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Abstract The electrochemical oxidation of 3-nicotinamine
adenine dinucleotide (NADH) was investigated at a glassy
carbon electrode modified with carbon mesoporous materials
(CMM). Due to the large surface area and electro-catalytic
properties of CMM, the overpotential of the electrodes
toward the oxidation of NADH is decreased by 595 mV in
aqueous solution at neutral pH. The anodic peak currents
increase steadily with the concentration of NADH in the
range from 2 uM to 1.1 mM, the detection limit being
1.0 uM at pH 7.2 and a potential of +0.3 V vs. SCE. The
apparent Michaelis-Menten constant is ~21.5 uM. The
results enable NADH to be sensed at a low potential and
are promising with respect to the design of dehydrogenase-
based amperometric biosensors.

Keywords NADH - Mesoporous carbon - Electrocatalysis -
Modified electrode

[3-nicotinamide adenine dinucleotide (NADH) is an important
coenzyme involved in metabolic processes, widely existing in
the living cells. More than 300 enzymes have been identified
as NADH-dependent dehydrogenases. Thus, the development
of electrochemical biosensors for direct analysis of NADH
have received considerable interests [1, 2]. Generally, the
direct oxidation of NADH at the ordinary electrode occurs at
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a high overpotential [3] and is followed by the passivation of
the electrode surface [4]. Therefore, how to reduce the
oxidative overpotential has been a critical research topic.
Modification of the electrode surface has been reported to be
an effective method for amperometric analysis. Blaedel and
his co-workers investigated that the oxygen-containing
functionalities, such as hydroxyl, carbonyl, carboxyl and
quinine, produced on carbon surfaces via the oxidative
pretreatment were responsible for mediating the electro-
catalytic oxidation process [5]. Thus, the electrodes modified
with an o-quinone moiety as the mediator have been studied
in detailed [6-10]. Besides these physical adsorption
modification, continuing efforts have been made recently in
order to explore the new matrices for the electrode surface
modification to further reduce the overpotential of the
electrochemical oxidation of NADH [11-18]. Musameh et.
al. showed a direct detection of NADH at single-wall and
mutil-wall carbon nanotube modified electrode at 0.3 V [12].
Raj et al. reported a novel carbon nanotubes polymer redox
hybrid thin film for electrocatalytic sensing of NADH [15].
Additionally, a lay-by-layer assembled film based on
chitosan/carbon nanotubes was designed to achieve the
electrocatalytic oxidation of NADH [16].

Recently, the mesoporous materials possess a pore size
in the range of 2-20 nm, high specific surface area and
large pore volume, which have attracted increasing atten-
tion in various fields such as catalysis and electrochemistry
[19, 20]. The application of mesoporous materials as
matrices for the development of sensors in biological
electroanalysis has been increasingly studied [21]. Ju and
his coworkers used titanium-containing MCM-41 modified
glassy carbon electrode in NADH oxidation reaction and
achieved a low potential detection of NADH at 0.28 V (vs.
SCE) [21]. You et al. reported an electrode modified with
bicontinuous gyroidal mesoporous carbon for electro-
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oxidation of NADH [22]. The mesoporous carbon materials,
possessing both the properties of general mesoporous
materials and the good conductivity of carbon-based
materials, might contribute the multiple advantages in the
eletrocatalytic oxidation of NADH.

In this paper, the electrochemical oxidation of NADH was
studied on a glassy carbon electrode modified with a carbon
mesoporous material (CMM) that was easily synthesized
using the ordered mesoporous silica SBA-15 as a template and
sucrose as a carbon source [23, 24]. Such CMM has a larger
surface area of 1430 m? g ', and the total pore volume and
mesopore size are 1.28 cm® g ' and 4.2 nm, respectively.
The CMM-modified electrodes exhibit a significant decrease
in the overpotential of NADH oxidation.

Experimental
Chemicals and reagents

NADH (-nicotinamide adenine dinucleotide, reduced
form) and Nafion” perfluorinated ion-exchange resin,
5 wt.% solution were purchased from Sigma-Aldrich
(www.sigmaaldrich.com). All other reagents were of ana-
lytical grade and used without further purification. The
0.05 M phosphate buffer solutions (PBS) were prepared by
mixing the stock solution of NaH,PO, and Na,HPO,.
Deionized water was used in all experiments.

Preparation of CMM-modified electrode

A GC electrode (3 mm in diameter) was successively
polished to a mirror finish with 0.3- and 0.05-pm alumina
particles, rinsed thoroughly with deionized water, and
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Fig. 1 Cyclic voltammograms of the CMM/GC electrode in 0.05 M

pH 7.2 PBS before (a) and after (b) the addition of 0.01 M NADH at a
scan rate of 50 mV s~
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Fig. 2 Raman spectrum of CMM synthesized with SBA-15 as a
template and sucrose as a carbon precursor

successively sonicated in 1:1 nitric acid, acetone and
deionized water. The CMM was synthesized by using
SBA-15 mesoporous silica as a template and sucrose as a
carbon source as reported previously [24]. Then the GC
electrode was coated by casting an aliquot of 10 nL Nafion
suspension uniformly dispersed with 0.5 mg mL™' CMM
samples and dried under ambient conditions.

Apparatus

Raman spectrum was obtained using a Dilor LabRAM-1B
Raman microscope with 532.8 nm excitation. The electro-
chemical measurements were performed on a CHI 1030
Electrochemical Workstation (CHI, USA). A three-
electrode system was set up, with a CMM modified GC
electrode as the working electrode, a coiled platinum wire
as the counter electrode, and a saturated calomel electrode
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Fig. 3 Amperometric responses of CMM/GC electrode at 0.3 V (vs.
SCE) to successive additions of NADH into 5.0 mL 0.05 M pH 7.2 PBS
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Fig. 4 Plot of electrocatalytic response current of CMM/GC electrode
at 0.3 V (vs. SCE) vs. NADH concentration and the corresponding
double-reciprocal plot of the current and concentration (inset)

(SCE) as the reference in an electrochemical glass cell
containing 10 mL 0.05 M PBS at room temperature. A
magnetic stirrer provided the convective transport during
the amperometric measurement.

Results and discussion

Electrochemical oxidation of NADH at a CMM/GC
electrode

Figure 1 shows the electrochemical behaviours of CMM and
NADH ranging from —0.5 V to 0.4 V at CMM modified GC
electrode. As shown in curve a, a pair of surface peaks of
CMM is at —0.18 V and —0.08 V, corresponding to the
reduction and oxidation of the oxygen-containing groups on
the CMM surface [25]. While in curve b, partly overlaid by
the above redox peaks of CMM, the anodic peak of NADH
at CMM/GC electrode can be observed at 0.10 V, indicating
a substantial negative shift compared with 0.695 V at the

Table 1 Characteristics for comparison of the NADH biosensors

bare GC electrode, and 0.3~0.5 V at the electrodes modified
with carbon nanotubes-related materials as reported [12, 26,
27]. The reason for the electrocatalytic oxidation of NADH
by CMM might be related to the oxygen-rich groups such as
hydroxyl and quinone on carbon surfaces, which can be used
as mediators of electron communications [5-7, 10]. These
oxygen-rich groups can be introduced during the CMM
preparation, with the sulfuric acid used as the carbonization
catalyst [24].

Additionally, the Raman spectrum of CMM exhibits the
presence of D- (1315.08 cm ') and G- (1585.86 cm )
bands as shown in Fig. 2. The D-band is linked to breathing
modes of six-fold aromatic rings, ascribing to atomically
disordered carbon, while G-band due to the sp® C-C
stretching is the characteristic feature of ordered graphite
carbon, revealing a well-defined graphitized structure of
CMM [28]. Thus the higher relative intensity ratio of the D-
and G-bands (Ip/Ig=1.97) of CMM than that (Ip/Ig=0.74) of
carbon nanotubes [29] means CMM contains considerable
edge-plane-like defective sites, providing CMM with
the enhanced electrocatalytic activity and the minimizing
passivation effects on NADH oxidation [30].

The influence of the scan rates on the electro-oxidation
of NADH at the CMM/GC electrode is also investigated by
cyclic voltammetry. The anodic peak current of 0.01 M
NADH at the CMM/GC electrode increases linearly with
the square root of the scan rate in the range from 0.02 Vs~
to 0.2 V s '. This result suggests that the electrode reaction
of NADH is a diffusion-controlled process.

Influence of the applied potentials and pH
on the electrocatalytic oxidation of NADH

To optimize the electrocatalytic response of the CMM/GC
electrode for NADH oxidation, the effect of the applied
potentials on the amperometric response to the addition of
0.1 mM NADH was studied between 0 Vand 0.6 V. A plot
of potential versus current has a peak at 0.3 V (0.21 pA)

Biosensors fabrication Linear range Detection Limit Apparent Michaelis—Menten Constant References
GC 100-300 uM 30.57 uM - [32]
CNT/GC 25-600 uM 8.32 uM - [32]
OCNT/GC 20-1000 puM 0.5 uM - [13]
Ti-MCM-41/GC 10-1200 uM 8.0 uM - [21]
GC/CNT-chitosan 5~300 uM 3 uM - [33]
MB/CNT/GC 50-200 pM 0.048+0.02 uM 1000+100 pM [34]
DHB/Nf-CNT/GC 0.5-400 pM 0.1 uM 12.6 pM [15]
CMM/GC 2-1100 uM 1.0 uM 21.5 uM Our work

GC glass carbon electrode; CNT carbon nanotube; OCNT ordered carbon nanotube; 7i-MCM-41 titanium-containing MCM-41 molecular sieves;
MB meldola’s blue; DHB 5,5-dihydroxy-4,4-bitryptamine; Nf nafion; CMM carbon mesoporous materials
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and drops to 0.03 pA at 0.6 V. Hence, the potential of 0.3 V
is selected to be used in the following experiments.

The electrochemical oxidation of NADH is a pH-
dependent reaction. Thus, the amperometric response of
the CMM/GC electrode to NADH was investigated with
different pH values ranging from 5.6 to 8.0. The highest
anodic current is obtained at pH 7.2 (0.21 pA) and drops to
0.07 pA at pH 8.0. Hence, the solution pH of 7.2 is the
optimum and was used in the following experiments.

Electrochemical detection of NADH

Figure 3 shows the amperometric responses to successive
additions of NADH into 5.0 mL 0.05 M PBS at CMM/GC
electrodes under the optimized experimental conditions.
The anodic peak current increases steadily with the
increasing in the concentration of NADH. As shown in
Fig. 4, the linear response range is from 2.0x107° to 1.1 x
107 M with a correlation coefficient of 0.995. The
detection limit is 1.0x107° M with a signal-to-noise ratio
of three (S/N=3) and the sensitivity is (1.37+0.03)
1A mM ', However, there is no response observed at the
bare electrode for these concentration changes using this
low-detection potential. The results show that such electro-
catalysis at CMM-modified electrode could facilitate low-
potential amperometric measurements of NADH. With the
additions of NADH, the amperometric response current of
CMM/GC biosensor increases and reaches a platform at the
concentrations higher than 1.1x 107> M gradually. It shows
a Michaelis—Menten type process as being described by the
Lineweaver-Burk equation [31]:
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where Kj” is the Michaelis-Menten constant, i., the
electrocatalytic current, C the bulk concentration of
substrate, and i,,,, the maximum current under optimized
conditions. For the mesoporous carbon modified electrode,
from the slope and the intercept of a double-reciprocal plot
of the current and concentration of NADH (Fig. 4, inset),
the apparent Michaelis—Menten constant (Kj/”) was calcu-
lated to be about 21.5 uM. Table 1 shows the comparison
of this CMM/GC electrode with other NADH biosensors
reported previously in the detection limit, linear range and
apparent Michaelis—Menten constant. The CMM-modified
electrode does not offer the best values currently, which
will be further improved via adjusting the pore size and
surface properties of the mesoporous carbon materials. The
results show that the proposed method is an alternative
strategy for electrocatalytic oxidation of NADH due to its
simple procedure and fast response.
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Conclusion

In this work, a two-dimensional mesoporous carbon
modified glassy carbon electrode has been proposed for
the electrocatalytic oxidation of NADH. A decrease of
595 mV in the overvoltage is observed at this CMM/GC
electrode compared with the bare GC electrode in phos-
phate buffer solution under the optimal condition (pH 7.2).
The CMM-modified electrodes show better electrochemical
performance and electrocatalytic response to NADH with
the concentrations in the range of 2.0x10 ®to 1.1x10°> M
with a detection limit of 1.0x10"® M. This research might
open up an approach for the development of amperometric
biosensors based on NADH-dependent dehydrogenase and
might be promising for the potential applications of
biological analysis.
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