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Abstract We describe a method for ionic liquid based dis-
persive liquid-liquid microextraction of Co(II), Cu(II), Mn(II),
Ni(II) and Zn(II), followed by their determination via flow
injection inductively coupled plasma optical emission spec-
trometry. The method is making use of the complexing agent
1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-
methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of
ethanol as the dispersing solvent. After extraction and precon-
centration, the sedimented ionic liquid (containing the target
analytes) is collected, diluted with 1-propanol, and introduced
to the ICP-OES. Effects of pH, ionic strength, ligand to metal
molar ratio, volumes of extraction and disperser solvents on the
performance of the microextraction were optimized in a half-
fractional factorial design. The significant parameters were
optimized using a face-centered central composite design.
The method has detection limits between 0.10 and
0.20 ng mL−1 of the metal ions, preconcentration factors be-
tween 79 and 102, linear responses in 0.25 to 200 ng mL−1

concentration ranges, and relative standard deviations of 3.4 to
6.0%. The method was successfully applied to the analysis of
drinking water, a fish farming pond water, and waste water
from an industrial complex.

Keywords Heavymetals . Ionic liquids . Dispersive liquid-
liquid microextraction . Flow injection-inductively coupled
plasma-optical emission spectrometry . Face-centered central
composite design.

Introduction

The pollution of rivers and streams with chemical contam-
inants has become one of the most critical environmental
problems of the century. Heavy metals as persistent envi-
ronmental contaminants are of great importance amongst
chemical pollutants. At trace levels several heavy metals
such as Mn, Zn, Cu, Co and Ni are essential micronutrients
for plants, living organisms and the human body whilst most
of them are toxic or even carcinogenic at high concentra-
tions. Typically they enter the body via the food chain,
ambient air or drinking water. As a consequence, contami-
nation levels in urban and industrial waste water need to be
controlled and strict regulations have been drawn up and
proposed in this regard. Compliance with the regulations
requires evaluation of robust, reliable, sensitive and envi-
ronmental friendly analytical methods and instruments.
However, in many cases where the sample matrices are
complex or the concentration of elements fall below the
detection limit values of common techniques of trace metal
determination such as flame or electrothermal atomic ab-
sorption spectroscopy (FAAS and ETAAS) and inductively
coupled plasma-optical emission spectrometry (ICP-OES), a
separation or preconcentration method such as solid phase
extraction or microextraction [1–6], ion exchange [7, 8],
cloud point [9, 10] and liquid-liquid extraction or micro-
extraction [11] must be applied.

Dispersive liquid-liquid microextraction (DLLME) uti-
lizes the use of a few milliliters of water-soluble disperser
solvents such as methanol, acetonitrile or acetone to dis-
perse microliter volume of water-immiscible extraction sol-
vent into the aqueous medium [12]. In this method, a cloudy
solution is formed right after injecting the mixture of extrac-
tion and disperser solvents into the aqueous sample where
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the distribution of the target analytes from sample into the
organic solvent takes place. Since its introduction, DLLME
has been successfully applied for extraction of organic
[13–16] and inorganic [17–20] species in different samples.
Despite its several powerful aspects, DLLME’s main draw-
back lays in the choice of the extraction solvent. In this
microextraction technique, solvents of higher densities than
water are preferred which are not often compatible with instru-
ments such as ICP-OES and reversed-phase high-performance
liquid chromatography (RP-HPLC).

Ionic liquids (ILs) applied at room or non-ambient (con-
trolled) temperatures are considered as relatively recent chem-
icals of unique properties. Since the first use of an ionic liquid as
an alternative to traditional volatile organic solvents for two-
phase liquid-liquid separations in 1998 [21], in many cases ILs
have demonstrated advantages compared to common solvents
used in separation and extraction processes. Liu et al. reported
that ILs can be used as extraction solvents in liquid-phase micro-
extraction (LPME), the authors found that the ILs [C6mim]
[PF6] and [C8mim] [PF6] both outperformed 1-octanol in
direct-immersion and headspace LPME of United States

Environmental Protection Agency (US-EPA) high priority
polycyclic aromatic hydrocarbons (PAHs) [22]. Several
studies have been carried out investigating extraction capa-
bility of various types of ILs in different liquid phase micro-
extraction approaches isolating organic [23–32] and
inorganic [33–37] species. ILs unique properties has led to
evolution of new concepts of phase separation in microex-
traction techniques based on direct contact of extraction and
sample phases such as temperature-controlled ionic liquid
based dispersive liquid-liquid microextraction [38] and dis-
persive liquid–liquid microextraction using an in situ metath-
esis reaction to form an ionic liquid extraction phase [39].

The major aim of this study is to find a substitute for
common DLLME extraction solvents which can be introduced
to ICP-OES without further need for either time-consuming
evaporation, solidification or any manipulation. This paper
represents the practical procedure, characteristics and applica-
tion of conjoining a green ionic liquid based dispersive liquid-
liquid microextraction (IL-DLLME) with FI-ICP-OES for de-
termination of cobalt, copper, manganese, nickel and zinc in
various environmental water samples.

Experimental

Apparatus

A radial view Varian Vista-Pro simultaneous inductively
coupled plasma optical emission spectrometry (Springvale,
Australia, www.varianinc.com) equipped with a V-groove
nebulizer and Scott spray chamber utilizing a charge cou-
pled device (CCD) as detector was applied for determination
of target elements. The flow-injection (FI) manifold con-
sisted of an adjustable injection loop, made of silicon tube,
connected to a six-port two-position injection valve (Tehran
University, Iran), in which the 1-propanol/water mixture

Table 1 FI-ICP-OES operating conditions and spectral lines of the
elements

RF generator
(40 MHz)

1.65 kW

Plasma (outer) gas 15 L min−1 Ar

Auxiliary
(intermediate) gas

1.5 L min−1 Ar

Sample (inner) gas Ar

Nebulizer pressure 140 kPa

Observation height 4 mm

Eluent 80:20 (v/v) 1-propanol in water

Elution rate 0.8 mL min−1

Spectral lines (nm) Co 238.892, Cu 324.754, Mn 257.610,
Ni 230.299, Zn 213.857 and Y 377.433.

Fig. 1 Baseline obtained
for introduction of (a)
common DLLME solvents
(b) [C6mim][Tf2N] to the
ICP-OES at 238.892 nm;
1: CHCl3, 2: CH2Cl2 and
3: C6H5Cl
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(80:20% v/v) was used as the eluting solvent. The loop volume
was adjusted in order to enable introduction of the entire
extraction IL volume in each steps of optimization and real
sample analysis. FI-ICP-OES optimal operating conditions and
employed spectral lines of the elements are shown in Table 1.

The pH measurement and adjustment was performed
using an Inolab WTW pH meter (Weilheim, Germany,
www.wtw.com) equipped with a combined electrode.

Chemicals and reagents

Stock standard solutions (1000 mg L−1) of Co(II), Cu(II), Mn
(II) and Y(III) were prepared by dissolving proper amounts of
analytical grade CoCl2.6H2O, Cu(NO3)2.3H2O, MnCl2.4H2O
and Y(NO3)3.H2O salts from Merck (Darmstadt, Germany,
www.merck-chemicals.com) in ultra-pure water. Ni(II) and Zn
(II) standard stock solutions (1000 mg L−1) were purchased
from Sigma–Aldrich (Milwaukee, WI, USA, www.sigmaal
drich.com). Mixed working standard solutions were prepared
by diluting the stock solutions with ultra-pure water and in
case of the internal standard solution of 5 mg L−1 Y3+ with
1-propanol.

Solutions of chelating agents 1-(2-thenoyl)-3,3,3-trifluor-
acetone (TTA) and 1-(2-pyridilazo)-2-naphthol (PAN)
(reagent grade, Merck) were prepared in methanol in 0.5 M
concentration.

Fig. 2 Pareto chart of the main effects of variables obtained from half-
fractional factorial design

Fig. 3 The three-dimensional response surfaces obtained from face-
centered central composite design. Each surface represents the variating
pattern of the response with the two indicated factors changing values
while the other ones are kept constant at their central values

b
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Ionic liquids 1-hexyl-3-methyl imidazolium bis(trifluoro-
methylsulfonyl)imide [C6mim][Tf2N] and 1-hexyl-3-methyl
imidazolium hexafluorophosphate [C6mim][PF6] were pur-
chased from KimiaExir (Tehran, Iran, www.kimiaexir.com).
Ethanol, methanol, acetone, acetonitrile, ammonium acetate,
nitric acid, sodium hydroxide and sodium chloride, were
obtained from Merck. 1-Propanol was purchased from
Panreac (Barcelona, Spain, www.panreac.es). The ultra-pure
water was purified using an aquaMAX–Ultra Younglin Ultra-
pure water purification system (Seoul, South Korea, www.
younglin.com).

Peak area calculation and experimental design softwares

Integration was performed using the freeware CHROMuLAN
version 0.79 from PiKRON Ltd (Prague, Czech Republic,
www.pikron.com) to which the spectral data were loaded in
txt format.

Experimental design data analysis was performed by using
the software Design-Expert trial version 7.0.0 from Stat-Ease
Inc (Minneapolis, MN, USA, www.statease.com).

Procedure of ionic liquid based dispersive liquid-liquid
microextraction (IL-DLLME)

A 30.0 mL portion of sample containing 50mMof ammonium
acetate solution was placed in a 45 mL screw cap glass tube
and spiked with 1-(2-thenoyl)-3,3,3-trifluoracetone (TTA), as
complexing agent, after appropriate pH (8.0) adjustment, 4 mL
of ethanol containing 210 μL of [C6mim][Tf2N] ionic liquid
was injected into the sample solution. A cloudy solution was
formed and extraction was completed rapidly. After centrifu-
gation for 10min at 4200 rpm, the upper solution was removed
and the 100 μL sedimented IL containing target analytes was
collected, diluted with 100 μL 1-propanol and introduced to
ICP-OES by the flow injection manifold.

Sample preparation

Sample collection, preservation and storage were all per-
formed according to the US-EPA method 200.7 [40]. Sam-
ples were collected in polyethylene bottles, filtered through

a 0.45 μm pore diameter membrane filter and acidified with
nitric acid to pH below 2.0 following filtration. All samples
were preserved at 4 °C before analysis.

Results and discussion

Ionic liquid as extraction solvent and its introduction
to ICP-OES

Selection of the extraction solvent is considered a key step
of all liquid phase microextraction techniques. In traditional
DLLME organic solvents are selected on the basis of their
higher density than water, extraction capability of interested
compounds along with good instrumental behavior. As a
result, halogenated hydrocarbons such as chlorobenzene,
chloroform, carbon tetrachloride and tetrachloroethylene
are the most widely used solvents. However, there have
been reports on application of low density solvents, either
collected by using especially designed vials [41] or solidifi-
cation of the floating organic drop [42], still the traditional
sedimentation is the most convenient and widely used way
of collecting the organic solvent due to unavailability of the
designed vials or the time-consuming solidification step.

Introduction of organic solvents to the ICP-OES usually
results in plasma cooling, instability or even shut down due to
high vapor pressure and intensive background emission of
such solvents, whereas such phenomena are not observed for
1-propanol. Lower vapor pressure of 1-propanol (b.p. 98 °C)
resembling water more than commonly used organic solvents
such as methanol, ethanol and acetonitrile and its miscibility
with both aqueous and organic media, either pure or mixed
with water, has led to its application as the eluting solvent for
easy introduction of different types of solvents to the ICP-
OES without any plasma instability problem or need for
further manipulation or evaporation of the solvent [43]. Nev-
ertheless, with the use of 1-propanol as the eluting solvent not
every type of organic solvents can be introduced to the ICP-
OES. High vapor pressure and emissive behavior of the halo-
genated hydrocarbons, considered as the traditional DLLME
extraction solvents, would lead to plasma shut down when
applied directly and would result in plasma instability and

Table 2 Predicted optimal values and response along with the corresponding observed experimental response

Variables Level values Predicted optimum
values

Predicted
response

Observed
response

Relative error

Low Center High

pH 3.0 6.0 9.0 7.98 5666.86 5843.99 3.12%

Ligand to metal molar ratio (L/M) 5.0 17.5 30.0 30.0

Extraction solvent volume (μL) 100 175 250 100

Disperser solvent volume (mL) 1.0 3.5 6.0 3.95
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baseline intensive drift when applied as a 1:1 mixture with 1-
propanol. In this regard, non-volatile dense ionic liquids can
be applied as the suitable substitutes of common halogenated
extraction solvents. The ionic liquid used in the current study
([C6mim][Tf2N]) was selected due to its less solubility in
water, less viscosity which enables volumetric measurements
with high surface area syringes and better emissive behavior
in ICP-OES compared to [C6mim][PF6]. Figure 1 compares
the emissive behaviour of common dense solvents and the
suggested IL introduced to the FI-ICP-OES. It represents
injection of 1:1 mixture of CHCl3, CH2Cl2 and chlorobenzene
in 1-propanol; each 2 injections in a row aswell as the effect of
[C6mim][Tf2N]/1-propanol 1:1 mixture injection on the FI-
ICP-OES baseline. The smooth and stable baseline for IL
injection proves its compatibility with ICP-OES.

Complexing agent effect

The ionic liquid was insufficient for extraction of the charged
metal ions, it was necessary to improve their affinity for the IL
phase by complex formation with a suitable reagent. Imida-
zolium based ILs present a high chemical affinity towards
compounds containing one or more aromatic rings in their
structures [44]. TTA and PAN, two complexing reagents

containing aromatic rings, were tested and TTA was found
to be more efficient one for extraction of target metal ions as
shown in Fig. S1 (Electronic Supplementary Material, ESM).
The extracted species were anionic M(TTA)3

- for M 0 Mn,
Co, Ni and Zn and neutral M(TTA)2 in case of Cu [45].

Selection of disperser solvent

The choice of the disperser solvent was done considering its
miscibility with the IL phase and aqueous sample. Two milli-
liters of acetonitrile, acetone, methanol and ethanol containing
proper amount of the IL to obtain the same settled phase
volume were evaluated and as demonstrated in Fig. S2
(ESM) ethanol yielded the highest peak area.

Experimental design and data analysis

A half fractional factorial design was employed in 20 runs
containing 4 center points to investigate the most influential of
the five variables including A: salt% (0-10%), B: pH (3.0–
9.0), C: ligand to metal molar ratio (5.0–30.0), D: volume of
the extraction solvent (100–250 μL) and E: volume of the
disperser solvent (1.0–6.0 mL) affecting the extraction of the
target elements. The total normalized peak area was used as

Table 4 Analytical performance of the IL-DLLME-FI-ICP-OES method

Element Enhancement
factor a

Extraction
recovery%

Detection limitb

(ng mL−1)
RSD% c Dynamic linear

range (ng mL−1)
Correlation
coefficient c

Co2+ 79 53 0.10 3.8 0.25–200 0.9979

Cu2+ 91 61 0.10 3.4 5.00–200 0.9957

Mn2+ 102 68 0.10 6.0 0.75–200 0.9986

Ni2+ 100 67 0.20 3.9 0.50–200 0.9984

Zn2+ 86 57 0.10 4.5 5.00–200 0.9916

a The enhancement factor was defined as the ratio of the calibration slopes after and before the extraction
b Values refer to experimental DLs, the corresponding signals of which were quite distinguishable from the background noise (S/N>3)
c The relative standard deviation was calculated for four replications (n04) of the extraction at 100 ng mL−1 concentration level of each element
c 5 mg L−1 of Y3+ in 1-propanol was used as the internal standard

Table 3 Effect of presence of
the potentially interfering ele-
ments on the extraction and de-
termination of heavy metals

aThe ratio for each alkaline ele-
ment is 10,000
bThe ratio for each alkaline earth
element is 1,000

Potentially interfering elements Ratio to target elements Relative Recovery (%)

Co2+ Cu2+ Mn2+ Ni2+ Zn2+

Na+, K+, Li+ 10,000a 96 100 91 101 99

Mg2+ 1,000 110 102 105 105 90

Ba2+, Ca2+ 1,000b 106 108 110 105 108

Al3++ 0.05 M F− 50 104 108 102 106 105

Hg2+ 50 95 99 96 100 90

Pb2+ 50 90 89 91 92 87

Fe3++ 0.05 M SCN− 5 108 110 105 108 103
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the response. The normalization was done by using Eq. 1,
where Mj representsM 0 Co, Cu, Mn, Ni and Zn with j01–5
values, i refers to the run number (i01–20) and k refers to the
run having the smallest peak area values amongst the entire
runs. As the Pareto chart in Fig. 2 presents, all of the factors
apart from salt% were evaluated influential at the 0.05% level
so salt addition was excluded from the optimization step.

Total Normalized Peak Area

¼
Xi;j¼5

i¼1;j¼1

Mj Peak area of runðiÞ
Mj Peak area of runðkÞ

� �
ð1Þ

A face-centered central composite design (FC-CCD) con-
sisting of 30 runs including 6 center points was applied to
optimize the four factors of effectiveness chosen in the screen-
ing design. Some of the obtained response surfaces are shown
in Fig. 3. As Table 2 represents the predicted optimal response
and the observed experimental responses concurred.

Effect of potentially interfering elements

The impact of potentially interfering elements on the extrac-
tion and determination of heavy metals was investigated add-
ing different amounts of Na+, K+, Li+, Mg2+, Ba2+, Ca2+, Al3+,
Hg2+, Pb2+ and Fe3+ into the tested sample solution containing
100 ng mL−1 of the target elements. The experimental results
are shown in Table 3. The tolerance limit is defined as the
highest amount of potentially interfering element which
results in the recovery of the studied species in the 90–110%
interval. Amongst the aforesaid elements, two had to be
masked with suitable masking agents; Al3+ was masked with
F- in order to form soluble aluminum complexes preventing its
precipitation as Al(OH)3 at the extraction pH of 8.0. Fe3+ was
also masked with SCN- due to its high affinity for complex
formation with TTA compared to those of target elements as a
result of which extraction in its presence resulted in very low
extraction recoveries of the desired elements.

Analytical performance

Under the optimized extraction conditions, the analytical per-
formance of the developed method in terms of enhancement
factor, detection limit, linearity and repeatability was evaluat-
ed in ultra-pure water, the results are shown in Table 4. The
calibration curves were obtained after the standard series were
subjected to the IL-DLLME followed by introduction to FI-
ICP-OES as described previously. It is noteworthy to mention
that the diluting 1-propanol contained Y3+ as internal stan-
dard, in this regard peak area of each point of the curves was
divided to its analogous Y3+ peak area at 377.433 nm.

Table 5 offers a comparative vision of the characteristics of
the current method with previously developed methods. As it T
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shows, the evaluated method offers comparable analytical
performance along with rapid and sensitive trace multi-
element analysis.

Real sample analysis

To evaluate the practical applicability of the developed
method, determination of target elements concentration
was done in three different environmental water samples
consisting of fish farming pond water, factory waste water
and tap water. Farming pond water sample was collected
from water outlets of a salmon farming pond constructed in
one of the Haraz river branches in north of Iran. Factory
waste water was the final outfall of waste water treatment
plant of one of the Iran’s largest automobile industrial com-
plexes. Tap water, the main source of the city inhabitants
drinking water, was collected from Tehran city tap water.
The results are given in Table S1 (ESM). As the recovery
values of the spiked samples were not in the range of 90-
110% for the last two samples, the standard addition ap-
proach was used for quantification of the target elements.

Conclusion

High sample throughput, low detection limits, sensitivity and
reproducibility are some of the advantages offered by the IL-
DLLME-FI-ICP-OES method, combining DLLME as an effi-
cient, rapid preconcentration method and ICP-OES as a pow-
erful sensitive multi-element determination technique has
created a powerful method of trace metal analysis in different
matrices. Application of the current method for determination
of the target elements in different water samples showed satis-
factory results, implying robustness of this combination. To the
best of our knowledge, this is the first work reporting the
introduction of the green unique ionic liquids to the ICP-OES.
This can lead to the use of task-specific ILs for simultaneous
selective extraction and speciation of different metallic species
by the ICP-OES. Furthermore the current study introduces a
new concept for introduction of ILs to the coupled separation-
spectroscopic techniques such as HPLC-ICP-OES/MS widely
used in drug-metabolite profiling [46]. Problems of introducing
large amounts of organic solvents to the plasma in such systems
may be overcome using 1-propanol, the plasma-compatible
organic solvent, as the organic portion of the mobile phase [47].
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