheets modified GCE

The preparation process for porous gold nanosheets modified
GCE was described in our previous work [26], denoted as

porous gold nanosheets/GCE. Briefly, the electrodeposition
process was performed by applying a constant potential of
−0.4 Von a clean GCE for 600 s in 0.5 M H2SO4 containing
10 mM HAuCl4 and 1.25 MN-methylimdazole. For compar-
ison, gold nanoparticles were prepared on a GCE in the
absence of N-methylimdazole, while other conditions were
kept constant, which is named as gold nanoparticles/GCE.
Finally, the electrodes were thoroughly washed with water
and dried in air.

Electrochemical experiments were performed on a CHI
660D electrochemical workstation (Chenhua Instrument
Shanghai Co., Ltd, China, www.chinstr.com). A
conventional three-electrode system was used, where the
Ag/AgCl electrode, platinum wire, and bare or modified
GCE were used as the reference, counter, and working elec-
trodes, respectively. Differential pulse voltammograms
(DPVs) were recorded by using the following settings: step
potential of 4 mV, amplitude of 50 mV, pulse width of 0.2 s,
sample width of 0.02 s, and pulse period of 0.5 s. All mea-
surements were performed at 25 °C, if not stated otherwise.

Characterization

The morphology and structures of the deposits were charac-
terized by field emission scanning electronmicroscopy (SEM,
JSM-7,500 F, www.jeol.co.jp/en.com) and a JEM-2,100 F
transmission electron microscope (TEM) operating at an ac-
celerating voltage of 200 KV (www.jeol.co.jp/en.com),
respectively. The modified GCE was sonicated in
ethanol after electrodeposition to obtain a homogeneous
suspension, and then a drop of the solution was deposited
on a Cu grid for TEM observation. X–ray diffraction
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Fig. 1 SEM image (a), TEM
images (b, c), and XRD patterns
(d) of porous gold nanosheets.
Inset shows the corresponding
SAED patterns
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(XRD) spectra were recorded on a Rigaku Dmax–2000
diffractometer (www.rigaku.com) with a Cu Kα radiation
source (λ=0.15418 nm), in which porous gold nanosheets
were directly electrodeposited on the surface of a glassy
carbon sheet (1.0 cm×1.0 cm).

Results and discussion

Characterization of porous gold nanosheets

One-step electrodeposition was applied for preparation of
porous gold nanosheets, which was constructed in 0.5 M
H2SO4 containing 10 mM HAuCl4 and 1.25 MN-
methylimdazole at −0.4 V for 600 s, owing to selective
adsorption, π-π interactions, and steric hindrance of N-
methylimidazole [26]. Fig. 1 shows SEM and TEM images
of representative porous gold nanosheets, as well as their
corresponding XRD patterns. Clearly, porous gold nanosheets
are assembled by numerous tiny multi-scaled dendritic sub-
branches, which are vertically standing on the electrode sur-
face with uniform size and distribution (Fig. 1a). Low- and
high-resolution TEM images (Fig. 1b and c) show their crystal
orientation and growth directions. The thin tip of the tiny sub-
branch from a single gold nanosheet displays clear lattice
fringes with the same orientation and lattice spacing. The d
value is measured to be 0.238 nm corresponding to the (111)
planes of the face-centered cubic (fcc) gold crystals [27]. It
indicates that porous gold nanosheets are preferentially grow-
ing along the (111) directions. Moreover, the selected area
electron diffraction (SAED) of the thin branch tips (inset in
Fig.1b) shows a typical diffraction spots, indicating single-
crystal nature of porous gold nanosheets. Fig. 1d shows the
XRD pattern of porous gold nanosheets. The representative
peaks at 38.3°, 44.6°, 64.7°, 77.6°, and 81.8° are assigned to

the (111), (200), (220), (311), and (222) planes of the fcc Au
(JCPDS 04–0784), respectively [28]. Furthermore, compared
with other planes, the intensity of Au (111) planes is particu-
larly sharp and strong. These phenomena further verify that
the aggregations of gold nanocrystals are preferentially grow-
ing along the (111) directions [29].

Electrochemical behaviors

The performance of porous gold nanosheets/GCE for simul-
taneous determination of AA, DA, and AC is evaluated by
differential pulse voltammograms (DPVs) in 0.1 M phosphate
solutions (pH 7.0) containing 0.2 mM AA, 0.1 mM DA, and
0.1 mM AC (Fig. 2). As can be seen, the oxidation peaks of
AA, DA, and AC are emerged at 9, 162, and 457 mV, respec-
tively, which are well separated from each other. Impressively,
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Fig. 3 Effects of pH on the peak currents (a) and separation of the peak
potentials (b) for the oxidation of 0.5 mM AA, 0.1 mM DA, and
0.1 mM AC in 0.1 M phosphate solutions
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Fig. 2 DPVs of 0.2 mM AA, 0.1 mM DA, and 0.1 mM AC in 0.1 M
phosphate solutions (pH 7.0) at porous gold nanosheets/GCE (curve a),
gold nanoparticles/GCE (curve b), and bare GCE (curve c)
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the oxidization current is very small for AA, indicating its
poor sensitivity. Similar observation is obtained for AA oxi-
dation on gold nanoparticles/GCE. Moreover, the oxidation
peaks of DA and AC are stronger and sharper, compared with
those on gold nanoparticles/GCE. Additionally, on bare GCE,
there are two oxidation peaks from AA and DA completely
overlapped at 372 mV, and AC oxidation peak is detected at
546 mV, which is partially overlapped with those of AA and
DA. Therefore, it is most practical and reasonable for

simultaneous determination of DA and AC in the presence
of AA on porous gold nanosheets/GCE.

Effects of pH

The pH effects on electrochemical oxidation of AA, DA, and
AC are investigated on porous gold nanosheets/GCE by dif-
ferential pulse voltammograms (DPVs) in 0.1 M phosphate
buffer solutions in the pH range from 3.0 to 7.0 (Fig. 3). The
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oxidation potentials are found negatively shifted with the
increased pH values from 3.0 to 7.0. It confirm that protons
are involved in the electrode reaction process. Fig. 4 shows the
corresponding electrocatalytic oxidation mechanism of AA
(a), DA (b), and AC (c), respectively. The results are consis-
tent with the previous reports [18, 19, 30].

Figure 3a shows the effects of pH values on the peak
currents of AA (curve b) and AC (curve c). The corre-
sponding peak currents slightly decrease with the in-
crease of pH values. However, the peak currents of
DA increase with pH values when the pH is below
5.0, while their peak currents (curve a) are almost
constant when the pH is above 5.0.

Besides, Fig. 3b displays the effects of pH on the separation
of the two oxidation peak potentials (ΔEpa) between DA and
AA (curve b)/AC (curve a). In the pH range of 3.0~7.0, the
ΔEpa between DA and AA achieves the maximum at pH 5.0;
while the ΔEpa between AC and DA achieves the maximum
at pH 7.0. As can be observed, AA, DA, and AC can be
completely separated on porous gold nanosheets/GCE. How-
ever, the responses of AA gradually become weak during the
detection process. This is due to weak adsorptions of DA and
AC on gold nanostructures [31], compared with those of AA,
inducing the detection of AAwith very low sensitivity under
the same conditions (Fig. 2). Therefore, simultaneous detec-
tion of DA and AC is possible, without any interference of
AA. Considering well separation of DA and AC, along with

physiological environment, pH 7.0 was chosen for the follow-
ing study.

Simultaneous determination of DA and AC

Figure 5 illustrates DPVs of DA (Fig. 5a, b) and
AC (Fig. 5c, d) with different concentrations at porous gold
nanosheets/GCE, respectively. As shown in Fig. 5b, the oxi-
dation peak currents of DA increase linearly with the concen-
tration from 4.0 to 298.0 μM (R2=0.9975) with a detection
limit of 0.12 μM (S/N=3). Similarly, the oxidation peak
currents are also positively proportional to AC in the concen-
tration range of 10.0~2300.0 μM (R2=0.9988), with a detec-
tion limit of 0.25 μM (S/N=3). Moreover, the corresponding
slopes are estimated to be 0.019 and 0.011 μA μM−1 for DA
and AC, respectively.

Figure 6 and 7 show DPVs of DA and AC on porous gold
nanosheets/GCE for their selective detection. As shown in
Fig. 6, with the increase of DA concentrations from 2.0 to
210.0 μM, the anodic peak currents linearly increase in the
presence of 0.1 mMAC. Similar trend is observed by increas-
ing AC from 15.0 to 250.0 μM in the presence of 0.1 mMDA.
The sensitivities of DA and AC are calculated to be 0.009 and
0.012μA μM−1, respectively, with the detection limit (S/N=3)
of 0.69 μM for DA and 1.27 μM for AC.

Figure 7 shows DPVs for simultaneous detection of DA
and AC with different concentrations. The anodic peak
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Table 1 Comparison of different
modified electrodes for simulta-
neous detection of DA and AC

Electrode Linear range
(μM)

Detection
limit (μM)

Ref.

DA AC DA AC

Fe3O4@Au-S-Fc/GS-chitosan/GCE 0.5–50 0.4–32 0.08 0.01 [4]

f-MWCNTs/GCE 3–200 3–300 0.80 0.60 [17]

PAY/nano-TiO2/GCE 12–120 12–120 1.0 2.0 [18]

SWCNT/CCE 0.4–150 0.2–100 0.22 0.12 [32]

FEPA-GR-CS/GCE 2–135 0.3–80 0.30 0.05 [33]

gold nanosheets/GCE 2–298 3–320 0.28 0.23 This work
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currents show the linear increase with DA from 2.0 to
298.0 μM (IDA (μA)=0.1389+0.0074 C (μM), R2=0.9952)
and AC from 3.0 to 320.0 μM (IAC (μA)=–0.0862+0.0140 C
(μM), R2=0.9995), respectively. From the linear equations,
the sensit ivit ies of DA and AC are found to be
0.007 μA μM−1 and 0.014 μA μM−1, respectively, with the
detection limits of 0.28 μM for DA and 0.23 μM for AC. For
simultaneous determination of DA and AC, Table 1 shows the
comparison of the electrochemical performances of porous
gold nanosheets/GCE with other modified electrodes in the
literature [4, 17, 18, 32, 33]. Porous gold nanosheets/GCE
exhibits the widest linear range and comparable detection
sensitivity.

It is worth noting that the sensitivities of porous gold
nanosheets/GCE are almost identical for AC detection in the
absence and presence of DA, and vice versa. It indicates that
the oxidation processes of DA and AC are independent in our
system. Therefore, independent or simultaneous assays of the
two targets are not interfered with each other [34]. The relative
standard deviations (RSDs) of the peak currents for 20 suc-
cessive measurements are 1.5 % for DA and 0.4 % for AC
with the concentrations of 0.1 mM, showing the improved
reproducibility of porous gold nanosheets/GCE. The en-
hanced reproducibility reveals porous gold nanosheets/GCE
is not subject to surface fouling by the oxidation product.

Interference study

Possible interference of some other substances for detection of
DA and AC is also studied by recording DPVs in 0.1 M
phosphate solutions (pH 7.0) in the presence of 0.1 mM DA
and AC. The criterion for interference was a relative error of
less than±5 %. The common inorganic ions such as 100-fold
Na+, K+, NH4

+, Cl−, NO3
−, CH3COO

− and CO3
2− have no

interference with AC and DA detection. What’s more, several
organic compounds such as 50-fold glucose, lactose, sucrose,
lysine, aspartic acid, and urea, 25-fold cysteine and glutathi-
one, 10-fold ascorbic acid hardly cause interference. Addi-
tionally, proteins should be firstly removed from the bio-fluids
samples, which are easily fouling the electrodes.

The repeatability and stability of detection

The repeatability of the electrode was also investigated, where
the RSDs were 2.1 % for AC (n=5) and 2.3 % for DA (n=5)
using the same electrode. The RSDs for different electrodes
prepared independently were 3.3 % for AC and 3.5 % for DA
(n=5), respectively. The stability of porous gold nanosheets/
GCE is investigated by recording DPVs in 0.1 M phosphate
solutions containing 0.1 mM DA and AC. The amperometric
responses were 92.7 % for AC and 93.6 % for DA of their
initial values after a storage period of 4 weeks, revealing long-
term stability of the modified electrode.

Conclusions

A simple and facile one-step electrodeposition method was
developed for preparation of porous gold nanosheets/GCE.
The resultant electrodes show improved sensitivity, reproduc-
ibility, anti-interference, and stability for simultaneous deter-
mination of DA and AC. Moreover, independent or simulta-
neous detection of DA and AC is not interfered with each
other, because the sensitivity of porous gold nanosheets/GCE
toward AC is almost unchanged in the absence and presence
of DA, and vice versa. Meanwhile, porous gold nanosheets/
GCE displays strong anti-interference ability for AA, because
the oxidation of AA can be well separated from those of DA
and AC.
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