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Abstract We report on a novel strategy for the electrochem-
ical detection of cocaine. It is based on the use of a supramo-
lecular aptamer, rolling circle amplification (RCA), and mul-
tiplex binding of a biotin-strepavidin system. The aptamer
fragments were assembled to a supramolecular aptamer
which, in the presence of cocaine, conjugates to streptavidin
for anchoring of biotinylated circular DNA. This initiates
RCA and enables sensitive electrochemical-enzymatic
readout. A significant signal amplification was obtained
by using streptavidin linked to alkaline phosphatase that
binds to the remaining biotinylated detection probes and
catalyzes the hydrolysis of the synthetic enzyme substrate
α-naphthylphosphate. This dual amplification strategy tre-
mendously increases the detection limit of the aptasensor.
Under optimal conditions and using differential pulse volt-
ammetry, cocaine can be detected in the concentration
range between 2 and 500 nM with a detection limit as

low as 1.3 nM (at S/N=3). The method is specific and
acceptably reproducible. It was successfully applied to the
detection of cocaine in (spiked) urine samples. The data
were in good agreement with those obtained by the GC-MS
reference method.

Keywords Cocaine . Supramolecular aptamer . Rolling circle
amplification .Multiplex binding system . Differential pulse
voltammetry

Introduction

Cocaine, a small molecule, is one of the most illegally abused
drugs available all over the world because of its instantaneous
and overwhelming effects on the central nervous system
[1–3]. Quantification of cocaine plays an important role
in forensic science, pharmacy, therapy, and metabolomics.
Traditional methods for cocaine analyses are mainly based
on GC-MS, and HPLC-coupled fluorescence [4–6]. These
approaches are powerful and sensitive for cocaine deter-
mination, but their high cost and complicated operation
limit their extensive application. Recently, the aptamer-
based detection methods for cocaine and some small mol-
ecules have gained conspicuous attention.

Aptamers, in vitro selected by systematic evolution ligands
by exponential enrichment (SELEX), can bind respective
targets such as small inorganic or organic substances [7],
proteins [8], and cells [9]. Due to their easy modifica-
tion, high affinity, and good stability, aptamers have
been increasingly used as recognition biomaterials in
biosensors [10, 11]. Based on different technologies,
miscellaneous aptasensors have been developed, such
as colorimetry [12], fluorescence [13], surface plasmon
resonance [14], and electrochemistry [15]. Unlike the
double-antibody sandwich assays, it is challengeable not only
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to bind selectively with the same target molecules but also to
possess effective labeling strategies for sensitive detection of
small molecules. Recently, Szostak [16] and Landry [17]
groups, respectively, have pioneered the development of
aptamer-based sandwich assays for the detection of
ATP and cocaine. In their experiment, one single strand-
ed ATP or cocaine binding aptamer was split into two
fragments, which could combine with the target mole-
cules at specific region. In addition, an electroactive
species was used to label one of the aptamers to
achieve sensitive detection of ATP and cocaine. Inspired
by previous advances, a great deal of supramolecular
aptasensors have been developed, such as electrochemical
aptasensors [18–21], fluorescence aptasensors [2, 22, 23],
and colorimetric aptasensors [24]. However, it remains diffi-
cult to realize a low detection limit for cocaine detection,
partially because of the surface-induced perturbation of the
aptamer structure and the reduced accessibility of the target
molecule to probes at a heterogeneous and locally crowded
surface [25, 26].

In recent years, RCA, an isothermal DNA amplification
technique [27], is widely used as an effective amplification
technique in the field of biosensors. RCA can generate a linear
concatenated DNA molecule containing up to 1000 comple-
mentary copies of the circular DNA [28]. Compared with
polymerase chain reaction (PCR), the RCA possesses a great
deal of merits, such as in situ capturing target mole-
cules, the isothermal amplification procedure, and the
linear kinetic mode [29]. Therefore, it has been obtained
considerable attention as a novel tool to amplify the
recognition events for ultrasensitive detections of DNA
[30], RNA [31], and proteins [32].

In the present work, to increase methodological sensitivity,
a novel supramolecular aptasensor was established based
on supramolecular aptamer, rolling circle amplification
combined with multiplex binding of the biotin-strepavidin
system for cocaine detection. The established aptasensor
demonstrated excellent analytical performance towards co-
caine, which might be a novel detection strategy for
cocaine in forensic toxicological analysis and drug abuse
control.

Materials and methods

Reagents

6-Mercapto-1-hexanol (MCH), streptavidin-alkaline phos-
phatase (ST-AP), α-naphthyl phosphate (α-NP), bovine
serum albumin (BSA), salmon sperm DNA, and Tris
(2-carboxyethyl) phosphine hydrochloride (TCEP) were
purchased from Sigma-Aldrich (St. Louis, MO, USA,
http://www.sigmaaldrich.com). Cocaine hydrochloride,

morphine hydrochloride, methamphetamine hydrochloride,
and ketamine hydrochloride were obtained from the
Second Research Institute of the Ministry of Public
Security (Beijing, China, http://www.b2b168.com/c168-
686332.html). Phi29 DNA polymerase and dNTP mixture
were obtained from Sangon Inc. (Shanghai, China, http://
www.sangon.com). T4 DNA ligase was purchased from
Takara (Dalian, China, http://www.takara.com.cn). All
other reagents were of analytical grade. All aqueous
solutions were prepared using Millipore-Q water (≥18
МΩ, http://www.mollipore.com). Twenty millimolar Tris–
HCl buffer (pH 7.4) containing 0.10 M NaCl, 5.0 mM
MgCl2, and 0.005 % Tween-20 was used as washing
buffer. Hybridization buffer (pH 7.4) contained 0.3 M
NaCl and 0.03 M sodium citrate. Diethanolamine (DEA)
buffer (pH 9.6) contained 0.1 M DEA, 1 mM MgCl2, and
100 mM KCl.

DNA oligonucleotides were designed according to the
literatures [33, 34]. All oligonucleotides were synthesized
and purified by Sangon Inc. (Shanghai, China, http://www.
sangon.com), and the base sequences were showed in
Table 1. All oligonucleotides were dissolved in tris-
ethylenediaminetetraacetic acid (TE) buffer (pH 8.0,
10 mM Tris–HCl, 1 mM EDTA) and stored at −20 °C,
which were diluted in appropriate buffer prior to use.

Apparatus

The electrochemical measurements were performed on a CHI
660D electrochemical analyzer (Shanghai Chenhua Instru-
ments Co. Ltd., China, http://www.chinstruments.com) with
a three-electrode system composed of platinum wire as auxil-
iary, Ag/AgCl electrode as reference, and a 3-mm-diameter
gold electrode as working electrode. Differential pulse volt-
ammetry (DPV), electrochemical impedance spectroscopic
(EIS), and square wave voltammetry (SWV) were carried
out at room temperature.

Table 1 Oligonucleotides used in the present work

Name Sequence (5′- 3′)

Co3S GGGAGTCAAGAACGAAAAAAAA-thiol-(CH2)3
Co3B TTCGTTCTTCAATGAAGTGGGACGACAAAA

AAA-biotin

Primer Biotin-AAAAAAAAAAAACAGGGCTGGGCATA
GAAGTCAGGGCAGA

Circular template P-TATGCCCAGCCCTGTAAGATGAAGATAGCG
CAGAATGGTCGGA

TTCTCAACTCGTATCTGCCCTGACTTC

Detection probe Biotin-AAAAAAGCGCAGAATGGT
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Preparation of electrochemical aptasensor

The bare gold electrode was polished with 0.05 μm alumina
slurries and ultrasonically treated in deionized water for a few
minutes. To remove all contaminants, the electrode was
soaked in piranha solution (H2SO4:H2O2=3:1) for 10 min,
followed by rinsing with deionized water and allowing to
dry at room temperature. Ten micro liter of fifty nanomole
thiolated aptamer probe (Co3S) in TE buffer was dropped
onto the pretreated gold electrode surface carefully and
incubated overnight at 4 °C. After rinsing with the wash-
ing buffer, the electrode was immersed into 10 μL of
1 mM MCH for 1 h to obtain well-aligned DNA mono-
layer and occupy the left bare sites. The electrode was
further washed with the washing buffer and treated in
125 μg mL−1 salmon sperm DNA and 2 % BSA for
2 h to avoid nonspecific adsorption of DNA and enzyme
on the electrode surface.

Cocaine detection protocol

To detect cocaine, 10 μL of a sample in the phosphate buffer
(PB) (pH 7.4, 0.1M phosphate, 5 mMKCl, 5 mMMgCl2, and
40 μM TCEP) containing 60 nM Co3B and different concen-
trations of cocaine were droped onto the Au/Co3S sensing
interface for 40 min. After the formation of supramolecular
aptamer, the aptasensor was incubated with 10 μL of 15 nM
streptavidin in PB at 37 °C for 30 min. Following rinsing with
the washing buffer, 10 μL of biotinylated circular DNA con-
taining 15 nM circular template DNA and 15 nM biotinylated
primer DNA in PB were added to each electrode and incubat-
ed at 37 °C for 30 min. The electrode was further rinsed with
the washing buffer; RCA reaction was initiated by addition of
0.4 units of phi29 DNA polymerase in 10 μL of reaction
buffer (33 mM, pH 7.9 Tris-acetate buffer, 10 mM Mg-ace-
tate, 66 mM K-acetate, 1 mM dithiothreitol, 0.5 mM dNTP,
and 0.1 % Tween 20) and continued for 1 h at 37 °C. After
washing with the washing buffer, 10 μL of 1 μM biotinylated
detection probe was dropped onto the biosensor surface and
hybridized for 1 h at 37 °C. Followingwashed by DEA buffer,
the aptasensor reacted with 10 μL of 1.25 μg mL−1 ST-AP at
37 °C for 30 min, and washed thoroughly with DEA buffer.
The DPV measurement was performed in DEA buffer
containing 0.75 mg mL−1 of α-NP substrate with modu-
lation time of 0.05 s, interval time of 0.017 s, step
potential of 5 mV, modulation amplitude of 70 mV and
potential scan from 0.0 to +0.6 V.

Circularization of DNATemplate

One hundred nanomole of circular template oligonucleotide
and 100 nM of biotinylated primer oligonucleotide were
mixed in 100 μL of ligation buffer (66 mM, pH 7.6 Tris–

HCl buffer, 6.6 mM MgCl2, 10 mM dithiothreitol, and
0.1 mM ATP) and vortexed for 1 min. Then, 1 unit of T4
DNA ligase was added and incubated at 37 °C for 1 h. After
ligation, T4 DNA ligase was inactivated by heating the reac-
tion mixture at 65 °C for 10 min. The resulting mixture could
be used directly or stored at −20 °C.

Results and discussion

Design of the aptasensor for cocaine detection

The biosensing process of aptasensor for the cocaine detection
was conceptually depicted in Scheme 1. Anti-cocaine aptamer
was cleaved into two fragments, Co3S and Co3B. Co3S was
immobilized on gold electrode via Au-S bond, while Co3B
was labeled with biotin at its 3′-end before being conjugated
streptavidin. In the presence of cocaine, two fragments could
self-assemble into a supramolecular aptamer. The streptavidin
was then bound to the biotinylated supramolecular
aptamer to act as a bridge for anchoring of biotinylated
circular DNA. In the presence of nucleotides and phi29
DNA polymerase, the RCA was initiated to produce
micrometer-long single-strand DNA which contained
hundreds of tandem-repeat sequences for linear periodic
assembly of many biotinylated detection probes. Then a
significant amplification for the detection of cocaine was
obtained by using ST-AP, which bound to the remaining
biotinylated detection probes and catalyzed α-NP substrate
to produce enzymatic electrochemical signal for quantitative
detection of cocaine detection.

Characterization of the electrochemical aptasensor

Electrochemical impedance spectroscopy (EIS) and square
wave voltammetry (SWV) were employed to investigate step-
wise modification of the electrode. Figure 1a showed the
Nyquist plots of 5 mM [Fe(CN)6]

3-/4- containing 1 M KCl at
the different electrodes and its surface electron transfer resis-
tance (Ret) was assessed for the modified electrodes. The bare
gold electrode exhibited a nearly straight line in the Nyquist
plots of impedance spectroscopy (curve a), which was char-
acteristic of a mass diffusion limiting step of the electron-
transfer process. After the immobilization of thiol-modified
aptamer fragment, an obvious semicircle up to the mid-
frequencies region was exhibited and the Ret value increased
(curve b). This could be attributed to the negatively charged
phosphate backbone of the oligonucleotides immobilized on
the gold electrode, which prevented the negative charged
redox probe [Fe(CN)6]

3−/4− from reaching the gold electrode
and inhibited interfacial charge transfer. When biotinylated
supramolecular aptamer was formed by target cocaine and
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two aptamer fragments, Ret further enhanced to a much larger
value (curve c). Target complex layer on the electrode surface
acted to block charge exchange and mass transfer, further
insulted the conductive support and significantly hindered
the access of redox probe towards the electrode surface. After
the streptavidin bound with the biotinylated supramolecular
aptamer, the semicircle and the value of Ret became larger
(curve d). The increase of Ret in the presence of streptavidin
was ascribed to the fact that streptavidin was successfully
bound to biotinylated supramolecular aptamer. When the
RCA was successfully initiated and produced a lot of
tandem-repeat sequences. The semicircle and the value of
Ret became greater (curve e). The increase of Ret in the
presence of many tandem-repeat sequences was ascribed to
the fact that the RCA was successfully initiated to produce
micrometer-long single-strand DNA, which contained hun-
dreds of tandem-repeat sequences. The impedance results
were quite consistent with the conclusions obtained from
square wave voltammetry (SWV) (Fig. 1b), in which the peak
currents varied upon the assembly, binding, anchoring, and
amplification processes.

Optimization of experimental conditions

To obtain excellent analytical performance, different experi-
mental conditions were optimized (Fig. 2). At first, the effect
of various Co3B concentrations was investigated. Miscella-
neous concentrations of Co3B in PB (without cocaine) were
incubated with Co3S at 37 °C. As shown in Fig. 2a, when the
concentration of Co3B was over 80 nM, a significant increase
of the peak current was observed, which may be implicated by
the designed aptamer. It is known that the aptamer, split into
two fragments, could equilibrate by cooperative aptamer-
target and base-pairing interaction. When the concentrations
of the two strands were high enough, they could hybridize by
themselves without cocaine. Therefore, 60 nM Co3B was
used in the following experiments. Since streptavidin concen-
tration was another important parameter affecting the signal
readout. With the increasing concentration of streptavidin, the
DPV response decreased gradually, this was attributed to that
the residual and biotinylated supramolecular complex imme-
diately bond ST-AP, which could not initiate the RCA. Finally
the electrochemical signal tended to be a steady value at

Fig. 1 EIS (a) and SWVs (b) in
5 mM [Fe(CN)6]

3−/4− containing
1 M KCl at a bare electrode, b
Co3S (aptamer fragment) modified
electrode, c supramolecular
aptamer, d system of streptavidin
and biotin, and e RCA

Scheme 1 Schematic
representation of cocaine
electrochemical detection based
on supramolecular aptamer and
rolling circle amplification
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15 nM (Fig. 2b) which was chosen as the optimized
streptavidin concentration. As shown in Fig. 2c, the peak
current increased gradually with the increase of the incubation
time of RCA reaction and then kept constant after 60 min,
thus, the incubation time of 60 min was adopted. At the
ST-AP concentration of 1.25 μg mL−1, the signal in-
creased gradually with the increasing concentration of α-
NP and reached the stable value at 0.75 mg mL−1

(Fig. 2d). Therefore, 0.75 mg mL−1 was decided as the opti-
mal α-NP concentration.

Analytical performance of the electrochemical aptasensor

Sensitivity of aptasensor for cocaine detection

To evaluate the analytical performance of the established
electrochemical aptasensor, DPV was exploited to character-
ize aptasensor. The DPV responses of the aptasensor to

different concentrations of cocaine in PB were obtained under
optimal conditions (Fig. 3a). It was observed that the DPV
signal increased with the increment of cocaine concentration.
Figure 3b showed the good linear relationship between
the DPV responses and cocaine concentrations in the
range of 2 to 500 nM. The resulting linear equation
was ip (μA)=0.02 CCocaine+2.73 with a correlation co-
efficient of 0.9969. Additionally, the limit of detection
(LOD) was estimated to be 1.3 nM at a signal to noise
of 3. To further highlight the merits of the designed
aptasensor, the analytical properties were compared with
those of other supramolecular aptasensors in Table 2. It proved
that the cocaine supramolecular aptasensor in this work hold
the feature of the lowest detection limit among the reported
supramolecular aptasensors because of the implement of dif-
ferent amplification strategies. Thus, this aptasensor could be
applied to quantification of cocaine with low detection
concentration.

Fig. 2 Dependences of DPV
peak currents on concentration
aptamer fragment (Co3B) (a),
streptavidin concentration (b),
RCA time (c), and a-NP
concentration (d). When one
parameter changed, the others
were under their optimal
conditions

Fig. 3 DPV response to 0, 2, 10,
50, 100, 250, 300 and 500 nM
target cocaine (from a to h). DPV
peak current vs cocaine
concentration. The error bars
represent the standard deviations
in three different measurements
for each concentration

Electrochemical aptasensor for highly sensitive determination 365



Specificity and reproducibility of the aptasensor

Four drugs including Cocaine hydrochloride, morphine
hydrochloride, methamphetamine hydrochloride, and keta-
mine hydrochloride were chosen to investigate the selec-
tivity of the established aptasensor. A significant increase,
induced by the effect of the aptasensor with 500 nM
cocaine was observed, but the DPV responses of the other
three drugs (5 μM) were of almost the same signal as the
blank background signal. In addition, for further evaluating
the reproducibility of the aptasensor, six electrodes were
prepared for the detection of 2 and 300 nM cocaine. The
relative standard deviations (RSD) of six replicates mea-
surements were 7.58 and 1.07 % at cocaine concentrations
of 2 and 300 nM, respectively. Herein, the established
aptasensor displayed good specificity and acceptable repro-
ducibility for the cocaine detection.

Detection cocaine in urine samples

To further evaluate the analytical reliability and potential
application, the aptasensor was used to detect cocaine with a
wide range of concentration in 25 % diluted urine samples,
and compared with the reference GC-MS method. As shown
in Table 3, the results obtained using the developed aptasensor
were in good agreement with the reference GC-MS method
with relative errors from 1.0 to 7.8 %. Moreover, other com-
ponents in diluted urine samples had little interference. Thus,

the aptasensor could quantitatively detect cocaine in diluted
urine samples, and showed higher sensitivity than reference
GC-MS method.

Conclusions

In summary, we have developed a novel and sensitive
aptasensor for cocaine detection based on supramolecular
aptamer, RCA, and multiplex binding of the biotin-
strepavidin system with enzymatic electrochemical readout.
The RCA and the multiplex binding of the biotin-strepavidin
systems can powerfully enhance aptasensor’s sensitivity. The
integration of these signal amplification strategies enables a
low detection limit of 1.3 nM for cocaine. In addition, the
designed aptasensor possesses the numerous advantages of
good specificity, a wide linear range, and acceptable repro-
ducibility, which was successfully applied to cocaine detec-
tion in urine samples. This novel biosensing strategy provided
an innovative, fast and sensitive platform for the detection of
cocaine, which may become a powerful tool for the detection
of drug abuse in the future.
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Table 2 Comparison of different supramolecular aptamer for the determination of cocaine

Methods Comments Analytical ranges LODs Ref.

DPV graphene/AuNP and redox-recycling amplification 1–500 nM 1 nM [4]

EIS a label-free aptamer 0.1–20 μM 100 nM [18]

DPV enzyme linked aptamer assay 0.1–50 μM 20 nM [19]

DPV DNA nanostructure 10-4–1 mM 33 nM [20]

ACV a methylene blue (MB)-tagged engineered aptamer 1–10 μM 1 μM [21]

Fluorescence aptamer-based FRET 10-3–1 mM 1 μM [22]

Fluorescence strand displacement amplification 20–2500 nM 2 nM [23]

Colorimetry MNPs and G-Quadruplex-based DNAzyme 0.1–20 μM 50 nM [24]

DPV RCA and multiplex binding systems 2–500 nM 1.3 nM This work

a Alternate current voltammetry

Table 3 Assaying results of practical sample using the developed and reference methods

Sample no. 1 2 3 4 5 6

Developed method (x−/SD)a (nM) 720.7/15.0 427.8/8.3 275.3/7.2 139.9/4.5 76.3/6.4 16.7/1.5

Reference method (x−/SD) (nM) 669.0/9.3 420.0/6.0 272.6/5.6 129.8/3.2 72.0/4.0 −b

Relative error (%) 7.7 % 1.9 % 1.0 % 7.8 % 6.0 % −

a (average value/standard deviation) b Undetectable by reference GC-MS method
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