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Abstract We show that Mn(II)-doped ZnS quantum dots
coated with an acrylamide-based molecularly imprinted poly-
mer (MIP-coated QDs) can act as a fluorescent probe for the
selective and sensitive detection of the insecticide chlorpyrifos
(CPF). The fluorescence of the coated QDs is quenched on
loading the MIP with CPF, and the effect is much stronger for
the MIP than for the non-imprinted polymer. The MIP-coated
QDs were characterized by fluorescence spectrophotometry,
X-ray powder diffraction, and scanning electron microscopy.
Under optimal conditions, the relative fluorescence intensity
of the MIP-coated QDs decreases linearly with the increasing
concentration of CPF in the 0.3–60 μmol L−1 concentration
range, and the detection limit is 17 nmol L−1. The method has
been used for the determination of CPF in spiked water
samples and gave recoveries in the range from 87.1 to
94.5 % with relative standard deviations in the 2.9 to 6.5 %
range. The method is simple, safe and inexpensive.
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Introduction

Chlorpyrifos [O, O-diethyl O-(3, 5, 6-trichloro-2-pyridyl)
phosphorothioate] (CPF) is one of the most extensively

applied organphosphorus insecticides, which controls a broad
spectrum of insects of economically important crops [1,
2]. Due to the non-polar nature of the CPF molecule, it
possesses low water solubility (≤2 μg mL−1) and readily
partitions from aqueous to organic phases in the envi-
ronment; therefore, the potential hazard of human expo-
sure is high. CPF is considered a neurotoxin and endo-
crine disruptor [3]. CPF has been responsible for caus-
ing aquatic life toxicity in environmental water. Exten-
sive usage of this compound leads to the accumulation
of pesticide residues or their derivatives in soil, water
and food.

Many methods have been described for determination of
CPF including high performance liquid chromatography
(HPLC) [4], gas chromatography (GC) [5, 6], liquid
chromatography-mass spectrometry (LC-MS) [7], and capil-
lary electrophoresis (CE) [8]. However, they require expen-
sive equipment, skilled personnel and time-consuming steps
of sample pretreatment [9]. Accordingly, it still remains a great
challenge to develop a rapid, inexpensive and sensitive meth-
od for the detection of CPF in food and environmental anal-
ysis [10, 11].

Nowadays, quantum dots (QDs), a kind of semiconductor
nanoparticles, have attracted a wide range of attention [12].
They have some unique characters, such as size tunability,
narrow emission spectra but broad excitation spectra, strong
signal intensity, high photo stability, and well biocompatibility
[13]. The band width and maximum emission wavelength
keep almost unchanged under the experimental concentration
range. This is much better than the emission characteristics for
typical organic dye species, which often have much broader
and asymmetric emission profiles. Based on above advan-
tages, in recent years, QDs have obtained huge development
in many fields, such as biological markers [14], light-emitting
diodes [15] and solar cells [16]. One major drawback that
severely limits the use of common QDs (such as CdSe and
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CdTe) [17] in biomedical applications, particularly in the light
of recent environmental regulations, is their toxicity [18].

In recent years, the emphasis has been shifted toward the
fabrication of non-cadmium-based QDs. Cubic ZnS with a
bulk band gap of 3.7 eVat room temperature is a common and
attractive choice as a host semiconductor for producing QDs
due to its low toxicity, low cost, and high stability [19]. A
range of ZnS nanocrystals doped with different transition
metals or rare-earth metal ions have been reported. Mn- and
Cu-doped ZnS are two of the most well studied doped QDs
because of their technologically suitable fluorescent properties
[20]. Unfortunately, although those “direct” sensing ap-
proaches are very simple and highly sensitive, they lack an
appropriate selectivity. Thus, improving selectivity of QDs
based probes is very important.

Molecularly imprinted polymers (MIPs) are highly cross-
linked polymers with recognition towards target molecules
[21]. The synthesis of MIPs involves the formation of the
template –monomer complexes through either covalent or
non-covalent interactions, followed by a copolymerization
with excess cross-linking agent [22]. After polymerization,
the template is removed by washing with organic solvents
[23]. In recent years, MIPs have attracted much attention due
to their outstanding advantages, such as predetermined recog-
nition ability, stability, relative ease and low cost of prepara-
tion, and potential application to a wide range of target mol-
ecules [24]. Combining the high selectivity of MIPs with the
fluorescent properties of QDs could develop a newmethod for
target analyte recognition [25].

In this work, the aim was to develop a novel and rapid
method for determination of CPF in water samples. An eco-
friendly fluorescent probe, MIP-coated QDs, was successfully
fabricated by using CPF as the template molecule. The MIP-
coated QDs were characterized by Fourier transformed infra-
red spectroscopy (FT-IR), scanning electron microscope and
X-ray diffraction. The relationship between MIP-coated QDs
and CPF was investigated. Then the MIP-coated QDs were
used as a fluorescence probe for detection of CPF in water
samples.

Experimental

Samples and reagents

The standard of CPF and acephate were purchased from Gt.
Agro (Guangxi, China, http://www.gtagro.cn/). The standard
of chlorpyrifos-methyl (CM) was purchased from energy
chemical (Shanghai, China, http://www.energy-chemical.
com/). Zinc sulfate heptahydrate (ZnSO4·7H2O) was
purchased from Shuangchuan (Tianjin, China, http://www.
shuangchuanchem.com/). Manganese (II) chloride
tetrahydrate (MnCl2·4H2O) was purchased from Bodi

(Tianjin, China, http://bdhg.company.lookchem.cn/). Sodium
Sulfide (Na2S·9H2O) was purchased from Kaitong (Tianjin,
China, http://www.tjkthxsj.com/). Oleic acid, ethanol,
methanol, acrylamide (AM), azoisobutyronitrile (AIBN) and
sodium hydroxide (NaOH) were obtained from Kermel (Tian-
jin, China, http://www.chemreagent.com/). Ethylene glycol
dimethacrylate (EDGMA) was purchased from Aladdin
(Shanghai, China, http://www.aladdin-reagent.com/). All
chemicals employed in this study were of analytical grade.
High-purity water was obtained from a Milli-Q water system
(Millipore, Billerica, MA, USA, http://www.millipore.com/).

The standard stock solution of CPF was prepared by dis-
solving CPF in methanol, and the concentration was 3 mmol
L−1. It was stored in a refrigerator at 4 °C.

Three river water samples were collected from Harbin
(China). All water samples were stored in a refrigerator at
4 °C.

Apparatus

Fourier transform infrared (FT-IR) spectrum of the MIP-
coated QDs was recorded with FT-IR360 spectrometer (Nico-
let, Madison, WI, USA, http://www.artisan-scientific.com/
69062.htm) using KBr method. The X-ray diffraction
(XRD) spectrum was collected on a Shimadzu XRD-600
diffractometer (Kyoto, Japan, http://www.shimadzu.com.cn/)
with Cu Kα radiation. The morphology of MIP-coated QDs
was observed with a scanning electronmicroscopy (SEM, FEI
Sirion, Phil-lips, Netherlands, http://www.philips.com.cn/).
Fluorescence intensity studies were carried out at room
temperature by using Perkin-Elmer LS-55 fluorescence spec-
trometer (Maryland, USA, http://www.perkinelmer.com.cn/)
which was equipped with a plotter unit and a quartz cell. A
KQ5200E ultrasonic apparatus (Kunshan Instrument,
Kunshan, China, http://www.ks-csyq.com/) was used for
making samples dispersed evenly.

Synthesis of molecularly imprinted polymer coated quantum
dots

The synthesis process of MIP-coated QDs involves two major
steps: the first step is the synthesis of the Mn-doped ZnS QDs,
and the second one is the surface imprinting of polymers onto
the oleic acid modified Mn-doped ZnS QDs.

The synthesis method of Mn-doped ZnS QDs was shown
as follows. At first, 25 mmol of ZnSO4·7H2O, 2 mmol of
MnCl2·4H2O and 80 mL of water were kept stirring for
20 min under the protection of nitrogen gas. Then, 10 mL,
25 mmol Na2S·9H2O solution was added dropwise into the
mixture [26]. After being stirred for 30min, 4 mL of oleic acid
was added for modifying theMn-doped ZnS QDs. Finally, the
modified Mn-doped ZnS QDs was obtained after
centrifugating and being washed with ethanol three times.
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The synthesis method of MIP-coated QDs was carried out
as follows. CPF (1 mmol), AM (4 mmol), and modified Mn-
doped ZnS QDs obtained from above procedure were dis-
persed into 150 mL ethanol. Then AIBN (0.1 g) and the cross-
linker EGDMA (10 mmol) were added. The mixture was
heated at 60 °C and stirred at 300 rpm in a water bath for
24 h. Then the template was removed by Soxhlet extraction
with methanol: acetic acid (19:1, v/v) until no analyte was
detected. After dried in vacuum, MIP-coated QDs was
obtained.

The non-molecular imprinted polymer-coated Mn-doped
ZnS QDs (NIP-coated QDs) were prepared using the same
procedure without addition of the template CPF.

Fluorescence analysis

Fluorescence analysis was performed on Perkin Elmer LS-55
fluorescence spectrometer. The spectra were recorded in the
wavelength range of 350–750 nm upon excitation at 325 nm.
Slit widths (10 nm), scan speed (200 nmmin−1) and excitation
voltage (750 V) were kept constant within each data set and
each spectrum was the average of three scans. Quartz cell
(1 cm path length) was used for all measurements.

Measurements of fluorescent response to chlorpyrifos

Thirty milligram MIP-coated QDs or NIP-coated QDs was
added into a centrifuge tube, and then the given concentration
of CPF solution was added. The solution pH was adjusted to
9.0 with sodium hydroxide. The constant volume was 30 mL.
The fluorescence intensity was measured after fully mixing.

The river water samples were applied to evaluate the prac-
tical application. The water samples were filtered by 220 nm
microporous membrane. The recovery study was carried out
by spiking certain volume of CPF solution into water samples.

Results and discussion

Preparation of molecularly imprinted polymer coated
quantum dots

QDs with higher fluorescence efficiencies and large specific
surface areas have been widely used in biological and chem-
ical analysis. In this work, oleic acid was used to modify the
surface of Mn-doped ZnS QDs. Figure 1 illustrated the prep-
aration process of the MIP-coated QDs. CPF was used as the
template molecule. The free radical polymerization was initi-
ated using AIBN, which could form free radicals at 60 °C
[27]. AM was used as the monomer in the polymerization
process because polyacrylamide was a nitrogen-containing
polymer which could be solvated in aqueous medium [28].

EGDMA was added as cross-linker to freeze the polymer
conformation in the right shape and orientation, which would
result in specific binding sites after the removal of the template
molecule. Presence of sufficient cross-linker is very important
for the formation of strong polymer structure which can
uphold its conformation. Different MIP-coated QDs materials
were prepared by changing the template/monomer ratios (1:3;
1:4; 1:5) and the template/cross-linker ratios (1:10; 1:15;
1:20). The selectivity factor, which was calculated by the
dividing the fluorescence quenching value of MIP-coated
QDs by that of NIP-coated QDs, was used to compare the
efficiency of different MIP-coated QDs materials. At last, 1:4
molar ratio CPF/AM and 1:10 molar ratio CPF/EGDMAwere
selected. The characterization of MIP-coated QDs was shown
in Fig. S1 (see supplementary material).

Fluorescence study

The fluorescence intensity of the MIP-coated QDs was re-
corded by varying the excitation wavelength from 300 to
350 nm and was shown in Fig. S2 (see supplementary mate-
rial). The weak blue peak around 444 nmwas generated by the
defect related to the emission of the ZnS QDs. The strong
orange peak around 599 nm could be attributed to the 4 T1 →
6A1 transition of the Mn2+ impurity [20]. The maximum
emission intensity at 599 nm was observed with 325 nm as
the excitation wavelength. The orange fluorescence was very
strong and the peak was sharp, indicating that the sizes of
MIP-coated QDs were very homogeneous.

In the current work, the template CPF was entrapped in the
polymer matrixes through noncovalent binding. To further
elucidate the high selectivity of the MIP-coated QDs in aque-
ous media, the NIP-coated QDs were prepared. As shown in
Fig. 2, the fluorescence intensity of MIP-coated QDs was
relatively weak (spectrum c) before the removal of templates.
While after Soxhlet extraction with methanol: acetic acid
(19:1, v/v), the fluorescence intensity of the MIP-coated
QDs was restored dramatically. However, no difference in
the shape and position of the emission spectrum was observed
(spectrum b). The fluorescence intensity was restored almost
to that of the NIP-coated QDs (spectrum a), which indicated
that the templates were removed completely from the recog-
nition cavities in the MIP-coated QDs. It suggests that the
MIP-coated QDs actually facilitate the application for the
rapid and simple quantification of analytes in aqueous media.

The influences of pH and incubation time on the fluores-
cence intensity were investigated and the results were shown
in Fig. S3 (see supplementary material).

Adsorption capacity of the composite particles

In order to investigate the binding performance of the
MIP-coated QDs and NIP-coated QDs, a binding
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analysis was carried out using the different concentra-
tions of CPF. The remarkable advantage of the synthe-
sized material is a larger mass-transfer speed, where the
optimal CPF adsorption time of MIP-coated QDs and
NIP-coated QDs were 40 min. As shown in Fig. 3a and
b, the changes in fluorescence intensity of MIP-coated
QDs were much more significant than those of NIP-
coated QDs, which indicated that during the MIP-coated
QDs preparation process, binding sites and cavities were
formed.

Selective adsorption on molecularly imprinted polymer
coated quantum dots

In this work, we evaluated the effects of template molecule
CPF, interference molecule acephate and analogue molecule

CM on MIP-coated QDs and NIP-coated QDs. The structure
of CPF, acephate and CM were shown in Fig. S4 (see supple-
mentary material). CPF, acephate and CM are organophos-
phorous pesticides. The evolutions of fluorescence spectra of
MIP-coated QDs or NIP-coated QDs interacted with different
amounts of acephate or CM were shown in Fig. 3.

There was no obvious difference of fluorescence intensity
change between theMIP-coated QDs and NIP-coated QDs for
acephate. Both MIP-coated QDs and NIP-coated QDs fluo-
rescence intensity changed by acephate are non-specific. The
reason was that there was no tailor-made recognition sites
formed in both MIP-coated QDs and NIP-coated QDs for
acephate, so there was no significant difference on the binding
capacity of the acephate.

The imprinting factors (IF) of different molecules were
shown in Table S1 (see supplementary material). It indicated

Fig. 1 The preparation process of
MIP-coated QDs

Fig. 2 The fluorescence spectra
of NIP-coated QDs (spectrum a),
MIP-coated QDs after (spectrum
b) and before (spectrum c) the
removal of templates from the
recognition sites
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that the MIP-coated QDs had provided selectivity to CPF and
its analogue molecule CM, which has very similar structure
with the template CPF (Fig. S4). However, MIP-coated QDs
provided higher selectivity to CPF (3.0) than that of CM (1.4).

Fluorescence quenching analysis

Typical fluorescence quenching of the MIP-coated QDs
composites from 0.3 to 60.0 μmol L−1 CPF was
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studied. It demonstrated that the probe showed obvious
responses to different concentration of CPF, which was
very effective and suitable for practical application. The
quenching in this system follows the Stern-Volmer equa-
tion:

F0=F ¼ 1þ Ksvcq

Where the F0 and F are the fluorescence intensities
in the absence and presence of the quencher respective-
ly, cq is the concentration of the quencher, and Ksv is
the Stern-Volmer constant. The quenching materials
MIP-coated QDs with CPF satisfied the following equa-
tion: F0/F=0.0817cq+1.0277, the correlation coefficient
is 0.9992. The linear range of the calibration curve is
obtained from 0.3 to 60.0 μmol L−1 with a detection
limit of 17 nmol L−1 and the limit of quantification is
50 nmol L−1. When the concentration is more than
60 μmol L−1, the fluorescence quenches seriously. At
this point, the fluorescence intensity of the measured
value is small; the repeatability of measurement is not
satisfactory.

Different analytical methods [4, 9, 11, 22, 23, 29–33]
for determination of CPF were summarized briefly in
Table 1. As can be seen, the recovery, precision and
LOD of this method were comparable to other methods.
When compared with chromatographic methods, the an-
alytical time of this work was saved because we used
fluorescence technology instead of tedious chromato-
graphic separation process. Moreover, our method is
simple, rapid and low cost when compared with other
sensor methods. Furthermore, the material that we used
in this method has high selectivity because of using
molecularly imprinting technique.

Application to real sample analysis

In order to evaluate the feasibility of the method, three river
water samples collected from Harbin (China) were analyzed.
No response corresponding to CPF was observed in these
water samples. Different amount of CPF with three concen-
trations (0.3, 3.0 and 30.0 μmol L−1) were added into the
water samples. Then the water samples were processed ac-
cording to the procedures described in section Measurements
of fluorescent response to chlorpyrifos. The quantitative re-
coveries ranged from 87.1 to 94.5 %, the relative standard
deviation (RSD) ranged from 2.9 to 6.5 % were obtained. The
results showed that the fluorescent probe based on MIP-
coated QDs has the potential applicability for CPF detection
in real samples.

Conclusion

In this work, we have developed a facile strategy to fabricate
the QDs-based MIP by using CPF as template and it has been
successfully characterized and optimized for use as a fluores-
cent probe. In comparison with the antibody-or aptamer-based
analytical methods, this approach is still in its infancy, and the
MIP-coated QDs probe has not been widely employed. The
results indicated that theMIP-coated QDs provided selectivity
to CPF, which was based on the interactions of the size, shape,
and functionality of the template. Furthermore, the potential
advantages of this approach including simple preparation,
high stability and low cost will attract more investigators for
its wide applications in the near future. It is disappointing that
the LOD provided by this method is inferior to some other
methods. We will focus on the improvement of the sensitivity
of this technique in the future.
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