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Abstract Liquid phase microextraction (LPME) is a
popular technique for sample pretreatment before the trace
determination of target compounds from complex matrices,
examples being pesticides in environmental and food
samples, or drug residuals in biological samples such as
blood or urine. LPME is simple, affordable, easy to operate,
and highly sensitive. It is a miniaturized implementation of
conventional liquid-liquid extraction in which only a few
microliters of solvents are used instead of several hundreds
of milliliters. This review focuses on newly developed
LPME-based techniques, their application to environmental
and biological samples, on their limitations, and on future
applications.

Keywords Liquid phase microextraction . Single drop
liquid phase microextraction . Hollow fiber based liquid
phase microextraction . Dispersive liquid phase
microextraction . Ionic liquid

Acronyms
LPME liquid phase microextraction
LLE liquid-liquid extraction
SFE supercritical fluid extraction
SPE solid-phase extraction
SPME solid-phase microextraction
SDME single drop microextraction
HF-LPME hollow fiber-based LPME
DLLME dispersive liquid-liquid microextraction
DSDME directly-suspended droplet microextraction

SFDME Solidification of floating drop
microextraction

LOD low limits of detection
DI-SDME direct immersion SDME
HS-SDME headspace SDME
CFME continuous flow microextraction
GC-MS gas chromatography–mass spectrometry
ETAAS electrothermal atomic absorption

spectrometry
GC-ICP-MS gas chromatography-inductively coupled

plasma mass spectrometry
ETV-ICP-MS electrothermal vaporization inductively

coupled plasma mass spectrometry
MEKC micellar electrokinetic chromatography
GF-AAS graphite furnace atomic absorption

spectrometry
ESI-IMS electrospray ionizationion mobility

spectrometry, AFS, Atomic fluorescence
spectrometry

FAAS Flame atomic absorption Spectrometry
EAAS electrothermal-atomic absorption

spectrometry
ICP-OES inductively coupled plasma-optical

emission spectrometry
[C4MIM][PF6] 1-butyl-3- methylimidazolium

hexafluorophosphate

Introduction

Sample pretreatment is an important process in chemical
analysis, especially for analyzing and determining the target
compounds from complex matrices. A number of sample
preparation methods have been developed for the separa-
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tion and enrichment of analytes, such as liquid-liquid
extraction (LLE) [1], supercritical fluid extraction (SFE)
[2], and solid-phase extraction (SPE) [3, 4]. LLE is the
most common extraction method; however, it is time-
consuming, tedious, not sensitive enough for trace analysis,
and requires large amounts of toxic organic solvents. SFE is
a relatively rapid extraction method due to the low
viscosities and high diffusivities associated with supercrit-
ical fluids. The disadvantage of SFE is that the extraction
must be operated at high pressure (1,000–5,000 psi), which
is required to maintain the solvent in a supercritical state,
thus increasing the operating cost. Besides, due to the low
polarity of CO2, SFE results in low recovery of polar
components, further limiting its application. Another
popular sample preparation approach is solid-phase extrac-
tion (SPE). Although this method uses much less solvent
than LLE, an SPE column utilizes toxic organic solvents for
pretreatment and elution. Thus, an effective enrichment
method that addresses these drawbacks is necessary.
Recently, solid-phase microextraction (SPME) and liquid-
phase microextraction (LPME) have been developed [5–7].
However, SPME fibers are comparatively expensive and
have limited lifetimes; therefore, LPME is a more attractive
alternative, possessing many advantages such as simplicity,
lower cost, negligible consumption of organic solvents, and
high enrichment efficiency. In 1996, Liu and Dasgupta [8]
were the first to report a new extraction system, wherein a
micro drop of a water-immiscible organic solvent (1.3 μL)
is suspended in a larger aqueous drop. Later, Jeannot and
Cantwell [9] introduced a new solvent microextraction
technique, wherein a micro drop (8 μL) of organic solvent
was left suspended at the end of a Teflon rod immersed in a
stirred aqueous sample solution. The basis of these LPME
methods, called single drop microextraction (SDME), is the
distribution of analytes between a small amount of water-
immiscible solvent and an aqueous phase containing the
analytes. Although SDME is very simple and efficient, it
suffers from low stability of the hanging drop, which is
easily lost into the sample during extraction. In 1999,
Pedersen-Bjergaard and Rasmussen developed a new
hollow fiber-based LPME technique (HF-LPME) [10]. In
an HF-LPME device, the micro-extract solvent is contained
within the lumen of a porous hollow fiber. In this way, the
samples can be stirred or vibrated vigorously without loss
of the micro-extract solvent. This technique can also
provide a preconcentration of high analytes and excellent
sample cleanup, and the fiber is disposable after use due to
its low cost.

Another new LPME technique called dispersive liquid-
liquid microextraction (DLLME) was developed recently
by Rezaee and co-workers in 2006 [11]. In this method, an
appropriate mixture of extraction solvent and dispenser
solvent is injected into the aqueous sample by a syringe,

forming a cloudy solution. The cloudy state results from the
formation of fine droplets of the extraction solvent that
disperse in the sample solution. The cloudy solution is then
centrifuged, and the fine droplets sediment at the bottom of
the conical test tube. Determination of the analytes in the
remaining phase can be performed by instrumental techni-
ques. In summary, simplicity of operation, speed, low
sample volume, low cost, high recovery, and high enhance-
ment factor are some advantages of DLLME.

LPME techniques seem to be a promising tool for trace
analysis in complex samples due to easy sample cleanup
and low limits of detection (LOD), which are at the level of
nanograms per liter (ng L−1). Recently, the publications
about LPME increase year by year (as shown in Fig. 1).
This article focuses on newly developed LPME-based
techniques and their application to environmental and
biological samples. The advantages, limitations, and future
outlook on LPME techniques are also discussed.

Classification of LPME

Single-drop LPME

Single-drop microextraction (SDME) is the simplest oper-
ational mode of the LPME technique, in which a single
liquid drop is utilized as the collection phase, replacing the
coated fiber. It is based on the principle of distribution of
the analytes between a microdrop of extraction solvent at
the tip of a micro syringe and an aqueous phase. Since the
extraction medium is in the form of a single drop, this type
of microextraction is called SDME. Solvent extraction is
based on the principle that the equilibrium ratio of the
concentration of solute between the organic phase and the
aqueous phase is constant. SDME is also based on the same

Fig. 1 Evolution of number of publications concerning the combina-
tion of LPME methodologies
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principle of distribution. A solvent microdrop is exposed to
an aqueous sample, wherein the analyte is extracted into the
drop. In this manner, high enrichment factors are obtained
due to the high ratio of sample volume to organic phase
volume. After extraction, the microdrop is retracted back
into the microsyringe and then injected into instruments
such as GC-MS, GC, and HPLC for further analysis.

Three modes of SDME, direct immersion SDME,
headspace SDME, and continuous flow microextraction,
have been developed for various analytical applications.

Direct immersion SDME (DI-SDME)

In 1996, Liu and Dasgupta [8] reported a drop-in-drop
system to extract sodium dodecyl sulfate. In this report, a
1.3 μL microdrop of a water-immiscible organic solvent
was immersed into a large flowing aqueous drop to
accomplish the extraction process. At almost the same
time, Jeannot and Cantwell [9] introduced a procedure that
they termed solvent microextraction, in which the extrac-
tion medium is a droplet (8 μL) of 1-octanol held at the end
of a Teflon rod and suspended in a stirred aqueous sample
solution. After extraction for a prescribed time, the Teflon
rod is withdrawn from the aqueous solution, and the
organic phase is sampled with a microsyringe and injected
into a GC system for analysis. In this work, the authors also
proposed equilibrium and kinetic theories to explain this
new mode of microextraction. A simple DI-SDME appara-
tus was shown in Fig. 2.

To further improve the efficiency of extraction, He and
Lee [13] developed dynamic-LPME. It should be noted that
dynamic LPME is not strictly a SDME technique, as a drop
configuration is not involved. In this approach, the aqueous
sample is withdrawn into the microsyringe barrel preloaded
with an organic solvent. Then, a few seconds are allowed to
pass before the extraction of analytes into a thin film of
organic solvent formed along the wall of the barrel as the
bulk organic solvent is withdrawn back up towards the back

of the barrel. Finally, the bulk solvent and organic thin film
are recombined. This cycle is repeated many times within a
few minutes. The enriched organic phase is then used for
quantitation of analytes. In dynamic LPME, the mass
transfer of analytes from the sample is faster and provides
a higher enrichment factor; it is also claimed that the
extraction efficiency is higher and reproducibility is
improved as compared with static mode. Although SDME
is a simple, low cost, and fast extraction technique, its main
limitation is the instability of the droplet at high stirring
speeds and in samples with a complicated matrix; conse-
quently, careful and elaborate manual operations are
required. This problem can be alleviated to some extent
by using a 1 μL microsyringe instead of 10 μL one as well
as by modification of the needle tip, although the organic
drop is still not able to withstand a stirring speed of more
than 1700 rpm. Also, when dealing with complex matrices,
an extra filtration step of sample solution is imposed in
order to alleviate the compromised stability of the drop.
Furthermore, the sensitivity and precision of SDME
methods are rather poor and require further improvement.
Further, prolonged extraction times and faster stirring rate,
which may result in dissolution and/or dislodgment of the
drop, are not recommended.

Headspace SDME (HS-SDME)

In 2001, Jeannot and Cantwell [14] introduced a sample
preparation method referred to as headspace solvent micro-
extraction (HSME) or more commonly headspace single-
drop microextraction. In this method, the extraction of
analytes occurs by suspending a microliter drop of a proper
non-aqueous solvent from the tip of a microsyringe located
in the headspace of a sample, which is thermostated at a
given temperature for a preset extraction time. The drop
remains at the tip of the microsyringe throughout the
extraction period, is retracted back into the microsyringe,
and then used for the identification and quantification of the
extracted analytes. In this mode, the analytes are distributed
among three phases, the water sample, headspace, and
organic drop. Aqueous phase mass transfer is the rate-
determining step in this extraction, which means that a high
stirring speed of the sample solution facilitates mass
transfer and the extraction rate. This microextraction mode
has potential for the determination of volatile compounds or
volatile species produced by suitable derivatization meth-
ods in environmental, pharmaceutical, forensic, and food
determinations, and it provides a high degree of cleanup of
the extract as non-volatile and high molecular weight
matrix interferences are reduced, if not eliminated. In this
method, a solvent with a relatively low vapor pressure is
preferred; thus, the practical difficulties of this technique
include a limited choice of solvents due to the required

Fig. 2 Schematic illustration of DI-SDME (reproduced with permission
from Ref. [12])
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viscosity and vapor pressure. Further work is needed to
prove the reproducibility of these techniques.

Continuous flow microextraction (CFME)

CFME is another rapid, simple, inexpensive, and non-
hazardous sample preparation technique, and it was first
was first described by Liu and Lee in 2000 [15]. In this
method, in a 0.5 mL glass chamber, an organic drop is held
at the outlet tip of a polyetheretherketone (PEEK) connect-
ing tube, which is immersed in a continuously flowing
sample solution and acts as the fluid delivery duct and as a
solvent holder. The solvent drop interacts continuously with
the flowing sample solution, and extraction proceeds
simultaneously. Diffusion and molecular momentum result-
ing from mechanical forces contribute to the effectiveness
of this method. As the drop of the solvent makes full and
continuous contact with the sample solution, this method
could produce a higher concentration factor than the static
LPME method. Xia et al. [16, 17] made some modifications
to the basic CFME setup and developed a recycling-flow
system in which the “waste” from the chamber returns to
the sample vial. CFME has the advantage of higher
performance but it still requires a peristaltic pump. Like
SDME, since samples with complex matrices compromise
the stability of the solvent drop during extraction, an extra
filtration step of the sample solution is usually required.
Later, Chen et al. [18] used the similar method determined
the phenolic compounds in water samples by combined
CFME with GC-FID. Practical applicability demonstrates
that the method is feasible for qualitative and quantitative
analysis of phenolic compounds in wastewater samples.

Hollow fiber based LPME (HF-LPME)

Pedersen-Bjergaard and Rasmussen [6] introduced an
alternative concept for LPME based on the use of single,
low cost, disposable, porous hollow fibers typically made
of polypropylene. In this system, the microvolume of the
extracting liquid is contained within the lumen of a porous
hollow fiber such that the microextractant solvent is not in
direct contact with the sample solution. The major
advantage of this technique is that the sample can be stirred
or vibrated vigorously without any loss of the extracting
liquid, as it is mechanically protected. The schematic
illustration of HF-LPME was shown in Fig. 3. In HF-
LPME, prior to extraction, the hollow fiber is soaked into
the immiscible organic solvent, which results in the
immobilization of the organic solvent into the pores of the
hollow fiber. The organic solvent, typically 10–20 μL in
volume, forms a thin layer within the wall of the hollow
fiber. The hollow fiber is then placed into a sample vial
filled with the aqueous sample of interest. To speed up the

extraction, the sample is extensively agitated or stirred. The
analytes are then extracted from the aqueous sample
through the organic phase in the pores of the hollow fiber
and further into an acceptor solution inside its lumen. The
disposable nature of the hollow fiber eliminates the
possibility of sample carry over and ensures high repro-
ducibility, and the pores in the walls of the hollow fiber
imbue some selectivity by preventing the extraction of high
molecular weight materials. HF-LPME may be accom-
plished both in two-phase or three-phase mode. In two-
phase systems, the acceptor solution is the same organic
solvent as that immobilized in the pores, and the analytes
are collected in an organic phase that is compatible with
GC. However, in a three-phase mode, the acceptor solution
is another aqueous phase, and the analytes are extracted
from an aqueous sample through the thin film of the
organic solvent into an aqueous acceptor solution. There-
fore, this mode is compatible with HPLC, CE, and AS.

Dispersive LLME (DLLME)

Dispersive liquid-liquid microextraction (DLLME) is an-
other recent technique that has been successfully applied to
the extraction and concentration of a wide variety of
pesticides from water samples. DLLME was developed in
2006 by Rezaee and co-workers [11] and is based on a
ternary solvent component system involving an aqueous
phase, a non-polar water immiscible solvent (extracting
solvent), and a polar water miscible solvent (disperser
solvent). As shown in Fig. 4, fine droplets of the extracting
solvent are dispersed into the aqueous phase when an
appropriate mixture of both solvents is injected into the
water samples. Following mixing, a cloudy solution is
formed, followed by cooling and then centrifugation or
solidification. The resulting fine particles of the extracting

Fig. 3 Schematic illustration of HF-LPME (reproduced with permis-
sion from Ref. [19])
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solvent containing the target analytes are then separated
from the aqueous phase. High recoveries and high
enrichment factors can be obtained, and the extraction time
is relatively short. Mixing of the three components ensures
equilibration within a few seconds due to the large interface
between the multiple fine extractor droplets and the
aqueous solution. DLLME can thus be regarded as a
multiple-drop microextraction technique. In this method,
water insoluble and high-density extracting solvents are
mostly used. Chlorobenzene, chloroform, carbon disulfide,
and carbon tetrachloride are some examples [21]. Acetone,
acetonitrile, methanol, and ethanol are the main options as
dispersive solvents. DLLME can be coupled with GC,
HPLC, and also with atomic absorption spectrometry
(AAS) [22–24].

Directly-suspended droplet microextraction (DSDME)

This technique was developed by Lu et al. in 2006 [25]. A
free microdroplet of solvent is delivered to the surface of an
immiscible aqueous sample while being agitated by a
stirring bar placed on the bottom of the sample cell. After
some time, the microdroplet of solvent is withdrawn by a
syringe and analyzed. The main disadvantage of the method
is the difficult to take out the small amount of suspended
droplet from the solution. Using a microsyringe, exact
collection of the microdrop is impossible and some water
may be transferred into the syringe.

Solidification of floating drop microextraction (SFDME)

To overcome the problem of removing a tiny amount of the
suspended droplet in DSDME, a new extraction method
based on solidifying the floating organic droplet was

introduced by Khalili-Zanjani et al. in 2007 [26].In this
microextraction mode, an appropriate volume of a suitable
organic solvent (less than 20 μL) is delivered to the surface
of the aqueous solution. The organic solvent must have a
melting point near room temperature (in the range of 10–
30 °C), such as 1-undecanol, 1-dodecanol, 2-dodecanol and
n-hexadecane. After stirring a certain time, the sample is
transferred into an ice bath, and the organic solvent will be
solidified and can be removed from the sample matrix. The
solid drop melts quickly at room temperature and can be
analyzed. This novel technique has proved to be low-cost
and virtually organic solvent-free and could provide a high
enrichment factor. It can be easily integrated with gas
chromatography (GC), high-performance liquid chromatog-
raphy (HPLC), and atomic absorption spectrometry (AAS).
However, its main drawback is the limited selection of
extraction solvents because only a few organic solvents
have melting points close to room temperature.

Influence factors on the microextraction efficiency

LPME is based on the extraction and preconcentration of
analytes from the sample into a microvolume of extraction
solvent. There are some factors which highly affect the
microextraction efficiency.

Extraction solvent

During the HF-LPME process, the type of organic
extraction solvent is essential for the efficient extraction.
Firstly, the solvent must have good affinity for target
compounds. Secondly, it should have a low solubility in
water. Thirdly, it should be stable enough over the
extraction time. Finally, the organic solvent should have
excellent gas or liquid chromatographic behavior if using
these detection methods. Besides, low toxicity solvents are
considered to be better choice to avoid pollution. In
general, water-immiscible organic solvents such as 1-
octanol, toluene, di-n-hexyl ether, n-hexane, o-xylene, can
be used in HF-LPME, as shown in Tables 1 and 2. For DI-
SDME, DSDME and DLLME, the density of organic
solvents plays a key role in the extraction process. It
should be lower than water in DI-SDME and DSDME,
while it should be higher than water in DLLME. As shown
in Tables 1 and 3, decane, 1-butanol, n-octanol and
isooctane are usually used in SDME, and chlorobenzene,
tetrachloride carbon, dichlorocarbene are used in DLLME.

Extraction volume

The extraction volume of the extraction solvent directly
affects the extraction efficiency since it affects the surface
area of the drop and, in turn, the mass transfer of the

Fig. 4 Schematic illustration of DLLME (reproduced with permission
from Ref. [20])
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analyte from the sample to the microdrop. In general,
extraction volume in SDME is in the range of 1.0–10.0 μL,
because larger drops are difficult to manipulate and lead to
the microdrop’s instablility, which could result in the loss of
the drop. In HF-LPME, extraction volume can be changed
by using different length of hollow fiber. 2–8 cm of hollow
fibers are usually used with the corresponding volume
between 2.0 and 25 μL. As for the DLLME, the extraction
volume is in the range of 10–300 μL. In general, as
increasing the extraction volume, the extraction efficiency
and enrichment factor increase, however, exceed a certain
extent, the enrichment factor will decrease. Therefore, low
extraction volume is used to obtain highest sensitivity.

Extraction time

LPME is not an exhaustive extraction technique, thus
maximum sensitivity is attained at equilibrium conditions.
On the other hand, complete equilibrium need not be
attained for accurate and precise analysis. Therefore, it is
vital to achieve equilibrium distribution of the extraction
solvent between the aqueous phase and target compounds.
In SDME and HF-LPME, it usually need long time (30–
60 min) to achieve equilibrium and avoid loss of organic
solvent.

Extraction time is not as important in DLLME as in the
other LPME techniques. Because of the infinitely large
surface area between extraction solvent and aqueous phase
after the formation of cloudy solution, the target analytes
diffuses quickly into the extraction solvent. Therefore, the
DLLME method was time independent, which was the
most important advantage of this technique.

Stirring rate

Fast stirring of the sample could be employed in LPME in
order to enhance the extraction efficiency, since stirring
permits the continuous exposure of the extraction surface to
the aqueous sample. Stirring also reduces the time required
to reach thermodynamic equilibrium and induces convec-
tion in the membrane phase.

However, in HF-LPME and SDME process, high stirring
rate generate some problems such as production of air
bubbles on the surface of the hollow fiber, promotion of
solvent evaporation and instability of microdrop, which
could decrease the extraction efficiency.

Ionic strength of sample solution

The addition of salt is widely used in microextraction to
improve the analytes’ partitioning into the organic extrac-
tion phase. The addition of salt into the sample solution
sometimes can improve the extraction efficiency of theR
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analytes due to salting out effect. However, the presence of
higher concentrations of salt could change the physical
properties of the extraction film and thus reduce the
diffusion rates of the analytes into the organic phase. In
DSDME, an increase in ionic strength leads to two contrary
effects. On the one hand, it enhances the extraction
efficiency according to the “salting out” effect and, on the
other hand, the dissolved salt may alter the physical
properties of the Nernst diffusion film, then reducing the
diffusion rates of analytes into the drop. Hence, depending
on the analyte and the salt content of the aqueous solution,
one of these two effects may be dominant, enhancing or
restricting extraction. It is also possible that these two
effects may cancel each other, and in this case, changes in
the ionic strength of the sample solution do not affect
extraction efficiencies. Furthermore, caution should be
taken when high salt concentrations are used in the sample
matrix, since under these conditions, in combination with
the agitation of the sample, and the formation of air bubbles
was promoted, increasing the incidents of drop loss and/or
dislodgement of organic solvents.

Applications of LPME

SDME

In Table 1, the application of different modes of SDME to
environmental and biological samples is summarized [27–
51]. As mentioned earlier, the first application of SDME
was reported by He and Lee [12]. They first developed
LPME in a single drop of organic solvent by using a
conventional microsyringe. Here, they extracted two chlor-
obenzenes into a single drop of toluene using a 10 μL
syringe, providing higher (27-fold) enrichment within a
much shorter extraction time (3 min) and relatively poorer
precision (12.8%). Later, SDME was used to analyze metal
ion pollution in environmental samples such as soil and
water. In 2004, Fragueiro et al. [50] reported a simpler and
more environmentally friendly HS-SDME-ETAAS method
for the determination of As (III) and total As. This method
is based on the exposure of an aqueous microdrop (3 μL) of
Pd (30 mg L−1) to the headspace of a closed vial. Further,
the microdrop acts as extractant for the generated hydride.
Palladium is used both as an effective sorbing agent and a
matrix modifier in the furnace. Total arsine is extracted
from the sample in HCl medium, whereas As(III) is
determined by arsine generation from the citric acid
medium. Lin et al. reported SDME coupled with GC-FPD
for the determination of Cr (III) in water. In this method,
aqueous Cr (III) is first converted to volatile chromium
trifluoroacetylacetonate (Cr(tfa)3) by reaction with 1,1,1-
trifluoroacetylacetone (Htfa) under microwave irradiation.

Derivatization of Cr (III) at the ng mL−1 level is completed
in less than 1 min. The formed Cr (tfa)3 is then extracted
into a small droplet (2 μL) of toluene suspended at the tip
of a microsyringe needle. The optimal extraction time is
30 min. Mercury is an extremely toxic metal. Bagheri and
Naderi used SDME combined with electrothermal vapori-
zation atomic absorption spectroscopy for trace analysis of
mercury in water samples [46]. In that study, they applied a
microdrop of m-xylene as the extraction solvent. After
extraction, the microdrop was introduced directly into a
graphite furnace of AAS. A microdrop volume of 10 μL, a
sampling temperature of 27 °C, and use of m-xylene
containing dithizone as a complexing agent were found to
be the major parameters to achieve a high enrichment factor
of 970. Besides the determination of heavy metal content,
SDME can also be used for the determination of pesticides
in environmental and food samples.

Viñas et al. developed SDME combined with GC-MS for
determination of seven strobilurin and six oxazole fungicides in
fruits and juice samples [47]. The procedures are based on the
dispersion of microvolumes of low-density organic solvents
and the collection of floating organic solvent on the surfaces
of the aqueous samples. Enrichment factors are between
80–1600, which implies the high sensitivity of this method.
The same SDME technique was used by the group of Zhao et
al. for the analysis of chloroacetanilide herbicides (alachlor,
acetochlor, metolachlor, pretilachlor, and butachlor) residues
in water [42]. The optimum experimental conditions were
found to be 1.6 μL toluene microdrop, 5 mL water sample,
400 rpm stirring rate, 15 min extraction time, and no salt
addition. Sharma et al. reported solid-phase extraction (SPE)
of phenol and chlorophenols, their derivatization to methyl
ethers, headspace single-drop microextraction (HS-SDME) of
methyl ethers using 1-butanol as extraction solvent, and direct
transfer of the drop into the injector for high performance
liquid chromatography with diode array detection (HPLC-
DAD) [28]. A rectilinear relationship was obtained between
the amount of chlorophenols and peak area ratio of their
methyl ethers/internal standard (4-methoxyacetophenone) in
the range 0.01–10 mgL−1, correlation coefficient in the range
0.9956–0.9996, and limit of detection in the range
1.5–3.9 μg L−1 when HS-SDME alone was used for sample
preparation. When using coupled SPE and HS-SDME, the
linear range obtained was 0.1–500 μg L−1, correlation
coefficient in the range 0.9974–0.9998, and the limit of
detection in the range 0.04–0.08 μg L−1, which implied
higher sensitivity.

Lambropoulou et al. extracted 10 organophosphorous
insecticides from water samples coupling SPME with GC-
MS [30]. In this method, extraction was achieved by
suspending a 1.5 μL toluene drop to the tip of a
microsyringe immersed in a 5 ml donor aqueous solution
containing 2.5% NaCl (w/v) and stirred at 800 rpm. After
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microextraction, the organic drop is then drawn back into
the syringe, after which the needle is removed from the vial
and transferred immediately into the GC injection port for
analysis. Under selected ion monitoring mode, the limits of
detection were found to be in the range between 0.010 and
0.073 μg L-1.

SDME is also a trace analysis tool for drug residue in
biological samples. In 2006, He and Kang used SDME for
determination of the popular drug methamphetamine and its
major metabolite, amphetamine, in a urine sample [31]. The
enrichment factor was above 500−fold, providing an
effective detection method for abuse drugs. Amongst recent
developments, a simple SDME coupled with capillary
electrophoresis was developed to determine six fluoroqui-
nolones in human urine [38]. The limits of detection
(LODs) varied from 7.4 to 31.5 μg L−1 at a signal-to-
noise (S/N) ratio of 3. The recoveries at two spiking levels
were found to be 81.8–104.9% with relative standard
deviations of <8.3%. Fentanyl was a potent synthetic
narcotic analgesic administered in the form of a transdermal
patch for the management of chronic pain. Ebrahimzadeh et
al. determined fentanyl in biological (plasma and urine) and
wastewater samples using SDME-HPLC [41]. Fentanyl was
extracted from 0.01 M NaOH solution (donor phase) into a
thin layer of organic phase (100 μL), then back-extracted
into 5 μL of the acidic acceptor microdrop (1×10−3 M
HClO4) immersed in the organic membrane from the tip of
a 25 μL HPLC syringe. At the most appropriate conditions
(100 μL of noctane, 3.6 mL of the donor phase maintained
at 0.01 mol L−1NaOH, 5 μL of 1×10−3 M HClO4 as the
acceptor microdrop, stirring rate of 1000 rpm for pre-
extraction and 700 rpm for backextraction, 30 °C, no salt
addition, 30 min for pre-extraction and 20 min for back-
extraction), an enrichment factor (EF) of 355 was obtained.

HF-LPME

In Table 2, current applications of HF-LPME reported in the
scientific literature are summarized [52–99]. As seen from
the table, most applications have been reported within the
fields of environmental analysis and drug/pharmaceutical
analysis. In addition, a few papers have focused on food,
beverages, and peptides. Typically, two-phase LPME
involves the use of either toluene or n-octanol as the
organic phase, whereas three-phase LPME in most cases
has been conducted with n-octanol or dihexyl ether as the
SLM. In three-phase LPME, HCl and NaOH are used to
make appropriate pH adjustments in the sample and
acceptor solution.

As seen in Table 2, GC or GC-MS are mostly used for
the final analysis of extracts from two-phase LPME,
whereas HPLC, LC-MS, or CE are used in combination
with three-phase LPME. Since LPME often provides very

clean extracts, some papers have reported the direct
coupling of LPME with different spectroscopic techniques
in which the chromatographic or electrophoretic step has
been eliminated. Varanusupakul and co-workers et al. [52]
analyzed haloacetic acids (HAAs) in water using HF-
LPME. The HAAs were derivatized with acidic methanol
into their methyl esters and simultaneously extracted with
supported liquid hollow fiber membrane in headspace
mode. The derivatization was attempted directly in water
sample without sample evaporation. The HF-LPME was
performed using 1-octanol as the extracting solvent at 55 ◦C
for 60 min with 20% Na2SO4. The method detection limits
of most analytes were below 1 μg L−1.

Later, Payán et al. [97] explored the extraction and
preconcentration of acidic pharmaceuticals in wastewaters
using HF-LPME. A full factorial design for three factors
and two levels was used to determine the effects and
importance of donor pH, acceptor pH, and stirring time.
Detection limits were found to be 20, 100, and 300 ng L−1

for salicylic acid, diclofenac, and ibuprofen, respectively.
The same group also carried out the determination of
sulfonamides and their main metabolites in environmental
water [98]. Here, a Q3/2 Accurel KM polypropylene
hollow fiber supporting 1-octanol was used with 2 M
Na2SO4 aqueous solution (pH 4) as the donor phase and
aqueous solution (pH 12) as the acceptor phase. The
procedure produced very low detection and quantitation
limits of 0.3–33 ng L−1 and 0.9–100 ng L−1, respectively.

Yang et al. used HF-LPME coupled with HPLC-UV to
simultaneously determine three Aconitum alkaloids in
human urine [55]. Analytes were extracted from a 5 mL
urine sample containing 1.0 mmol L−1 of NaOH in 1-
octanol membrane phase impregnated in the pores of a
hollow fiber wall and then back into acidified aqueous
solution in the lumen of the hollow fiber. After extraction,
10 μL of the acceptor phase was analyzed directly by
HPLC. Another innovative approach involves the use of
dynamic LPME based on hollow-fiber supported liquid
membrane (SLM) extraction for extracting ionisable xeno-
biotics from human plasma [72]. The system is non-
expensive, convenient, requires minimal manual handling,
and enables samples with volumes as small as 0.2 mL to be
extracted. For plasma samples, extraction efficiencies
between 30 and 58% were achieved within 20 min. This
method also produced 98- to 288-fold enrichment factors
within 60 min of extraction and good repeatability with
RSDs of 0.99–7.22%.

Since LPME can provide very high enrichments,
combinations with CE may be used to determine drugs
and drug metabolites in human plasma, although CE with
UV detection is known to provide relatively poor detection
limits. This may be especially interesting for chiral
applications since CE is well known for its excellent chiral
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selectivity. Previously, three-phase LPME of both [69] was
followed by chiral CE to monitor chiral metabolism in
humans. Although CE analysis was conducted with UV
detection, therapeutically relevant concentrations were
easily measured due to the high enrichment obtained by
LPME. Lin et al. [70] used microemulsion electrokinetic
chromatography (MEEKC) coupled with HF-LPME for the
determination of six aromatic amines. The obtained
enrichment factors ranged between 70 and 157 in a
30 min extraction time, and the LODs ranged between
0.0021 and 0.0048 μg mL−1. Compared to conventional
sample preparation procedures, this environmentally friend-
ly method certainly provides better sensitivity and has the
distinct advantage of simplicity. HF-LPME can also be
combined with GC-MS. Ghasemi et al. [65] developed
using a headspace HF-LPME combined with capillary gas
chromatography–mass spectrometry for determination of
volatile organic compounds of selenium (dimethylselenide
(DMSe) and dimethyldiselenide (DMDSe).

DLLME

Besides HF-LPME, DLLME also has been widely used in
environmental and biological analyses (Table 2) [22–24,
100–128]. Rezaee et al. used DLPME for extraction and
determination of polycyclic aromatic hydrocarbons (PAHs)
in water samples [124]. Specifically, 1 mL of acetone (as
disperser solvent) containing 8.0 μL of C2Cl4 (as extracting
solvent) was rapidly injected into 5 mL of the sample
solution using a 1 mL syringe, after which the mixture was
gently shaken. Then, the mixture was centrifuged and 2 μL
of the sedimented phase was injected into the GC for
analysis. Under optimal conditions, the obtained PFs were
found to range from 603 to 1113. The linear range was
0.02–200 μg L−1 and the LOD was 0.007–0.030 μg L−1 for
most of the analytes. Yan et al. preconcentrated and
determined six pyrethroids in river water samples using
ultrasound-assisted dispersive liquid-liquid microextraction
[118]. In this method, a suitable mixture of extraction
solvent (20 μL of tetrachloromethane) and dispersive
solvent (1.00 mL of acetone) are injected into the aqueous
samples (10 mL), resulting in a cloudy solution. After
centrifugation, the enriched analytes in the sediment phase
are determined by HPLC-UV. Under optimal conditions, the
enrichment factors for the six pyrethroids were ranged from
767 to 1033 folds.

Leong et al. [117] developed a technique based on
solidification of a floating organic drop (DLLME-SFO) for
the determination of six organochlorine pesticides in water.
The experimental procedure consisted of adding disperser
and extraction solvents (acetonitrile and hexane, respec-
tively) to the aqueous solution, such that small hexane
droplets formed. Then, the tube was deposited in crushed

ice, and the solidified organic solvent drop was transferred
to another receptacle, where it melted. Enrichment factors
were found to be in the order of 37–872.

Another example is the work of Du et al. [121], who
developed a similar methodology for the extraction of
cypermethrin and permethrin from pear juice. In this work,
the DLLME disperser-acting solvent (methanol) and the
extraction solvent (C2Cl4) had already been used to extract
the pesticides from the matrix. Under the optimum
condition, the enrichment factors for cypermethrin and
permethrin were 344 and 351 fold respectively.

Another important group of analytes that have been the
focus of DLLME procedures are pharmaceuticals. Liu et al.
combined SPE with DLLME for the determination of
clenbuterol (CLB) in porcine tissue samples [111]. The
recoveries at three spiked levels were ranged from 87.9% to
103.6% with RSD less than 3.9% and the EF of 62 folds
could be obtained. Recently, Lv et al. developed a new
DLLME method combined with floating organic droplet for
the determination of volatile aldehyde biomarkers (hexanal
and heptanal) in human blood [126]. In this method, 1-
dodecanol is used as an extraction solvent and its density is
lighter than water, such that it forms a floating drop and can
easily be removed for analysis.

Chen et al. [127] applied DLLME to determine
chloramphenicol, a broad-spectrum antibiotic banned inter-
nationally, in honey. To develop the method, it was
necessary to dilute the honey with water and vortex the
solution until it became homogeneous. The high viscosity
of the initial sample precluded the formation of the droplets,
leaving dilution as the best approach. A mixture of
acetonitrile and 1, 1, 2, 2-tetrachloroethane (as extraction
solvent) was injected into an aliquot of 5 μL of the
homogeneous diluted honey sample. After centrifugation,
the final extraction droplet was analyzed by HPLC-UV.
Mean relative recoveries were in the range 89.5–91.7%
with RSD less than 5.1%.

Tsai et al. [128] used a modified DLLME method
combined with HPLC-DAD to determine quinolones in
pig muscle. About 5 g of tissue was extracted with
acetonitrile (containing 70 μL of 70–72% perchloric acid),
which was used as a disperser solvent. In this case, 300 μL
of dichloromethane were added, and the mixture was
quickly introduced into 7.5 μL of deionized water. DLLME
was used as more of a cleaning step than an extraction
procedure. The effects of both extraction solvent volume
and pH of water were investigated. Increased dichloro-
methane volume resulted in higher extraction recoveries,
but the cloudy suspension of droplets was not well formed,
and the ternary component system should have been
vortexed. However, larger volumes of dichloromethane
resulted in larger volumes of the settled phase as well as
decreases in the enrichment factor.
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DSDME

As mentioned above, DSDME was introduced by by Lu et
al. in 2006 [25] using, 8-dioxyanthraquinone as research
subject. Later, Sarafraz-Yazdi et al. developed a similar
methodology for determining two tricyclic antidepressant
drugs (amitriptyline and nortriptyline) in urine sample[129].
In this technique, an aqueous sample is agitated with a
stirring bar, creating a mild vortex at the center of the vial.
A droplet of toluene is placed at the bottom of the vortex.
After 20 min, toluene is withdrawn with a syringe and
injected into the GC. Under the optimum condition, typical
enrichment factors were 167 and 179 for amitriptyline and
nortriptyline, respectively. The same author combined
HPLC with DSDME for determining the diclofenac, 3-
nitroaniline, chlorophenols and volatile organic compounds
such as benzene, toluene, ethylbenzene and o-xylene in
environmental water samples [130–132], which provided a
fast, effective trace detection method for environmental
monitor. In 2009, Farahani et al. examined the potential of
DSDME for pretreatment complicate sample matrix (human
plasma) [133]. An enrichment factor of 187 along with
substantial sample clean up was obtained under the
optimized conditions. Excellent extraction efficiency is
achieved almost independent of the matrix in the actual
application. Subsequently, Viñas et al. developed DSDME
with injection-port derivatization coupled to GC-MS for the
analysis of polyphenols in herbal infusions, fruits and
functional foods [134]. The procedure uses undecanone as
extraction solvent. The sensitivity and detection limits for
polyphenols using the DSDME sample pretreatment meth-
od were very low. Enrichment factors are between 413 and

578. DSDME also can be combined with CE for analyzing
three alkaloids [135]. Microliters of n-octanol were dripped
on the top of the aqueous sample and the mixture was
agitated for 8 min at 1150 rpm for DSDME. Afterwards, the
stirring rate was adjusted at 800 rpm and the larger droplet
of organic phase kept steady. Then, the microsyringe filled
with 1 μL of 20 mmol L−1 HCl was inserted into the vial by
piercing the septa. The needle tip was fixed in the center of
the larger droplet of organic extractive phase and the
plunger of the syringe was depressed completely to suspend
the droplet in it for back-extraction. Under the optimum
conditions, the enrichment factors ranged from 231 to 524.

SFDME

As a novel sample preparation method, SFDME can be
used in combination with HPLC, GC, and AAS. It has been
widely applied in the fields such as the analysis of pesticide
residues and heavy metals. The typical applications are
listed in Table 4 [136–149].

It was first introduced by Khalili Zanjani et al. [26] for
analyzing polycyclic aromatic hydrocarbons in water
samples. 1-undecanolwas delivered to the surface of
solution containing analytes and solution was stirred for a
desired time. Then sample vial was cooled by inserting it
into an ice bath for 5 min. The solidified 1-undecanol was
transferred into a suitable vial and immediately melted;
then, 2 μL of it was injected into a gas chromatograph for
analysis. Under the optimized conditions, enrichment
factors were in the range of 594–1940, which greatly
improved the sensitivity of the trace amount of pollutes in
environmental water [136]. Later, Sobhi et al.was first to

Table 4 Applications of solidification of floating drop microextraction in environmental samples

Analytes Sample
matrix

Extraction
solvent

Extraction
volume (μL)

Analytical
method

LOD
(μg L−1)

Enrichment factors
(−fold)

Ref.

Polycyclic aromatic
hydrocarbons

Water 1-undecanol 8 GC/FID 0.07–1.67 594–1940 136

Fat-soluble vitamins Water 1-undecanol 15.0 HPLC-UV 1.0–3.5 30–35 137

Lead Water 1-undecanol 20.0 GFAAS 0.0009 500 138

Cadmium ions Water 1-undecanol 160 FI-FAAS 0.0079 640 139

Heavy metals Water 1-undecanol 140 ETAAS 0.1–0.3 57–96 140

Mercury Water Undecanoic acid 50 ETAAS 0.07 430 141

Arsenic Water 1-undecanol 15 ETAAS 0.0092 1000 142

Aluminium Water 1-undecanol 132 ICP-OES 0.8 128 143

Vanadium Water 1-undecanol 100 ETAAS 0.007 184 144

Silver Water 1-undecanol 30 GFAAS 0.056 250 145

Heavy metals Water 1-undecanol 80 GFAAS 0.0002–0.0013 800 146

Triazine Herbicides Water 1-undecanol 16 HPLC-UV 0.03–0.10 33.0–72.6 147

Organochlorine pesticides Water Hexadecane 10 GC/ECD 0.011–0.11 37–872 148

Diethofencarb and
pyrimethanil

Water 1-dodecanol 20 HPLC-UV 0.24 and 0.09 145 and 161 149
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employ orthogonal array designs (OADs) to screen the
liquid-phase microextraction (LPME) method in which few
microliters of 1-undecanol were delivered to the surface of
the aqueous sample to analysis fat-soluble vitamins [137].
Besides, another important application of SFDME is to
detect the heavy metals pollution in environment and food
[138–146]. After SFDME, the trace amount of heavy
metals could be detected by ETAAS or other instruments.
Combined with GC or HPLC, SDME also have been used
to analysis the pesticide residual [147–149].

Development of novel microextraction solvent “ionic
liquid”

Extraction mechanisms

Ionic liquids (Ils) are gaining widespread recognition as
novel solvents in chemistry. Compared to classical organic
solvents, Ils generally consist of bulky, nonsymmetrical
organic cations, such as imidazolium, pyrrolidinium,
pyridinium, ammonium, or phosphonium, as well as
numerous different inorganic or organic anions, such as
tetrafluoroborate and bromide anions. The unique proper-
ties of Ils, such as a negligible vapor pressure, good thermal
stability, tunable viscosity, and miscibility with water and
organic solvents, as well as their good extractability for
various organic compounds and metal ions mainly depend
on their special structures. Some Ils are suitable for
conventional liquid-liquid extraction due to their immisci-
bility with water (which allows formation of biphasic
systems) as well as the high solubility of their organic
species. The design of safe and environmentally benign
separation processes plays an increasingly important role in
the development of extraction technology.

Huddleston et al. [150] studied the partition coefficients
between Ils and water and compared the results with the
octanol-water partition coefficient. They found that these
two coefficients exhibit a good linear relationship, and the
distribution coefficient is higher for the uncharged form.
Later, Armstrong’s group measured the ionic liquid/water
and ionic liquid/anthene distribution coefficients of a set of
40 compounds with various functionalities, including
organic acids, organic bases, amino acids, antioxidants,
and neutral compounds, using liquid chromatography
[151]. Marked differences in the partitioning behavior of
basic, acidic, and neutral compounds were observed. This
study indicated a lower basicity of the IL phase compared
to octanol. Acidic solutes have distribution coefficients
lower than their distribution coefficients in octanol. The
opposite is true for aminoaromatic compounds. These
results can probably be attributed to the lower basicity of
the Ils compared to octanol. In general, for ionizable

compounds, transfer from aqueous phase to an IL at room
temperature is more efficient for the neutral form of the
compound. Changing the pH of the aqueous phase is an
effective means of adjusting selectivity for extraction by Ils,
as is the case for non-ionic solvents.

Application of ionic liquid-based LPME

Table 5 summarizes some representative examples of IL-
based extraction of metal ions and organic contaminants in
environmental samples, such as water, soil, and so on
[152–170].

Extraction of metal ions from polluted environmental
samples is another main use of Ils. The ions Ag+, Hg2+,
Cu2+, Pb2+, Cd2+, and Zn2+ have successfully been
extracted into [BMIM][PF6] by employing dithizone as a
chelator to form neutral metal-dithizone complexes [152,
153, 155, 158, 161, 162, 168–170]. It was found that the
extraction efficiency of Ils is higher than that of chloro-
form at low Ph. Furthermore, metal ions can be extracted
from aqueous phase into [BMIM][PF6] and then back into
aqueous phase with high recovery by manipulating the Ph
value of the extraction system.

Manzoori et al. [152] used IL ([C4MIM][PF6])-based
SDME for preconcentration of lead in environmental water.
Lead was complexed with ammonium pyrroldinedithiocar-
bamate (APDC) and extracted into a 7 μL ionic liquid drop.
The extracted complex was directly injected into the
graphite furnace. In the optimum experimental conditions,
the limit of detection (3 s) and the enhancement factor were
0.015 μgL−1 and 76, respectively. And later, the similar
result was reported for the extraction of manganese using
the same IL [155].

DLLME takes advantage of the low solubility of the
extraction solvent, in this case Ils such as [HMIM][PF6]
that are dispersed throughout a larger sample (aqueous)
volume assisted by a disperser solvent and subsequently
recovered from solution as a discrete drop. Liu et al. [168]
first performed IL-based dispersive liquid-phase micro-
extraction (IL-DLPME) of polycyclic aromatic hydrocar-
bons (PAHs) from water. A mixture of 0.052 g of [HMIM]
[PF6] and 0.50 μL of methanol (disperser solvent) was
quickly injected into a sample solution using a 1 μL
syringe. A cloudy solution quickly formed as fine droplets
of the immiscible extraction solvent dispersed in the
aqueous sample, which greatly enlarged the contact area
between the extraction solvent and aqueous phase. The
analytes in the aqueous sample were extracted into the fine
IL droplets at this step. Then, the water–methanol-[HMIM]
[PF6] mixture was centrifuged at 4,000 rpm for 10 min.
After this, the dispersive particles of the IL phase
sedimented at the bottom of a conical test tube. The upper
aqueous phase was then removed with a syringe, and the IL
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phase (about 19 μL) was dissolved in 50 μL of methanol,
after which 10 μL was injected into the HPLC system for
analysis. The enrichment factor ranged from 10 to 200,
which is about three times that obtained with 1-octanol.
Recently, Zhou et al. [163] developed a temperature-
controlled IL dispersive liquid-phase microextraction tech-
nique for the extraction of pyrethroid pesticides from water
samples. A homogeneous phase of IL and water was
obtained by heating, whereas cooling of the homogeneous
liquid mixture produced phase separation due to decreased
solubility. Briefly, 45 μL of [HMIM] [PF6] was added to
about 10 μL of the water sample, and this was then heated
to 70 °C, allowing the IL to completely dissolve in water.
After the extraction, the system was cooled down, and
phase separation of the IL from water was obtained by
centrifugation.

Using a similar protocol, chlorobenzenes, phenols,
dichlorodiphenyltrichloroethane, and its metabolites in a
water sample were preconcentrated. A later study showed
that many organic pollutants, including chlorobenzenes,
anthraquinones, organophosphorus pesticides, herbicides,
and Triazines herbicides can be preconcentrated using this
method [164–167]. The advantage of dispersive methods is
the greater surface area provided by the dispersed or
dissolved extraction solvent, which enhances the rate of
analyte transfer to the extraction solvent.

HF-LPME using ILs has also been used in extraction.
In this method, the extraction solvent is immobilized
within the pores of the membrane and forms a liquid
barrier between the donor phase (sample solution) and
acceptor phase (injection solvent). For aqueous donor
phases, room temperature ILs [OMIM][PF6] are suitable
solvents for the extraction of chlorophenols into basic
buffer. The LODs for chlorophenols are in the range from
0.5–2.5 μg/L, which is suitable for analysis of typical
environmental samples [154].

Limitation and outlook

LPME-based techniques are potential extraction procedures
for the analysis of pesticide residuals in environmental and
food samples as well as drug residuals in biological
samples. In general, LPME can provide high extraction
recoveries, high enrichment, and excellent sample cleanup
within a short extraction time (1–45 min). However, the
implementation of LPME is currently limited by the
unavailability of commercial equipment. Work in this area
is in progress, and the near future should produce some
commercial equipment for LPME. This equipment should
be fully automated and compatible with common laboratory
robotics and auto-samplers. Based on the strong advantages
of LPME, it is expected to be an important future sample

preparation technique complementing existing techniques
such as liquid-liquid extraction, solid-phase extraction, and
solid-phase microextraction.
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