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Abstract We have developed a specific method for the visual
detection of Staphylococcus aureus based on aptamer recog-
nition coupled to tyramine signal amplification technology. A
biotinylated aptamer specific for S . aureus was immobilized
on the surface of the wells of a microplate via biotin-avidin
binding. Then, the target bacteria (S . aureus ), the
biotinylated-aptamer-streptavidin-HRP conjugates, biotinyl-
ated tyramine, hydrogen peroxide and streptavidin-HRP were
successively placed in the wells of the microplate. After
adding TMB reagent and stop solution, the intensity of the
yellow reaction product can be visually inspected or measured
with a plate reader. Under optimized conditions, there is a
linear relationship between absorbance at 450 nm and the
concentration of S . aureus in the 10 to 107 cfu mL−1 concen-
tration range (with an R2 of 0.9976). The limit of detection is
8 cfu mL−1.
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Introduction

Staphylococcus aureus is a Gram-positive bacterium; it is an
important human and veterinary pathogen that causes a wide

variety of infections, ranging from benign skin infections to
life threatening diseases [1] such as pneumonia, endocarditis,
osteomyelitis, arthritis, and sepsis [2]. Furthermore, S . aureus
is the most frequent cause of bacteremia and hospital-acquired
infection. In many countries, S . aureus is the second or third
most common pathogen that causes outbreaks of food poison-
ing [3]. Therefore, it is of great importance to develop a
simple, specific, and sensitive detection method for S . aureus .

Several methods have been developed to detect S . aureus ,
including the traditional microbiological culture method,
enzyme-linked immunosorbent assay (ELISA) [4, 5], the po-
lymerase chain reaction (PCR) technique [6, 7], Loop medi-
ated AMPlification (LAMP) [8]. These methods have been
successfully applied in various fields. However, some of the
methods have deficiencies in stability, price, accuracy, detec-
tion limits and time, and the products of most of these methods
cannot be visually observed. The development of a novel
detection method with the advantages of simplicity, speed,
sensitivity, and ease of observation has therefore attracted
increased attention and remains a challenge [9, 10].

Aptamers are DNA or RNA molecules that are commonly
obtained in vitro using a combinatorial chemistry technique
known as systematic evolution of ligands by exponential enrich-
ment (SELEX) [11]. Because they bind to their target molecules
with high affinity and specificity, aptamers have a wide range of
applications for the detection of certain pathogenic bacteria [12,
13], toxins [14–16], heavy metal ions [17, 18] and illegal food
additives [19–21]. In addition, aptamers have previously been
applied in the diagnosis and therapy of disease [22, 23].

Tyramide signal amplification (TSA) technology uses
horseradish peroxidase (HRP) to catalyze the deposition of
biotin-labeled tyramide molecules for localized signal en-
hancement, thus using the sensitivity of an enzyme-based
assay [24]. This technology has been used in many fields,
such as in situ hybridization techniques [25, 26], analysis and
detection [27], and disease diagnosis [28, 29].
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In this paper, aptamer recognition coupled with tyramine
signal amplification was used for the direct detection of S .
aureus by visual inspection. Aptamers with high affinity and
specificity can specifically recognize and bind to S . aureus ,
which ensures the specificity of the developed method. More-
over, the TSA technology was applied in this work to effec-
tively amplify the signals. In addition, the linear correlation,
signal intensity, linear range and limit of detection of the
developed method were compared with the method without
the TSA technology. Compared to the existing methods, such
as the microbiological culture method, ELISA and PCR, the
developed method offers the merits of simplicity, rapidity,
sensitivity, stability and low cost. This work is expected to
launch a new field of TSA coupled with aptamer applications.

Experimental

Reagents and apparatus

Anhydrous sodium carbonate (Na2CO3), sodium bicarbonate
(NaHCO3), 30 % hydrogen peroxide (30 % H2O2), sodium
chloride (NaCl), potassium chloride (KCl), disodium hydrogen
phosphate (Na2HPO4·12H2O), dipotassium hydrogen phos-
phate (K2HPO4), agar powder, tryptone, yeast extract, N,
N-Dimethylformamide (DMF), ethanol, triethylamine, Tween-
20, and bovine serum albumin (BSA) were purchased from the
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China)
(http://www.reagent.com.cn). The EL-TMB Chromogenic Re-
agent kit, Streptavidin-HRP, N-hydroxysuccinimide biotin
(NHS Bioth) and Streptavidin from Streptomyces avidinii were
purchased from the Shanghai Sangon Biological Science &
Technology Company (Shanghai, China) (http://www.sangon.
com). Tyramine hydrochloride was purchased from the
Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai, China)
(http://www.yuanyebio.com.cn). Staphylococcus aureus ATCC
29213was obtained from the American Type Culture Collection
(ATCC) (http://www.atcc.org). The S . aureus aptamer [30] 5′-
biotin-C6-GCA ATG GTA CGG TAC TTC CTC GGC ACG
TTC TCA GTA GCG CTC GCT GGT CAT CCC ACA GCT
ACG TCA AAA GTG CAC GCT ACT TTG CTA A-3′ was
synthesized by the Shanghai Sangon Biological Science &
Technology Company (Shanghai, China) (http://www.sangon.
com). The signals were scanned using a Molecular Devices
SpectraMax M5 plate reader (M5, Molecular Devices,
U.S.A.). The ultrapure water used in the experiments
was prepared with a Millipore Direct-Q® 3 system (Merck
Millipore, MA, U.S.A.) and had a resistivity of 18.2 MΩ cm.

Preparation of biotin–tyramine

The Biotin-tyramine conjugate was prepared according to
Hopman’s method [31]: 10 mg Bio-NHS was dissolved in

1 mL DMF to prepare solution A; 2.8 mg tyramine hydro-
chloride was dissolved in 0.28 mL DMF, and 2.8 μL
triethylamine was added into solution A to prepare solution
B; then, solution A and solution B were mixed sufficiently to
react in the dark at room temperature for 2 h. Finally, 8.72 mL
ethanol was added to prepare 10 mL biotin-tyramine stock
solution, which was stored at 4 °C in the dark.

Assembly of aptamer onto the microplate wells

First, the streptavidin (1 mg mL−1) was diluted 1:100 with
carbonate buffer (pH 9.6), and 200 μL diluted streptavidin
was added into each zone of the microplates and incubated at
4 °C overnight. After washing with wash buffer (0.01 mol L−1

PBS, 0.05 % Tween-20) 3 times (1 min per wash), each zone
of the microplates was blocked with blocking buffer (BSA in
0.01 mol L−1 PBS) for 1 h at room temperature to prevent the
appearance of false positive signals. Subsequently, the
microtiterplates were washed 3 times with wash buffer, and
10μL biotinylated aptamer was added and incubated at 37 °C.
After 30 min, the microplates were washed 3 times with wash
buffer.

Analytical procedure

A 100 μL aliquot of the sample solution containing S . aureus
was added to each zone of the microplates. The biotinylated
aptamer and streptavidin-HRPwere mixed and then incubated
at 37 °C for 30 min at the same time. The microplates were
washed 3 times with wash buffer, and 10 μL aptamer and
streptavidin-HRP complex was added to the microplates and
incubated at 37 °C for 30 min. After washing 5 times with
wash buffer, each zone of the microplates was loaded with
10 μL biotin-tyramine. A small volume of hydrogen peroxide
(0.5 %, v/v) was also added to the diluted solution to act as the
oxidizing agent of tyramine [32]. The microtiterplates were
incubated at 37 °C for 30 min and then washed 3 times with
wash buffer and air dried. Subsequently, 10 μL streptavidin-
HRP was added into each zone of the microplate. The plate
was incubated at 37 °C for 30 min and then washed 5 times
with wash buffer and air dried. Finally, 100 μLTMB reagent
was added to each well for 20 min at room temperature. After
adding 50 μL stop solution, the absorbance at 450 nm was
recorded using a Molecular Devices SpectraMax M5 plate
reader. This procedure is illustrated in Fig. 1 and the yellow
color is formed on reaction in the microplate.

Treatment of the water samples

The feasibility of applying the developed method to measure
S . aureus levels in samples was validated using water samples
obtained from Tai Lake, and the treatment of the water sam-
ples was as follows: the water samples were left to stand for at
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least 30 min to precipitate macroaggregates and seston. Then,
the water samples were centrifuged for at least 35 min at
12000 rpm (5430R, Eppendorf, Germany) to remove the tiny
seston, and the supernatant was filtered with a 0.45 μm filtra-
tion membrane. Finally, all samples were sterilized at 121 °C
for at least 20 min to ensure that they did not contain
any microorganisms that would influence the experimental
results.

Results and discussion

Effect of the concentration of BSA

To prevent the appearance of a false positive because of non-
specific adsorption, the microplates were coated with BSA in
0.01 mol L−1 PBS. In this experiment, we selected different
concentrations (5, 10, 15, 20, 25 mg mL−1) of BSA in PBS as
the blocking solution to block the bottom of the microplates
that were not coated with streptavidin. According to the ex-
perimental results (Fig. 2), the non-specific adsorption was
reduced and the colors of the blank sample (sterile LB medi-
um) were increasingly lighter with increasing BSA concen-
tration; when the concentration of BSAwas 20 mg mL−1, the
bottom of the microplates that were not coated with
streptavidin were largely blocked with BSA, and the effect
of non-specific adsorption on the experiment was minimized.
However, for the concentrations of 20 and 25 mg mL−1, there
was a slight difference between the intensity of the signals that
correlated with the concentration of BSA. Consequently,
we selected 20 mg mL−1 as the optimized concentration
of BSA.

Optimization of the concentration of aptamer

The microplate was covered with biotinylated aptamer
through specific binding between biotin and streptavidin.
The function of the aptamer was to capture S . aureus and
attach it to the bottom of the microplates in this experiment;
therefore, the concentration of aptamer was directly correlated
with the amount of captured S . aureus and the intensity of the
signals. To evaluate the impact of the aptamer concentrations
on the experimental results, we selected different concentra-
tions of aptamer that ranged from 10−4 mol L−1 to
10−12 mol L−1. As shown in Fig. 3, the intensity of the signals
became increasingly stronger as the concentration of aptamer
increased. But, for the concentrations of 10−4, 10−5 and
10−6 mol L−1, there was a slight difference between the
intensity of the signals from the aptamer. Thus, we selected
10−6 mol L−1 as the optimized concentration of aptamer in this
experiment.

Fig. 1 Schematic illustration of the visual detection of Staphylococcus
aureus based on tyramine signal amplification coupled with aptamer
recognition

Fig. 2 Plot for optimizing the concentration of BSA

Fig. 3 Plot for optimizing the concentration of aptamer. The concentra-
tion of S . aureus in the sample is 106 cfu mL−1
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Optimization of the dilution of Streptavidin-HRP

In this work, streptavidin-HRP was added to the microplate at
two different steps. The role of the first addition of
streptavidin-HRP was mainly to catalyze the tyramine depo-
sition, and the signal intensity was minimally affected by the
concentration of streptavidin-HRP [32], which was consistent
with our experimental results; hence, this factor will not be
discussed here, and 1:4500 was selected as the ideal dilution
factor of the first addition of streptavidin-HRP. The second
addition of streptavidin-HRP had a significant influence on
the signal intensity. The streptavidin-HRP (1 mg mL−1) was
diluted to 1:500, 1:1500, 1:3000, 1:4500, and 1:6000, and it
was used for the detection of the sample (the concentration of
S . aureus in the sample was 106 cfu mL−1) and the blank
(sterile LB medium). Figure 4 indicates that the signal inten-
sity of the samples decreased substantially as the streptavidin-
HRP dilution ratio increased from 1:500 to 1:6000. For the
blank, the signals decreased as the streptavidin-HRP dilution
ratio increased from 1:500 to 1:1500; however, there was a
slight difference between the intensity of the signals as the
dilution ratio increased from 1:3000 to 1:4500 and to 1:6000.
By considering the impact of the streptavidin-HRP dilution
ratio on the signal intensity of the sample wells and blank
wells, we selected 1:1500 as the ideal dilution ratio of the
streptavidin-HRP.

Optimization of the dilution of biotin-tyramine

Tyramine is a phenolic compound, and HRP can catalyze
biotin-tyramine to produce highly reactive phenolic radicals
(tyramide radicals) in the presence of H2O2, which react
covalently with electron-rich moieties of protein molecules
that are present in the vicinity of the HRP label. Figure 5

indicates that the intensity of the signals gradually increases as
the biotin–tyramine dilution ratio increases from 1:50 to
1:100, and the intensity declines sharply as the biotin–tyra-
mine dilution ratio increases from 1:100 to 1:800. This trend
may occur because HRP can catalyze the dimerization of
tyramine when it is present at a high concentration, which is
likely caused by the generation of free radicals [33]. However,
when the tyramine is applied in lower concentrations, the
probability of dimerization is reduced because the binding of
highly reactive intermediates to electron-rich moieties of pro-
teins is favored [34]. The number of highly reactive interme-
diates that are generated by HRP catalysis was low when the
concentration of tyramine was too low. Therefore, the 1:100
dilution was suitable for the experiment.

Fig. 4 Plot used to optimize the dilutions of streptavidin-HRP. The
concentration of S . aureus in the sample is 106 cfu mL−1

Fig. 5 Effect of the dilution of Biotin-Tyramine on the signal intensity.
The concentration of S . aureus in the sample is 106 cfu mL−1

Fig. 6 The intensity of the signals measured for a S . aureus , b Vibrio
parahemolyticus , c Streptococcus , d Salmonella typhimurium , e E .
sakazakii , f E . coli , g Listeria monocytogenes and the blank. The
concentrations of all bacteria were 106 cfu mL−1
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Specificity

To evaluate the specificity of this method, we measured six
other samples that contained Vibrio parahemolyticus , Salmo-
nella Typhimurium , Streptococcus , E . sakazakii , E . coli and
Listeria monocytogenes and one blank sample. The analysis of
all samples was performed under the same conditions, and the
concentrations of all bacteria were 106 cfu mL-1. Figure 6
clearly shows that the intensity of the signals of S . aureus were
much stronger than the other six bacterial samples and the
blank samples, mainly because of the binding of the aptamers
to their target molecules with high affinity and specificity. Thus,
the signal intensities of Vibrio parahemolyticus , Streptococcus ,
Salmonella typhimurium , E . sakazakii , E . coli , Listeria
monocytogenes and the blank were weak. This result (Fig. 6)
indicated the good specificity of the developed method for the
detection of S . aureus .

Analytical performance

A series of concentrations of S . aureus (from 10 cfu mL−1 to
107 cfu mL−1) were investigated under optimal conditions.
The results show that the intensity of the signals is linear with

and the concentration of S . aureus ranged from 10 cfu mL−1

to 107 cfu mL−1 (y =0.1750x−0.0061, R2=0.9976) (Fig. 7).
Statistical analysis revealed that the limit of detection of S .
aureus was 8 cfu mL−1.

A series of concentrations of S . aureus (from 10 cfu mL−1

to 107 cfu mL−1) were analyzed by the method without the
tyramide signal amplification (TSA) technology. As the re-
sults shown, the linear correlation between the intensity of the
signals and the concentration of S . aureus was 0.9921 and the
linear fit that was obtained was y =0.1191x−0.0575. The
linear range (from 50 cfu mL−1 to 5×104 cfu mL−1) was very
narrow, and the limit of detection was 40 cfu mL−1. By
considering the results from the comparison between
these two methods, we determined that the linear corre-
lations between the intensity of the signals and the
concentration of S . aureus and between the linear range
and the limit of detection were improved significantly by the
TSA technology.

The developed method were further compared with the
presented some previous methods about detection of S . aureus
(Table 1). As shown in Table 1, the developed method is more
sensitive than others. However, the analysis time of the devel-
oped method should be improved and it would be taken into
account in the future studies.

Analytical application

A series of concentrations of S . aureus were added to the
treated water samples, and 100 μL dilutions were added to the
900 μL water samples. Afterward, 100 μL samples were
detected by the developed method, and additional 100 μL
samples were tested by the classical counting methods.

The results obtained by the visual detection method were
similar to those obtained from the plate counting method.
There was no significant difference between the counting
method and the developed method (R2=0.9979, P <0.0001),
and the linear fit that was obtained was y =0.9994x+1.3014. It
confirms that the visual detection method using aptamers
coupled with tyramine signal amplification can be used for
the detection of samples.

Fig. 7 Standard correlation curve between the intensity of the signals and
the concentration of S . aureus

Table 1 Figures of merits of comparable methods for determination of Staphylococcus aureus

Method used LOD (cfu mL−1) Application Analysis time (h) Ref.

Nanogold linked CdTe nanocrystals 50 Spiked milk samples N. I. [35]

Long lifetime biomarker and two-probe tandem DNA hybrid 1.03×103 Food samples 9 [36]

Gold based immunosensors 105 N. I. N. I. [37]

Antibody/goldnanoparticle/magnetic nanoparticle nanocomposites 1.5×105 Spiked milk samples 0.6 [38]

Hybridization to oligonucleotide microarray 103 Raw milk samples N. I. [39]

Aptamer recognition coupled to tyramine signal amplification 8 Water samples <4 This work

N. I. No information
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Conclusions

In conclusion, we successfully developed a specific, stable
and visual detection method for S . aureus that is based on the
recognition of aptamers coupled with tyramine signal ampli-
fication (TSA). With the help of the TSA technology, the
detection sensitivity of the developed method reached
8 cfu mL−1, and the linear range was wide (from
10 cfu mL−1 to 107 cfu mL−1), as determined by visual
inspection. Furthermore, aptamers are specific, stable, and
inexpensive; therefore, the developed method is stable, inex-
pensive and specific for the detection for S . aureus . The
developed method has the potential for wide use in the visual
detection of other foodborne pathogenic bacteria in food
samples.
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