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Abstract We have developed a one-step method for the syn-
thesis of mesoporous upconverting nanoparticles (MUCNs)
of the type NaYF4:Yb,Er@mSiO2 in ammoniacal ethanol/
water solution. The mesoporous silica is directly encapsulat-
ing the hydrophobic upconversion nanoparticles (UCNs) due
to the presence of the template CTAB. Intense green emission
(between 520 and 560 nm) and weaker red emission (between
630 and 670 nm) is observed upon 980-nm laser excitation.
TheMUCNs display low cytotoxicity (as revealed by anMTT
test) and were successfully applied to label and image human
nasopharyngeal epidermal carcinoma (KB) cells.
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Introduction

Smart combinations of different types of functional nanostruc-
tured materials will facilitate the development of multifunction-
al nanomedical platforms for multimodal imaging or simulta-
neous theranostics [1, 2]. Lanthanide-doped upconversion
nanoparticles (UCNs), which undergo anti-Stokes emission

processes where the long-wavelength pump sources (typically
980 nm) are upconverted to short-wavelength luminescence
ranging from the deep-UV to the near-infrared (NIR), have
recently drawn much attention in fields as diverse as laser
materials, solar cells, data storage and bioapplications [3–7].
In marked contrast to conventional Stokes-shifted fluorophores
such as quantum dots (QDs), organic dyes or fluorescent pro-
teins, UCNs excited by continuous-wave NIR multi-photons
avoid any auto-fluorescence from biosamples, increase the
penetration depth and minimize photo-damage to living organ-
isms evoking wide applications in biological labeling, imaging
and therapeutics [8–15].

Mesoporous silica-based nanocomposites (MSNs), such as
CdSe/ZnS@mSiO2 [16], Fe3O4@mSiO2 [17, 18], and
MnO@mSiO2 [19], are ideal candidates for constructing multi-
functional nanoplatforms since MSNs possess unique structural
properties such as large surface area, uniform mesopores, good
biocompatibility, and also can be easily chemically functional-
ized on their surface [1, 20]. Several methods have been devel-
oped to coat both hydrophilic and hydrophobic UCNs with
mesoporous silica, constructing core-shell nanoparticles for pho-
todynamic therapy (PDT) [21], drug delivery [22] and secondary
excitation [23]. For example, a two-step silica-coating procedure
was employed in which a thin layer of dense silica was firstly
coated onto the UCNs to form UCNs@silica nanoparticles,
which then acted as seeds for the growth of another layer of
mesoporous silica to obtain final core-shell structures [22]. This
method is, however relatively complicated and time consuming.
Therefore, a general and simple strategy for offering surface
meso-functionality is greatly welcomed to prepare biocompatible
and uniformmesoporous upconverting nanocomposites [24–27].

Here, we present a facile one-step method for direct for-
mation of core-shell mesoporous silica coated upconverting
nanoparticles (MUCNs), NaYF4:Yb,Er@mSiO2, by using
cetyltrimethylammonium bromide (CTAB) as both phase
transfer assisting agents and pore-generating templates. To
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the best of our knowledge, this is the first time, in an ammonia
and ethanol aqueous solution, to directly coat mesoporous
silica onto the surface of hydrophobic UCNs synthesized by
solvothermal method and the obtainedMUCNs were success-
fully applied to in vitro bioimaging [28–30].

Experimental section

Chemical and reagents

All chemicals were used as received without further purifica-
tion. NaOH, NH4F, ethanol, methanol, cetyltrimethyl-
ammonium bromide (CTAB), cyclohexane, and acetone were
purchased from Sinopharm Chemical Reagent Co., Ltd. Oleic
acid was obtained from Alfa Aesar. 1-Octadecene, tetraethyl
orthosilicate (TEOS), aqueous ammonia (28 %) were pur-
chased from Aladin Company. ErCl3·6H2O, YbCl3·6H2O,
YCl3·6H2O were purchased from Sigma Aldrich. Deionized
water was used in the experiments throughout.

Synthesis of NaYF4:Yb,Er (18/2 mol%) nanocrystal

NaYF4:Yb,Er nanocrystals were synthesized following a pro-
tocol that was reported previously [31]. YCl3 (0.8 mmol),
YbCl3 (0.18 mmol), and ErCl3 (0.02 mmol) were mixed with
6 mL oleic acid and 15 mL 1-Octadecene (ODE) in a 100 mL
flask. The solution was heated to 150 °C to form a homoge-
neous solution, and then cooled to room temperature. A
10 mL methanol solution containing NaOH (2.5 mmol) and
NH4F (4 mmol) was added into the flask and stirred for a
while. The solution was slowly heated to remove methanol,
degassed at 100 °C for 10 min, and then heated to 300 °C and
maintained for 1 h under Argon protection. After the solution
was cooled naturally, nanocrystals were precipitated from the
solution with ethanol and washed with ethanol/cyclohexane
(1:1 v/v) three times. Finally, the purified NaYF4:Yb,Er
nanocrystals were dispersed in 20 mL of cyclohexane.

Phase transfer from cyclohexane to water

Two milliliters of the UCNs solution (10 μg·mL−1) was mixed
with 100 mg of CTAB and 20 mL of water. The mixture was

then stirred vigorously for 3 h, and the formation of the oil-in-
water micro-emulsion appeared with a transparent solution.
Then the cyclohexane solvent was boiled off from the solu-
tion, resulting in a transparent UCNs&CTAB solution. The
solution was filtered through a 0.45 μm syringe filter to
remove any large aggregates or contaminants.

Formation of NaYF4:Yb,Er@mSiO2

After filtering, the UCNs&CTAB solution obtained was
redispersed in a mixed solution containing 60 mL of water,
75 mL of ethanol, and 2 mL of aqueous ammonia (28%). After
the mixture was ultrasonicated for 1 h, 60 μL of TEOS dis-
persed in 5 mL of ethanol was added dropwise into the above
mixture under ultrasonication. Then the mixture was heated to
70 °C and stirred for 18 h at speed of 700 rpm. The MUCNs
were precipitated and washed with ethanol/water (1:1 v/v)
several times and then MUCNs were dispersed in 20 mL of
ethanol. To extract CTAB from theMUCNs, 40 μL of HCl was
added to the dispersion (pH~1.43) and stirred for 3 h at 60 °C.

Cytotoxicity of MUCNs

In vitro cytotoxicity was measured by performing methyl
thiazolyltetrazolium (MTT) assays on the human nasopharyn-
geal epidermal carcinoma cells (KB cells). Cells were seeded
into a 96-well cell culture plate at 5×104/well, under 100 %
humidity, and were cultured at 37 °C and 5 % CO2 for 24 h;
different concentrations of MUCNs (0, 100, 200, 300 and
400 μg·mL−1, diluted in RPMI 1640) were then added to the
wells. The cells were subsequently incubated for 4 h and 24 h
at 37 °C under 5%CO2. Thereafter, MTT (10 μL; 5 μg·mL−1)
was added to each well and the plate was incubated for an
additional 2 h at 37 °C under 5 % CO2. After the addition of
100 μL DMSO, the assay plate was allowed to stand at room
temperature for 2 h. The OD570 value (Abs.) of each well,
with background subtraction at 690 nm, was measured by
means of a Tecan Infinite M200 monochromator-based mul-
tifunction microplate reader.

The following formula was used to calculate the inhibition
of cell growth14:

Cell viability %Þ ¼ mean of Abs: value of treatment group=mean of Abs: value of controlÞ � 100%:ðð

Laser scanning upconversion luminescence imaging

KB cells were plated on 14 mm glass coverslips and allowed
to adhere for 24 h. Then KB cells were incubated in a serum-
free medium containing 200 μg·mL−1 MUCNs for 1 h at
37 °C under 5 % CO2. Subsequently, cell imaging was then

carried out after washing the cells with PBS three times to
remove the excess MUCNs. Confocal imaging of cells was
performed with a modified Olympus FV1000 laser scanning
upconversion luminescence microscope (LSUCLM)
equipped with a continuous-wave (CW) laser at 980 nm
(Connet Fiber Optics, China). A 40 × oil-immersion objective
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lens was used. For the MUCNs, the CW laser at 980 nm
provided the excitation, and UCL emission was collected at
the green (520–560 nm) and red (630–670 nm) channels.

Results and discussion

Scheme 1 illustrates the overall synthetic and bioimaging
protocol of MUCNs. The oleate-capped NaYF4:Yb,Er (18/
2 mol%) UCNs (Fig. S1, ESI†) prepared via the solvothermal
method show a uniform and monodisperse morphology
(Fig. 1a) and have a diameter of approximately 50 nm with

high crystallinity indicated from high-resolution TEM (inset
of Fig. 1a).

The diffraction peaks’ positions and intensities in XRD
pattern (blue line in Fig. 2) can be attributed to the standard
card of β-NaYF4:Yb,Er (JCPDS 16-0334) (black line in
Fig. 2) which are well known to be the most effective
upconverter [32, 33]. Here, to obtain water-dispersible
nanocrystals, the hydrophobic UCNs dispersed in cyclohex-
ane were transferred to aqueous phase by mixing and vigor-
ously stirring them with an CTAB aqueous solution followed
by completely evaporating cyclohexane. The hydrophobic tail
of the CTAB molecules interact strongly with the oleic acid
ligands on the surface of the UCNs via van der Waals inter-
actions and the hydrophilic headgroups of CTAB rendered the
UCNs water-soluble [16]. As a result, a transparent solution
was obtained (1 mg·mL−1, Fig. S2, S3, ESI†) [34].

In the subsequent sol–gel reaction upon addition of
tetraethylorthosilicate (TEOS), the silica/CTAB layer is
formed around CTAB-stabilized nanocrystals under basic con-
ditions through an electrostatic interaction between the cation-
ic (CTAB) and anionic (silicate) species. The UCNs&CTAB

Scheme 1 Schematic illustration of the overall synthetic and cell imag-
ing protocol

Fig. 1 TEM images of (a) UCNs and (b) MUCNs. (c) Upconversion
luminescence spectra of UCNs (black line) and MUCNs (red line).
Photographs of (d) UCNs in cyclohexane (1 mg·mL−1) and (e) MUCNs

in water (1 mg·mL−1) under excitation of CW 980 nm light with a power
of 1 W, respectively (insets in (a) and (b): HRTEM images of UCNs and
MUCNs, respectively and low angle XRD pattern of MUCNs)
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nanoparticles (73.5 eV) directly act as seeds for the formation
of spherical mesoporous silica shell by hydrolysis and con-
densation of TEOS [20]. Comparision with the two-step silica
coating proecdure [21–23], in this case, the UCNs need not to

be firstly coated a nonporous silica shell to facilitate the
following mesoporous silica growth. The TEM image
(Fig. 1b) reveals that MUCNs are spherical with core-shell
structures, which shows uniform size and mono-dispersibility.
Mesoporous shell with interconnected wormhole-like pores
were clearly seen from the high-resolution TEM (inset in
Fig. 1b). Combined with XRD pattern (red line) in Fig. 2
which shows a peak at 2θ=20° corresponding to silica, scan-
ning transmission electron microscopy (STEM) and the corre-
sponding EDX elemental mapping and spectra in Fig. 3, the
formation of core-shell structures is further corroborated by
indicating the presence of the elements Si, F, Y, and Yb (Due to
the low Yb doping concentration, the magnified image of the
Yb element mapping image is displayed in Fig. S4., ESI†) in
the MUCNs. As shown in Fig. 1b (inset), the low-angle XRD
pattern of the mesoporous nanospheres also showed a two-
dimensional (2D) short-range ordered mesostructure of the
shell component. In addition, the N2 adsorption/desorption
isotherms classified as type-IV further demonstrate the
mesoporous characteristics of MUCNs. The corresponding
Barrett–Joiner–Halenda (BJH) pore size distribution demon-
strated that the mean mesoporous size of the MUCNs is
2.26 nm and the Brunauer–Emmett–Teller (BET) surface area
and the total pore volume were calculated to be 55.97 m2·g−1

and 0.2951 cm3·g−1, respectively.

Fig. 2 XRD patterns of UCNs (blue line) and MUCNs (red line). The
standard pattern of β-NaYF4 has been given (black line) as a reference
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Fig. 3 Scanning transmission electron microscopy image, EDX elemental mapping, and spectra of mesoporous upconverting nanoparticles
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In order to assess the feasibility of NaYF4:Yb,Er@mSiO2

for upconversion luminescent (UCL) bioimaging, the UCL
spectra under CW 980 nm light excitation of transparent
colloidal solutions of NaYF4:Yb,Er nanocrystals in cyclohex-
ane and NaYF4:Yb,Er@mSiO2 nanospheres in water are ini-
tially shown in Fig. 1c. The well-known emission peaks of
UCNs at 521, 539, and 651 nm can be ascribed to the

transitions from the energy levels 4H11/2,
4S3/2, and

4F9/2 to
the ground state 4I15/2 of Er3+ ion, respectively [35]. No
obvious change in the UCL wavelength and sharpness except
a slight decrease in luminescence intensity (Fig. 1d and e) was
observed after meso-functionalization.

Encouraged by the effective emission of candidate imaging
agents NaYF4:Yb,Er@mSiO2, we conducted in vitro
bioimaging experiment. Before the MUCNs were used as
bioprobes, however, it is critical to investigate the cytotox-
icity and cell-permeability characteristics of these
nanoparticles with the methyl thiazolyltetrazolium (MTT)
assay. Upon incubation with the MUCNs over a range of
dosages (0–400 μg·mL−1), as illustrated in Fig. 4, even at
higher concentrations (400 μg·mL−1), KB cell viability still
remained at above 85 %. It can be observed that the KB cell
viability for 24 h is higher than that for 4 h with 400 μg/mL
MUCNs, which is within experimental error of the MTT
measurements. On the basis of the MTT assay results, it can
be inferred that the MUCNs are biocompatible and nearly
nontoxic to live cells and thus can serve as safe luminescent
bioprobes [30, 36].
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Fig. 4 In vitro cell viability of KB cells incubated with MUCNs at
different concentrations for 4 h (black) and 24 h (red), respectively

Fig. 5 Confocal imaging of KB cells incubated with MUCNs with a
concentration of 200μg·mL−1 for 1 h at 37 °C. (a) Bright-field image, (b)
fluorescent images collected at green (520–560 nm) channels, (c) fluo-
rescent images collected at red (630–670 nm) channels, (d) merged

images of a , b and c , (e) three-dimensional confocal luminescent imag-
ing, and (f) quantification analysis of UCL signal intensity along the line
shown in b (inset) of a KB cell. (In region 1 and region 3, the counts are
>4095; in region 2, the count is ~0)
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Definitely, the laser scanning upconversion luminescence
microscopy (LSUCLM) images [37] as shown in Fig. 5 as-
certain the possibility mentioned above. The strong upcon-
version luminescent signals at 520–560 and 630–670 nmwere
observed from KB cells incubated with 200 μg·mL−1

serum-free medium containing MUCNs for 1 h at 37 °C.
Overlays of LSUCLM images and bright-field images im-
plied that the MUCNs had been endocytosed by cells
rather than merely staining the membrane surface, which
were further verified by three-dimensional luminescence
images of live KB cells in Fig. 5e and confocal lumines-
cence imaging data collected as a series along the Z-optical
axis (Z-stack) (Fig. S5, ESI†).

Furthermore, quantification analysis of the UCL signal
across the line (insert of Fig. 5b) reveals a perfect signal-to-
noise ratio with extremely high UCL intensity surpassing
the predetermined detection threshold (counts > 4095,
region 1 and region 3) and no background fluorescence
(counts ~0, region 2), as demonstrated in Fig. 5f, which
suggests that the MUCNs are capable and promising bio-
logical luminescence labels for bioimaging without back-
ground fluorescence.

Conclusion

In summary, we have demonstrated an efficient one-step
procedure to encapsulate monodisperse and hydrophobic
UCNs within mesoporous silica directly, constructing water-
soluable and uniform MUCNs (NaYF4:Yb,Er@mSiO2).
MUCNs displayed good in vitro biocompatibility when incu-
bated with KB cells even at the highest concentration
according to an MTT assay. In particular, high-contrast
in vitro bioimaging application certified the capability of
MUCNs as biolabels upon 980 nm excitation. Moreover,
this method provides the generality which can be extended
to the meso-functionalization of other hydrophobic UCNs
with different lanthanide doping and crystal shape for the
preparation of multifunctional nanoparticles that can be
further employed as drug delivery vehicle for simultaneous
bioimaging and diagnosis. But before this happens, it is
still challengeable to thoroughly understand the formation
mechanism of mesoporous silica layer outside OA coated
UCNs in ethanol and ammonia solution system. This work
is ongoing in our group now.
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