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Abstract Metal and semiconductor nanoparticles exhibit
unique optical, electrical, thermal and catalytic properties.
Therefore, they have attracted considerable interest and have
been employed for construction of various electrochemical
sensors. This minireview gives a general view of recent
advances in electrochemical sensor development based on
metal and semiconductor nanoparticles covering genosensors,
protein and enzyme-based sensors, gas sensors and sensor for
other organic and inorganic substances. Different assay
strategies based on metal and semiconductor nanoparticles
for biosensor and bioelectronic applications are presented,
including electrochemical, electrical, and magnetic signal
transduction techniques. Electrochemical transduction princi-
ples provide signal changes in conductance, charge, potential
and current. We have paid much attention to the potential-
based and current-based sensors herein. Lastly, a brief
introduction is given into advances concerning the role of
nanoparticles, quantum dots and nanowires for nanomedicine,
such as drug delivery and discovery.
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Introduction

With the development of nanotechnology the nanoparticles
attract substantial interest because they exhibit unique
optical, electrical, thermal and catalytic properties. These
properties originating from quantum-size dimensions could
change with their sizes and shapes. Nanosized particles
have a chemical behavior similar to small molecules and
can be used as specific electrochemical label, and yet if the
particles are excessively small the high surface energy and
the large curvature can make them unstable [1–6].
Generally, the particles size can be controlled by kinds of
synthesis methods including physical and chemical methods,
then further characterized by various types of devices and
applied to various fields involving in biological medicine,
environment engineering, information technology, aero-
space industry, food analysis and so on. In recent years,
the utilizing superstructure of metal and semiconductor
nanoparticles for electrochemical sensors organization is an
extremely promising prospect [7, 8].

Metal and semiconductor nanoparticles as sensing
elements could be immobilized on working electrode
surface by kinds of methods including physical adsorption,
chemical covalent bonding, electrodeposition, electropoly-
merization with redox polymers and so on. Multilayers of
conductive nanoparticles modified electrode could give a
porous film with high specific surface area where the local
microenvironment of metal and semiconductor nanopar-
ticles could be controlled by the crosslinking elements. The
porous property endues the modified electrodes with strong
adsorption ability to most of substrates. That is to say,
substrates could be accumulated on the surface of the
electrode. In addition to this accumulation effect, this kind
of modified electrode may lead to specific and selective
interactions with substrates [9–11]. Mono- or multilayer
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arrays of conductive nanoparticles assembled on the
electrode surfaces may be considered as assemblies of
nanoelectrodes of controllable active areas [12]. The
catalytic properties of metal and semiconductor nano-
particles could decrease overpotential of some important
reactions in electrochemical analysis and even provide
electrochemical reversibility for redox reactions which are
irreversible at traditional bulk electrodes [2], sometimes,
could further enhance the electrochemical responses great-
ly. Recently, the molecule- and polymer-functionalized
sensing surface of metal and semiconductor nanoparticles
have been employed for developing all kinds of electro-
chemical sensors and nano-devices. The constructed sen-
sors have special functions and could be applied to related
sensing or biosensing and bioelectronics research area,
covering deoxyribonucleic acid (DNA) hybridization, pro-
tein–protein interaction and small molecules determination,
cell and microbe analysis, nanomedicine and so on.

It is the aim of this minireview to summarize the recent
advances in metal and semiconductor nanoparticles-based
electrochemical sensors. We will discuss: (i) Genosensors
including rarely direct DNA determination based on the
redox of bases or sugar residues using nanoparticles and
mainly indirect analysis using metal and semiconductors as
electrochemical labels for amplifying detection or hydrid-
ization analysis. (ii) Protein sensors and enzyme based
sensors. (iii) Electrochemical sensors for small molecules
such as neurotransmitter based on the electrocatalytic
properties of metal and semiconductor nanoparticles. (iv)
Electrochemical detection of metal ions, gas and other
inorganic substrates. (v) Roles of metal and semiconductor
nanoparticles in medicine. This review attempts to present a
relatively good coverage of recent review articles and a
selection of original research articles emphasizing new
developments or principles for metal and semiconductor
nanoparticles-based electrochemical sensors. But only a
fraction of relevant works could be covered here, and not
all excellent works being done in this field could be given
due credit. So the authors apologize to anybody who feels
that some key papers have been left out.

Genosensors

Deoxyribonucleic acid (DNA) analysis is helpful to
understand many diseases on a molecular level and promise
new perspectives for medical diagnosis in future. DNA
bearing the genetic information is a double helix molecule
and the double helix is held together by two sets of forces,
as described earlier: hydrogen bonding between comple-
mentary base pairs and base-stacking interactions. Pioneer
research about electroactivity of nucleic acid began in 1960,
and electrochemical devices have been considered as

promising tools for these purposes [13]. Direct electro-
chemistry of nucleic acids based on the redox of bases or
sugar residues is poorly developed with very high over-
potential and limited voltammetric peaks. Several methods
to improve the signal response have been reported via
CNTs or its composite film modified electrode [14], but
indirect methods for DNA analysis based on determination
of electroactive indicators that intercalate or otherwise
associate with DNA has witnessed tremendous growth.
Powerful metal and semiconductor nanoparticles or their
functional complexes offer excellent prospects for chemical
and biological sensing because of their unique optical and
electrical properties.

On one hand, with the development of electrochemical
DNA sensors, it is necessary to search for new efficient
surface-immobilization techniques to enhance immobiliza-
tion amount and ultimate detection capacity of sequence-
specific DNA. Metal and semiconductor nanoparticles with
a large surface area have been used to enhance ssDNA
immobilization capacity on an electrode, and develop a
sensitive electrochemical DNA sensor with an improved
sequence-specific DNA detection capacity [15, 16]. For
example, Fang’s group has early developed an electro-
chemical DNA biosensor utilizing colloidal Au to enhance
the DNA immobilization amount and ultimately lower its
detection limit [17]. Self-assembly of approximately 16-nm
diameter colloidal Au onto a cysteamine modified gold
electrode resulted in an easier attachment of an oligonucle-
otide with a mercaptohexyl group at the 5′-phosphate end,
and therefore an increased capacity for nucleic acid
detection. Quantitative results showed that the surface
densities of oligonucleotides on the Au colloid modified
gold electrode were approximately 1.0×1014 molecules
cm−2. A detection limit of 5×10−10 mol·L−1 of complemen-
tary ssDNA could be obtained, which was much lower than
many electrochemical DNA biosensors.

On the other hand, because of their special character-
istics metal and semiconductor nanoparticles are widely
used as effective labels of DNA or relative markers for
amplifying electric sensing signals, especially gold and
silver nanoparticles [18–25]. Mirkin [26] has exploited the
silver-deposition technique to construct a sensor based on
conductivity measurements. A sharp drop in the resistance
of the circuit could be carried out. Subsequently, as ‘tracer
amplification’, deposition of colloidal gold and silver on the
gold nanoparticles after DNA hybridization have been used
to signal amplification in various DNA detection assays and
three strategies for the detection of gold tracers have been
reported, which are integrated by Merkoçi and co-workers
[27]. Anodic-stripping voltammetry (ASV) was employed
to determine the gold (III) ions dissolving with HBr/Br2
[28] and enhanced electrochemical signal was obtained [29,
30]. Merkoçi and co-workers have reviewed recent impor-
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tant achievements on the electrochemical sensing of DNA
concerning Au nanoparticles (AuNPs) [31]. Some novel
strategies for AuNP based genosensors have been dis-
cussed. As shown in Fig. 1, these strategies consist of: (a)
the electrochemical detection of AuNPs label by detecting
the gold ions released after acidic dissolving; (b) direct
detection of AuNPs anchored onto the surface of a
conventional genosensor (based on stripping voltammetry);
(c) silver enhancement using conductometric technique; (d)
enhancement of AuNPs anchored to conventional genosen-
sor surface by using silver or gold; (e) AuNPs as carriers of
other AuNPs; (f) using AuNPs as carriers for other
electroactive labels.

In addition to above-mentioned nanoparticles-labeled
DNA sensor, quantum dot (QD) has also attracted the
attention of research workers. QD is one kind of semicon-
ductor particle that has all three dimensions confined to the
1–10 nm length scale [32]. Compared with existing labels,
nanoparticles in general and QD in particular are more
stable and cheaper. They allow excellent flexibility, fast
binding kinetics (similar to those in a homogeneous
solution), high sensitivity and reaction rates for many types
of multiplexed assays, ranging from immunoassays to DNA
analysis. A detection method of DNA hybridization based
on labeling with QD tracers has been developed with
electrochemical-stripping measurements of the nanopar-
ticles [33–37]. Wang’s group reported a new multi-target
sandwich hybridization assay involving a dual hybridization
event, with probes linked to three tagged inorganic crystals
and to magnetic beads [37]. The DNA-connected QD

yielded well-defined and resolved stripping peaks at −1.12
(Zn), −0.68 (Cd) and −0.53 V (Pb).

Following similar amplification strategy as mentioned
above, many methods based on other composite/function-
alized metal and semiconductor nanoparticles have also
been developed for the sensitive quantification of DNA [35,
38–41]. A method for amplified voltammetric detection of
DNA hybridization via oxidation of ferrocene caps on gold
nanoparticle/streptavidin conjugates was developed by
Zhou [42]. In this work, Gold nanoparticle/streptavidin
conjugates covered with 6-ferrocenylhexanethiol were
attached onto a biotinylated DNA detection probe of a
sandwich DNA complex. The amplification of the voltam-
metric signals was attributed to the attachment of a large
number of redox (ferrocene) markers per DNA duplex
formed. A detection limit for oligodeoxynucleotide sam-
ples, down to 2.0 pM (10 amol for the 5 μL of sample
needed) was obtained. The amenability of this method to
the analyses of polynucleotides (i.e., PCR products of the
pre-S gene of hepatitis B virus in serum samples) was also
demonstrated. This method did not require labeling of the
DNA targets. Because this approach was shown to be
simple, selective, reproducible, and cost effective and it was
used for real sample analysis. PCR products of hepatitis B
virus pre-S gene extracted from serum samples were
measured.

Magnetic nanoparticles (e.g., Fe3O4), biomaterial-
functionalized magnetic particles and related techniques
have been applied in a broad variety of bioelectronic
applications because they permit easy separation, efficient
concentration and rapid biospecific binding [2, 43, 44]. A
number of works focusing on magnetic based electrochem-
ical sensors have been reported [30, 45–48]. Li’s group [47]
reported the electrochemical detection of hybridized DNA
strands with a magnetic nanoparticles modified electrode
using commonly electrochemical couple K3[Fe(CN)6]/
K4[Fe(CN)6] as probe. The detection was proved to be fast
and very simple and magnetic nanoparticles could be
employed to control the DNA hybridization process. An
inhibited or an enhanced degree of hybridizing could be
produced. Wang et al. reported a protocol for detecting
DNA hybridization based on a magnetically induced solid-
state electrochemical stripping detection of metal tags [30].
The bioassay involved the hybridization of a target
oligonucleotide to probe-coated magnetic beads, followed
by binding of the streptavidin-coated gold nanoparticles to
the captured target, catalytic silver precipitation on the
gold-particle tags, a magnetic “collection” of the DNA-
linked particle assembly and solid-state stripping detection.
The magnetic triggering of the electrical DNA detection was
realized through a “magnetic” collection of the magnetic-
bead/DNA-hybrid/metal-tracer assembly onto a thick-film
electrode transducer to allow direct electrical contact of the

Fig. 1 Schematic (not in scale) of the different strategies used for the
integration of gold nanoparticles (AuNPs) into DNA sensing systems:
a Previous dissolving of AuNP by using HBr/Br2 mixture followed by
Au(III) ions detection; b direct detection of AuNPs anchored onto the
surface of the genosensor; c conductometric detection, d enhancement
with silver or gold followed by detection; e AuNPs as carriers of other
AuNPs; f AuNPs as carriers of other electroactive labels. Reprinted
from [31]
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silver precipitate. The resulting solid-state electrochemical
transduction offered highly sensitive and selective detection
of DNA hybridization. At the same time, the reversible
magnetically controlled oxidation of DNAwas accomplished
in the presence of nucleic acid-modified magnetic particles
[45]. Avidin modified magnetic particles were functionalized
with the biotinylated probe nucleic acid, and subsequently
hybridized with the complementary DNA. Two carbon-paste
electrodes were patterned on a surface and applied as
working electrodes. Spatial deposition of the functionalized
magnetic particles on the right or left electrode enabled the
magneto-controlled oxidation of the DNA by chronopoten-
tiometric experiments (potential pulse from 0.6 to 1.2 V).
Changing the position of the magnet was thus used for ON
and OFF switching of the DNA oxidation (through attraction
and removal of DNA functionalized-magnetic particles).
Such magnetic triggering of the DNA oxidation holds great
promise for the analysis of DNA on arrays. Functionalized
magnetic particles were employed for the ON–OFF switch-
ing of bioelectrocatalytic processes [43, 49, 50]. Also, the
rotation of functionalized magnetic particles on electrode
supports was used to amplify bioelectrocatalytic reactions
[51, 52] and biosensing analysis of DNA [53]. Willner
reported on the reversible blocking of the electrochemical
and bioelectrocatalytic processes at electrodes by attraction
of the hydrophobic magnetic NPs to the electrode surface
[54–56].

Compared to enzymes/protein, Au nanoparticles show
better long-term stability and are more easily prepared. In
addition to the protocols for DNA detection that were
described above, Chen has recently reported an electrical
detection method on a DNA biochip that employed a novel
approach for ultra sensitive detection of DNA using self-
assembled gold nanoparticles and bio-bar-code-based am-
plification (BCA) DNA [57]. The experimental study relied
on three-components oligonucleotide-modified gold nano-
particles, single-component oligonucleotide-modified mag-
netic nanoparticles and subsequent detection of amplified
target DNA in the form of bio-bar-code ssDNA (single
strand DNA) using a chip-based detection method. In this
way, magnetic nanoparticles and bio-bar-code DNA were
used to amplify obtainable current through nanogap
electrodes from the extremely low concentration of target
DNA. The detective concentration of target DNA with
electrical DNA biosensor was as low as 1 fM for the
analysis of current–voltage curves [57]. Also, a novel
nanoparticle-based detection of DNA hybridization has
been performed based on magnetically induced direct
electrochemical detection of the 1.4 nm Au67 QD tag
linked to the target DNA [j1]. The Au67 nanoparticle tag
was directly detected after the DNA hybridization event,
without need of acidic (i.e., HBr/Br2) dissolution. The
characterization, optimization, and advantages of the direct

electrochemical detection assay for target DNA were
demonstrated. The two main highlights of presented assay
were (1) the direct voltammetric detection of metal QDs
obviates their chemical dissolution and (2) the Au67 QD-
DNA1/DNA2-paramagnetic bead conjugate did not create
the interconnected three-dimensional network of Au-DNA
duplex-paramagnetic beads as previously developed nano-
particle DNA assays, pushing down the achievable detec-
tion limits [58].

Recently, Yang described an Au nanocatalyst-based
assay for electrochemical DNA detection that combined
the advantages of magnetic beads (MBs, coated with
streptavidin) and AuNPs (modified with a thiolated DNA
monolayer). Capture-probe-conjugated magnetic beads and
a ferrocene (Fc)-modified indium-tin oxide (ITO) electrode
were used as the target-binding surface and the signal-
generating surface, respectively [59]. Figure 2 shows a
schematic diagram of a sandwich-type electrochemical
DNA sensor using AuNPs as catalytic labels. Biotinylated
capture probes were biospecifically immobilized onto
streptavidin-coated MBs [59]. After target DNAs were
hybridized to capture-probe-conjugated MBs, detection-
probe-conjugated AuNPs were hybridized. The resulting
target DNA-linked MB-AuNP assemblies were attracted to
an Fc-D-modified ITO electrode by an external magnet.
The MB-AuNP assemblies were incubated for 15 min to
generate a large amount of pAP from pNP in the presence
of NaBH4. The generated pAP near an Fc-D-modified ITO
electrode is electrooxidized to pquinoneimine (pQI) via the
electron transfer mediated by Fc. pQI is then reduced back

Fig. 2 Schematic view of the attraction of DNA-linked MB-AuNP
assemblies to an Fc-D-modified ITO electrode and the electrochemical
detection of target DNA. MB magnetic bead, AuNP gold nanoparticle,
Fc ferrocene, Fc-D ferrocenemodified dendrimer, ITO indium-tin
oxide, pNP p-nitrophenol, pAP p-aminophenol, pQI p-quinoneimine.
Reprinted from [59]
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to pAP by NaBH4. Some of the regenerated pAP is
reelectrooxidized. As a result, pAP redox cycling by
NaBH4 occurs [60, 61] and this considerably increases
electrochemical signals. Importantly, pAP is electroactive
within normal potential windows, whereas pNP is not [60,
61], this plays a crucial role in achieving a high signal-to-
background ratio. The high signal amplification and low
background current enable the detection of 1 fM target
DNA.

Actually, genosensors are designed according to not only
sorts and properties of nanoparticles but also demand of
sensor performance. Rapidly increasing information about
the human genome requires a fast and simple method for
the detection of single-nucleotide polymorphisms (SNPs).
A novel method to discriminate and code all possible
combinations was described by Tamiya [62]. This versatile
nanoparticle-based electrochemical protocol was a promis-
ing candidate for coding all mutational changes. The
favorable signal-to-noise ratio (S/N) characteristics of these
data indicated a detection limit of 0.02 OD (S/N=3).
Additionally, one protocol offered great promise for
decentralized genetic testing was proposed by Authier
[28]. In this protocol, signal amplification, and lowering
of the detection limits to the nanomolar and picomolar
domains was achieved.

An explosion of interest in the use of metal and
semiconductor nanoparticles in assays for DNA analysis

has resulted in the great increase of corresponding works on
DNA electrochemical detection [63, 64]. For examples,
Hsing’s group researched enhanced electrochemical detec-
tion of DNA hybridization based on electrode-surface
modification [65]. The preparation and advantages of
indium microrod tracers for solid-state electrochemical
detection of DNA hybridization were described by Wang
[66]. The resulting micrometer-long rods thus offered a
significantly reduced detection limit (250 zmol), as com-
pared to common bioassays’ spherical nanoparticle tags.
Recently, Merkoci and co-workers summarized some of
analytical parameters of ongoing strategies described in
Table 1. The data in Table 1 demonstrate that low detection
limits could be obtained for metal and semiconductor
nanoparticles-based assays, and clearly, nanoparticles have
a promising future in designing electrochemical sensors.

Protein sensors

Because DNA contains lots of genetic information, they
have always attracted a widespread attention from research-
ers. Proteins, molecular expression of this genetic informa-
tion, are not only responsible for directing cell metabolism
through their activity as enzymes but also at the very core
of biological function. They are the centre of most
pathological conditions and biomarkers of most diseases.

Table 1 Reported nanoparticle labels and analytical parameters of the assays developed

Nanoparticle
label

Labels connection
with DNA

Detection technique Hybridization
separate from
detection

DNA detection
limits

RSD Reference

Au Au-SH-DNA DPV at pencil-graphite electrode No
0.78 fmol·mL−1 ∼8% [52]
Au Au-SH-DNA PSA and silver catalytic enhancement at

screen-printed electrodes
Yes 150 pg·mL−1 7% [30, 40]

Au Au-SH-DNA Conductivity at microelectrodes No 500 fM _ [41]
Au carried into
PVC beads

PVC(Au)
streptavidin–biotin-
DNA

PSA and silver catalytic enhancement at
screen-printed electrodes

Yes 40 pg·mL−1 13% [53]

CdS QDs Cd-NH-DNA EIS with gold electrode No 1.43×10−10 M _ [43]
CNTs loaded
with CdS QDs

CNT-CdS-
streptavidin–biotin-
DNA

DPV at Hg-film electrode Yes 40 pg·mL−1 6.4% [44]

Au-Fe
(core/shell)

Fe-Au-SH-DNA DPV at Hg-film electrode Yes 50 ng·mL−1 6.3% [45]

CdS QDs CdS-SH-DNA PSA and catalytic enhancement with Cd
at screen-printed electrodes

Yes 20 ng·mL−1 6% [46]

CdS QDs CdS-SH-DNA Simultaneous detection with SWV at Hg-
film electrode

Yes 5 ng·mL−1 9.4% [47]
PbS QDs PbS-SH-DNA
ZnS QDs ZnS-SH-DNA

Reprinted from [27]
PSA potentiometric stripping analysis, DPV differential pulse voltammetry, SWV square wave voltammetry, EIS electrochemical impedance
spectroscopy
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Electrochemical sensors technology has emerged as one of
the most promising platforms for proteins analysis. As for
developing electrochemical protein sensor there are basi-
cally five different pathways summarized by Tamiya [67]: a
change in the electrochemical signal of (i) a label, which
selectively binds with the target protein, (ii) electro-active
amino acids of antibody or target protein, (iii) a secondary
antibody-tagged probe, (iv) aptamers- and (v) an enzyme-
tagged probe can be monitored [68, 69]. Here, the author
gives particular focus to the metal and semiconductor
nanoparticles-based electrochemical protein sensors falling
into two categories: direct and indirect detection system.

In the early 1970s, a relatively small group of proteins
containing a metal center with reversible redox-activity
(metalloproteins) has attracted a lot of the attention from
researchers [70]. Nowadays, a few electro-chemists focus
on the fact that most of the proteins without a metal center
could show electrochemical activity too, depending on their
amino acid structure. Because these proteins molecules are
very large, current responses of direct electrochemical
detection are very poor. Few works on nanoparticles-based
direct electrochemical protein sensors has been reported.

As far as indirect detection system is concerned, several
modes would be involved in discussion including antibody-
based protein detection, aptamer-based protein detection
and so on. Firstly, metal and semiconductor nanoparticles
have been extensively used in electrochemical immunoas-
say [40, 71–80]. A fast, simple, sensitive, and low-cost
method for electrochemical multianalyte immunoassay was
developed via combining newly designed electric field-
driven incubation with a screen-printed reagentless immu-
nosensor array by Ju’s group [71]. This disposable
immunosensor array and simple detection system for fast
measurement of panels of tumor markers (protein) showed
significant clinical value for application in cancer screening
and provided great potential for convenient point-of-care
testing and commercial application. Similarly, AuNPs/
streptavidin conjugates capped with multiple ferrocene
(Fc) groups were used for detection P53 which is a tumor
suppressor protein [40]. Meanwhile, Zhu’s group developed
a novel label-free immunosensor for the detection of C-
reactive protein (CRP) based on a three-dimensional
ordered macroporous (3DOM) gold film modified electrode
by using the electrochemical impedance spectroscopy (EIS)
technique [62]. The detection of CRP levels in three sera
obtained from hospital showed acceptable accuracy. Addi-
tionally, magnetic nanoparticles have also been widely used
in the fabrication of immunosensor [71, 81, 82]. For
example, Yuan’s group demonstrated a novel approach
toward development of advanced immunosensors based on
chemically functionalized core–shell Fe3O4@Ag magnetic
nanoparticles. The preparation, characterization, and mea-
surement of relevant properties of the immunosensor were

useful for the detection of carcinoembryonic antigen (CEA)
in clinical immunoassay. The immunosensor based on the
combination of a magnetic nanocore and an Ag metallic
shell showed good adsorption properties for the attachment
of the CEA antibody selective to CEA. The core–shell
nanostructure presented good magnetic properties to facil-
itate and modulate the way by which it was integrated into
a carbon paste. Under optimal conditions, the resulting
composite presented good electrochemical response for the
detection of CEA, and allows detection of CEA at a
concentration as low as 0.5 ng·mL−1. Importantly, the
proposed methodology could be extended to the detection
of other antigens or biocompounds [81].

Secondly, recent studies show that aptamer can be
employed in molecular recognition instead of antibodies.
Aptamer is generally single-stranded DNA or RNA
oligonucleotides that can bind with high affinity and
specificity to a wide range of target molecules, such as
drugs, proteins or other organic or inorganic molecules. It
was obtained by an in vitro selection process known as
systematic evolution of ligands by exponential enrichment
(SELEX) [83, 84]. Aptamer is easily synthesized, labeled,
and modified with low cost and high stability. Ikebukuro
firstly reported construction of the model of the aptamer-
based protein sensor system. Thrombin was detected
through sandwiching by a GDH-labeled antithrombin
aptamer for detection and another aptamer immobilized
onto the gold electrode for capturing the thrombin [85].
Since then there have been a steady flow of publications
about aptamer-based electrochemical protein sensors in-
stead of antibodies [85–94]. Generally speaking, sandwich-
ing is the most popular and useful mode for the detection of
protein, because it does not require the labeling of the target
DNA. At the present day, most of aptamer-based protein
sensors focus on conventional electrodes and more atten-
tion has been paid to thrombin, PDGF, cocaine and so on.
Hansen [93] firstly reported the coupling of aptamer with
the coding and amplification features of inorganic nano-
crystals for highly sensitive and selective simultaneous
bioelectronic detection of several protein targets. This
was accomplished in a single-step displacement assay in
connection to a self-assembled monolayer of several
thiolated aptamer conjugated to proteins carrying different
inorganic nanocrystals as shown in Fig. 3. Electrochemical
stripping detection of the nondisplaced nanocrystal tracers
resulted in a remarkably low (attomole) detection limit, that
is, significantly lower than those of existing aptamer
biosensors. The new device offered great promise for
measuring a large panel of disease markers present at
ultralow levels during early stages of the disease progress.
Recently, the first potentiometric sandwich assay of
thrombin has been reported based on CdS quantum dot
labels of the secondary aptamer. As a prototype example,
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thrombin was measured in 200 μL samples with a lower
detection limit of 0.14 nM corresponding to 28 fmol of
analyte. The results showed great promise for the potenti-
ometric determination of proteins at very low concentra-
tions in microliter samples [94]. In the future, more novel
aptamer-based protein sensors will be fabricated with the
appearance of new aptamer.

Enzyme based sensors

Except above-introduced works concerning protein sensors
more enzyme/protein-based sensors based on the metal and
semiconductor nanoparticles have also been widely
reported. This kind of sensor does not focus on the
determination of protein but is developed for sensing
related substrate, which are performed by establishing
electrical communication between the enzyme/redox-
protein and the electrode making good use of metal and
semiconductor nanoparticles. As we know, proteins are
very large molecules. Their metal redox centers are easy to
be buried inside and far away from the electrode surface.
Furthermore, considering the low diffusion coefficient of

enzyme/protein and denaturation of enzyme/protein
adsorbed on the electrode surface electrical contacting of
the metal redox centers with electrodes is a key process in
the tailoring of enzyme/protein-electrodes for electroana-
lytical applications. It is the special characteristics of metal
and semiconductor nanoparticles that make them to carry
out the effective electrical contacting and heterogeneous
electron-transfer reaction of metalloproteins with electrodes
[95–103]. These nanoparticles can act as electron-conduct-
ing pathways between prosthetic group and the electrode
surface. Therefore efficient electrical communication be-
tween redox-proteins and electrodes was achieved by the
facilitated electron transfer process between prosthetic
group and the electrode surface based on the effect of
nanoparticles or the optimal alignment of the proteins on
the electrode surface. Furthermore these sensors are
satisfying because of good stability and high sensibility.
Nowadays, researchers attach much importance to this
enzyme/protein-based sensor.

A number of works have shown that several enzyme/
protein maintain their enzymatic and electrochemical
activity when immobilized on AuNPs. Natan’s group
described the direct electron transfer between SnO2 electro-
des modified with 12-nm-diameter colloidal Au particles
and horse heart cytochrome c. The experiment data
indicated that nanometer-scale morphology of metals
played a key role in protein electrochemistry, and suggested
that isolated, surface-confined colloidal Au particles might
be useful building blocks for macroscopic metal surfaces
for biological applications [104]. Willner and co-workers
reported a method carrying out a highly efficient electrical
contacting of the glucose oxidase through a single Au NP
by the reconstitution of the flavoenzyme, glucose oxidase,
with a 1.4 nm Au NP functionalized with N6-(2-amino-
ethyl)-flavin adenine dinucleotide (FAD cofactor amino-
derivative) as shown in Fig. 4 [105, 106]. This electric
wiring not only greatly improved and enhanced the electric
contacting efficiency between the protein and the electrode
surface but also made the modified electrode have a good
electrocatalytic response to glucose.

The ability of external magnetic fields to control
bioelectronic processes, such as biocatalytic transforma-
tions of redox enzyme/protein, has been documented by
Willner [49, 107]. In recent years, a large numbers of
publications concerning biosensing and biocatalysis devices
based on the magnetic nanoparticles appeared [50, 108–
113]. For example, Katz developed a novel procedure to
architecture nanoelectrode arrays with enhanced electro-
chemical properties. Magneto-assisted formation of con-
ducting nanowires upon self-assembling of Au-shell/
CoFe2O4-magneticcore nanoparticles (18±3 nm diameter)
was demonstrated on a Au electrode surface by application
of an external magnetic field. The conducting nanowires

Fig. 3 Operation of the aptamer/quantum-dot-based dual-analyte
biosensor, involving displacement of the tagged proteins by the target
analytes. A Mixed monolayer of thiolated aptamers on the gold
substrate with the bound protein-QD conjugates; B sample addition
and displacement of the tagged proteins; C dissolution of the
remaining captured nanocrystals followed by their electrochemical-
stripping detection at a coated glassy carbon electrode. Reprinted from
[93]
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caused an increase of the electrode surface area yielding an
electrochemical response to a diffusional redox probe
(ferrocenemonocarboxylic acid) enhanced by ∼6.5 fold
after 120 min. The enhancement factor for the electrochem-
ical process was controlled by the time intervals allowed for
the nanoelectrode array formation. The primary electro-
chemical reaction of the electron relay was coupled with the
bioelectrocatalytic oxidation of glucose in the presence of
soluble glucose oxidase resulting in the amplification of the
biocatalytic cascade controlled by the growth of the
nanostructured assembly on the electrode surface. The
studied nanoelectrode array was suggested as a general
platform for electrochemical biosensors with the enhanced
current outputs controlled by the structure of the self-
assembled nanowires as showed in Fig. 5 [108].

Thin film of nanoparticles and enzyme/protein assem-
bled layer by layer on electrodes can provide favorable
microenvironments for enzyme/protein to exchange elec-
trons with underlying electrodes. On one hand, the efficient
electron transfer between the enzyme/protein active sites
and the electrode support is allowed without electron
transfer mediators. On the other hand, if the positioning of

redox enzyme/protein on the conductive nanoparticles is
random and non-optimized effective electron-conducting
between proteins and electrodes can not be accomplished. It
has been reported that hemoglobin (Hb), myoglobin (Mb),
horseradish peroxidase (HRP), and cytochrome c (Cyt c)
exhibited excellent electrochemical responses at film
electrode constructed with nanoparticles such as clay,
SiO2, MnO2 and TiO2 [114–121]. Moreover, the con-
structed film electrodes showed high catalytic activity to
some small molecules and then were used as sensors in
food analysis and so on [122]. For instance, Myoglobin
(Mb) has been successfully immobilized in alternation with
oppositely charged poly (dimethyldiallylammonium chlo-
ride) via the sequential layering approach on the biocom-
patible Fe3O4@SiO2 nanoparticles. The bound Mb could be
easily separated by an external magnetic field and used as
less costly, more stable, and reusable alternatives to the
soluble ones. Direct electron transfer between the immobi-
lized Mb and the electrode was observed. Moreover, the
immobilized Mb provided remarkable thermostability up to
70°C and high electroactivity with the apparent Michaelis–
Menten constant (KM) of 45 μM [123].

Fig. 4 A Assembly of the electrically contacted reconstituted GOx/Au-NP systems on Au-electrodes by means of dithiol bridging units; B
Assembly of the random covalently linked GOx/Au-NP system on the Au-electrode. Reprinted from [105]
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Now sol–gel technology provides a unique means to
prepare a three-dimensional network suited for the encap-
sulation of a variety of biomolecules and nanoparticles
[124, 125]. Sol–gel-derived inorganic materials are partic-
ularly attractive for biosensor fabrication, because they can
be prepared under ambient conditions and they exhibit
tunable porosity, high thermal stability, and chemical
inertness, and they experience negligible swelling in
aqueous solution. Combining sol–gel and self-assembly
technologies many novel methods for fabrication of protein/
enzyme-based sensors have been developed by wrapping
metal or semiconductor nanoparticles to sol–gel network by
chemists [126, 127].

In conclusion, these enzyme/protein based sensors based
on the metal and semiconductor nanoparticles focus on
sensing of some small molecules or relative substrates
including peroxide, oxynitride (such as NO), cholesterol,
glucose, phenolic compounds (phenol, catechol, caffeic
acid, chlorogenic acid, gallic acid and protocatechualde-
hyde) and so on [100, 110–112, 128–148]. The works could
not be list here one by one. It is undoubted that more
applications of metal and semiconductor nanoparticles to
development of protein/enzyme-based sensors will be
further investigated.

Other organic substances

The determination of organic substances including bio-
chemical, biological and other substances is of considerable

importance because it is widely used in various fields
including those concerned with biological, chemistry,
environmental, clinical, and food analysis. Biochemical
and biological substances, dopamine (DA), ascorbic acid
(AA), uric acid (UC), epinephrine, norepinephrine and so
on, are close to our life. For examples, Low levels of
dopamine (DA) have been found in patients with Parkin-
son’s disease. Uric acid (UA) and ascorbic acid (AA) are
commonly found in biological fluids, such as blood and
urine. Other organic substrates, methanol, formaldehyde,
ethanol, other π-donor molecules and so on, have been
widely studied too, associated with the electrochemical
sensors. As to the electrochemical method, a major problem
encountered in voltammetric detection is the coexistence of
many interfering compounds. For instance, the existence of
ascorbic acid (AA) and uric acid (UA) would interfere with
the detection of many biomolecules like that. Generally,
voltammetric differentiation of these biomolecules is not
possible on bare metal or carbon electrodes due to the
overlap of oxidation voltages for these species. Major
efforts in sensor research essentially involve elaborate
surface modification steps to impart perm-selection or
electrostatic selection on these electrodes toward dopamine
(DA), ascorbic acid (AA), uric acid (UA) and other
biomolecules. Therefore, searching of the stable, easy to
preparation, and highly biocompatible labels, which influ-
ence their selective response to the substrates molecules,
is of critical importance for the analysis of biological
substrates or other organic molecules.

Metal and semiconductor nanoparticles have been
widely used as electro-catalyst to achieve the electrochem-
ical detection of some organic molecules because of their
high biocompatibility and catalytic activity [149–160].
Luong’s group reported the interfacial interactions between
immobilized DNA probes and DNA-specific sequence
binding drugs using impedance spectroscopy and the
development of a novel biosensing scheme [161]. They
pointed that, electrochemical deposition of gold nano-
particles on a gold electrode surface showed significant
improvement in sensitivity. The immobilization of DNA
and then the DNA drug interaction on the electrode
surfaces altered the capacitance and the interfacial electron
resistance and thus diminished the charge-transfer kinetics
by reducing the active area of the electrode or by
preventing the redox species from approaching the elec-
trode compared to bare gold surfaces. DNA-capped gold
nanoparticles on electrodes act as selective sensing
interfaces with tunable sensitivity due to higher amounts
of DNA probes and the concentric orientation of the DNA
self-assembled monolayer. The specificity of the interac-
tions of two classical minor groove binders, mythramycin,
a G-C specific-DNA binding anticancer drug, netropsin, an
A-T specific-DNA binding drug and an intercalator,

Fig. 5 Formation of the conducting nanowires upon self-assembling
of the Au-coated magnetic NPs along the magnetic field lines and
their use as a nanostructured electrode for electrochemical oxidation of
ferrocenemonocarboxylic acid coupled with the glucose oxidation
biocatalyzed by GOx. Reprinted from [108]
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nogalamycin on AT-rich DNAmodified substrate and GC-
rich DNA-modified substrate are compared. The gold
nanoparticle-modified sensing device resulted in detection
limits of 5 nM for nogalamycin, 10 nM for mythramycin,
and 40 nM for netropsin, respectively, which are 15–40-
fold lower compared to flat gold substrates. The enhanced
sensitivity might be simply explained in terms of changes
in the geometry of the electrode surface affecting the
binding efficiency of the DNA-drug interaction and hence
direct the improvement of impedance signal changes
illustrated in Fig. 6 [161].

A similar norepinephrine (NE) biosensor was fabricated
via layer-by-layer deposited multilayer films containing
DNA and gold nanoparticle by Lin’s group early [162]. The
gold nanoparticles were deposited on the surface of DNA
layer to build a hybrid device of nanoscale electrode array
but not on a gold electrode surface. This electrode was
successfully used for selective determination of norepi-
nephrine (NE) in the presence of ascorbic acid (AA). The
reversibility of the electrode oxidation reaction of NE was
significantly improved in result of 200 mV negative shift of
the voltammetric peak potential on the electrode, and a
large increase in the peak current. A detection limit of 5 nM
NE was obtained by using DPV in static solutions. The co-
existence of a large excess of AA did not interfere with the
detection. This electrode showed excellent sensitivity, good
selectivity and antifouling properties. In fact, the relevant
works can not be listed one by one. More and more kinds
of metal and semiconductor nanoparticles have been used
as ideal labels for recognition and sensing processes [130,
162–169], especially gold nanoparticle. Yuan’s group
fabricated a novel glucose sensor based on self-assembled
gold nanoparticles and double-layer 2 d-network (3-
mercaptopropyl)-trimethoxysilane polymer onto gold sub-
strate [170]. With the aid of Co(byp)3

3+ as a mediator in the
solution, the electrode displayed excellent electrocatalytical

response to the glucose and exhibited a good stability and
sensitivity. The detection of paraoxon and dopamine based
on gold nanoparticles has been studied by Shen and
Ohsaka’s groups [171, 172]. In the later system, gold
(Au) nanoparticles immobilized on an amine-terminated
self-assembled monolayer (SAM) on a polycrystalline Au
electrode were successfully used for the selective determi-
nation of dopamine (DA) in the presence of ascorbate
(AA). At this nano-Au electrode well-separated voltam-
metric peaks were observed for DA and AA. The
oxidation potential of AA was negatively shifted due to
the high catalytic activity of Au nanoparticle. The
reversibility of the electrode reaction of DA was signifi-
cantly improved at the nano-Au electrode, which resulted
in a large increase in the square-wave voltammetric peak
current with a detection limit of 0.13 mM. The coexistence
of a large excess of AA did not interfere with the
voltammetric detection of DA. The nano-Au electrode
showed excellent sensitivity, good selectivity and anti-
fouling properties. This resulted in the effective separation
of the oxidative potentials of ascorbic acid and dopamine,
thus allowing their selective electrochemical analysis.
More references about the detection of DA in the presence
of AA and UA or other molecules could be consulted
based on metal and semiconductor nanoparticles including
gold, silver, LaFeO3, silver–titanium dioxide core–shell
nanoparticles and so on [173–176].

Other electrochemical sensors have been reported fre-
quently, such as pulsed amperometric detection of hista-
mine at glassy carbon electrodes modified with gold
nanoparticles. Recently, copper nanoparticles have been
employed in the applications of electrochemical sensors
[177–180]. Luong’s group achieved the electrochemical
detection of carbohydrates using copper nanoparticles and
carbon nanotubes [179]. The response time and the
detection limit (S/N=3) of the sensor for glucose were

Fig. 6 Schematic representa-
tions of the drug interactions
with the DNA monolayer with
different orientations on (a) flat
substrate and (b) gold nanopar-
ticle-deposited substrate, 1 mm.
Reprinted from [161]
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10 s and 250 nM, respectively. Willner’s group has
achieved the electrochemical detection of NADH and of
NAD+-dependent biocatalyzed processes by the catalytic
deposition of copper on gold nanoparticles [180]. In
addition, Yu’s group invented a phenol biosensor based on
immobilizing tyrosinase to modified core–shell (MgFe2O4-
SiO2) magnetic nanoparticles supported at a carbon paste
electrode [181]. The linear range for phenol determination
was from 1×10−6 to 2.5×10−4 mol·L−1 with a detection
limit of 6.0×10−7 mol·L−1 obtained at a signal-to-noise ratio
of 3. The stability and the application of the biosensor were
also evaluated. Recently, Vonna had also reported magnetic
nanoparticles based sensing devices. The magnetic particles
were immobilized on PPy films under appropriate magnetic
field in order to control their organization on the PPy film
and finally to improve the sensitivity of the system in
potential sensing applications. The designed biosensor had
been successfully applied in rapid, simple, and accurate
measurements of atrazine concentrations, with a significantly
low detection limit of 5 ng·ml−1 [182]. Moreover, semicon-
ductor nanoparticles were also used to develop electro-
chemical sensor for toxic substrates. Lin presented an
electrochemical sensor for detection of organophosphate
(OP) pesticides and nerve agents using zirconia (ZrO2)
nanoparticles as selective sorbents [183]. The promising
stripping voltammetric performances open new opportu-
nities for fast, simple, and sensitive analysis of OPs in
environmental and biological samples. These findings can
lead to a widespread use of electrochemical sensors to
detect OP contaminates. Also, they had reported a poly
(guanine)-functionalized silica nanoparticle (NP) label-
based electrochemical immunoassay for sensitively detect-
ing 2,4,6-trinitrotoluene (TNT) recently [184]. As we
know that some organic molecules can be electrostatic
crosslinked with metal or semiconductor nanoparticles to
modify electrodes and then get the sensoric applications.
Willner’s and coworkers have summarized main advances
about this topic [9, 11, 185].

Besides these applications discussed above, metal and
semiconductor nanoparticles have an important application,
which are used in fuel cell systems. For instance, the
oxidation of methanol has been investigated widely based
on the metal or semiconductor nanoparticles catalysis [186,
187]. One problem is that the intermediate species such as
CO remain adsorbed on the surface and inhibit the
oxidation reaction. Significant efforts are being dedicated
to the development of new electrocatalytic materials to
resolve the oxidation of CO. Metal and semiconductor
nanoparticles are good choice because their excellent
catalytic activity. Therefore, further progress in fuel cell
catalysis, especially on a nanoparticle surface, and the
catalyst optimization are needed [188]. We don’t discuss
this topic here.

Inorganic substances

Trace metals ions, such as Fe2+/3+, Co2+, Ni2+, Cd2+, Pb2+,
Hg2+, As3+ and Cu2+, have threatened both human and
environmental health through their greatly increasing
presence in environmental matrixes because of their toxic
effects to plants and humans, especial the environmental
heavy metal ions. A number of researches show that low
levels of long-term exposure to these trace metal ions can
attribute to an increased risk of cancer. Thus, monitoring
and removal of environmental trace metal ions are
increasingly important and has become a major focus of
waste treatment and cleanup efforts [189, 190]. Electro-
chemical techniques such as anodic stripping voltammetry
(ASV) [191] provide accurate measurements of low
concentrations of trace metal ions at the ppb levels with
rapid analysis times and low-cost instrumentation. In the
past years, hanging drop mercury electrodes (HDMEs) and
thin mercury film electrodes (MFEs) were widely used in
association with ASV. With development of chemically
modified electrode (CME) nano-materials has been applied
to the trace metal ions analysis, especially metal or
semiconductor nanoparticles [192–199].

Specific interactions between analyte ions and organic
shell functional groups on nanoparticles could enhance
sensitivity and increase selectivity of the electroanalytical
sensors. For example, electrochemical analysis of Cu2+ ions
with sensitivity below 1 ppb was achieved using a glassy
carbon electrode (GCE) functionalized with thin films
assembled from thiolate-encapsulated gold nanoparticles
of 2 nm core size (Au2-nm) and a carboxylic functionalized
alkyl thiol linker, i.e. 11-mercaptoundecanoic acid (MUA)
[200]. The high surface-to-volume ratio and the 3-D ligand
network properties were potentially useful as sensitive and
selective nanomaterials for the monitoring and removal of
environmental heavy metals. The selectivity of the electro-
activity was also probed using mixed-metal systems such as
Cu2+ and Fe3+, Cu2+ and Zn2+. The results also revealed
that the ion-binding affinity of the film was more selective
to Fe3+ than Cu2+, and more selective to Cu2+ than to Zn2+.
Issues related to the electrochemical activity of these metal
ions were also discussed. Compton’s group firstly studied
electrochemical detection of arsenic (As3+) at a gold nano-
particle-modified electrode by electrodeposition method
[201]. After optimization, a limit of detection of 0.0096 ppb
was obtained with LSV.

Hu’s group has reported the simultaneous determination
of cadmium (Cd2+) and lead (Pb2+) using anthraquinone
(AQ) improved Na-montmorillonite nanoparticles (nano-
SWy-2) clay nanoparticles-beased sensor by differential
pulse anodic stripping voltammetry (DPASV) [202].
Corresponding data can be observed in Fig. 7. The authors
pointed out that this method was based on a non-
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electrolytic preconcentration via ion exchange model,
followed by an accumulation period via the complex
formation in the reduction stage at a constant potential,
and then by an anodic stripping process. Many inorganic
species did not interfere with the assay significantly. The
applications for the detection of trace levels of Cd2+ and
Pb2+ in milk powder and lake water samples indicated that
it was a satisfying method.

Urine is universally recognized as one of the best non-
invasive matrices for biomonitoring exposure to a broad
range of xenobiotics, including toxic metals. Detection of
metal ions in urine has been problematic due to the protein
competition and electrode fouling. For direct, simple, and
field-deployable monitoring of urinary Pb, an electrochem-
ical sensor employing superparamagnetic iron oxide
(Fe3O4) nanoparticles with a surface functionalization of
dimercaptosuccinic acid (DMSA) has been developed by
Yantasee [203]. The metal detection involved rapid collec-
tion of dispersed metal-bound nanoparticles from a sample
solution at a magnetic or electromagnetic electrode,
followed by the stripping voltammetry of the metal in
acidic medium. The sensor could detect background level
of Pb (0.5 ppb) and yielded linear responses from 0 to
50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for
seven measurements of 30 ppb Pb), and Pb concentrations
comparable to those measured by ICP-MS. The sensor
could also simultaneously detect background levels
(<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.
With the use of DMSA-Fe3O4 as metal collector from
biological samples, The authors claimed that heavy metals
like Pb could be directly detected in the samples using
electrochemical sensors with high accuracy and sensitivity
without (1) sample pretreatment by acid elution or solvent
extraction to release metals from proteins into a pure
medium followed by metal preconcentration at a mercury-
film electrode, (2) the use of internal standards at Hg-based
electrodes, or (3) the use of sonication at the polymeric
film-coated mercury-film electrode coupled with large
sample dilution to minimize protein adsorption and pro-
mote mass transport of metals to the sensor surface [203].

Additionally, carbon-based nanoparticles have been used
in the metal ions analysis too. Mascaro and co-workers
succeed in fabricating a new electrode obtained by the
dispersion of template carbon nanoparticles onto polyanline

[204]. This new electrode exhibited excellent chemical and
physical stabilities. ASV measurements revealed that the
new electrode presented a noteworthy linear response to
very low concentrations of copper (Cu2+) and lead (Pb2+)
ions under few minutes of pre-concentration. In Marken’s
group study [205], nanocomposite electrodes made of
carbon nanofibers and black wax were characterized and
investigated as novel substrates for metal deposition and
stripping processes. The resulting nanocomposite electrodes
showed (i) low background current, (ii) a wide potential
window in aqueous solutions, (iii) good conductivity, (iv)
near steady state voltammetric responses with substantial
Faradaic currents and (v) sharply peaked fast scan metal
stripping responses [205]. They used this electrode to
achieve ASV analysis for zinc and lead ions and the
resulting were satisfying. Finally, some researchers have
utilized the adsorption properties of metal ions on the
chitosan-bound nanoparticles to remove the trace metal ions
[206, 207], but not to detect quantificationally.

As to other inorganic substrates such as H2O2, NO2
−,

and NaClO, they have been reported, too [163, 208–212].
Hirono’s group developed a platinum nanoparticle-embed-
ded carbon film electrode which was used for the detection
of hydrogen peroxide [212]. Additionally, in this part, it can
not be neglected that pH sensor (H+ measurement) has been
fabricated using the metal and semiconductor nanoparticles
[213, 214].

Gas sensor

The growing concern worldwide about air pollution on
environment, industrial safety and hygiene applications has
made the monitoring of gaseous species, such as SO2, H2S,
ozone, H2, NOx, CO, Cl2, NH3, formaldehyde, ethanol,
propane or ethylene oxide is of wide interest. Electrochem-
ical sensors are the most attractive instrumentations because
the electronic signals (resistance, potential and current etc.)
can be obtained directly. The design of electrochemical gas
sensors presents a challenge as the gas phase has to be
brought into contact with a solid electrode as well as an
electrolyte phase which usually is liquid [215]. Neverthe-
less, in order to improve sensitivity and selectivity many
new methods of sensors construction have been developed
in recent as well as approaches to miniaturization. It is
certainly that metal and semiconductor nanoparticles will
be widely used as conducting materials for construction of
electrochemical gas sensor.

Chiou have developed a dispersed catalyst gas-diffusion
electrode for SO2 sensing [216]. The electrode was a
composite material with gold as catalyst. Gold particles
catalyzed the electrochemical oxidation of SO2 when this
gas diffused through the porous working electrode. This

Fig. 7 Differential pulse vol-
tammograms of 2×10−7 mol·L−1

Cd2+ and 1×10−7 mol·L−1 Pb2+

in pH 5.6 NaAc–HAc buffer.
Accumulation potential: −1.20 V;
accumulation time: 5 min; scan
rate: 50 mVs−1; pulse amplitude:
100 mV; pulse width: 50 ms.
Reprinted from [202]
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SO2 sensor resulted in a stable device with a very fast
response time. The application of different kinds of metallic
nanoparticles integrated in different organic matrices
allowed the tailoring of controllable interactions with
variable vapor materials and the development of chemir-
esistors with sensitive and specific functions. For example,
lead nanoparticles incorporated into a ploy (p-xylylene)
film demonstrated sensoric functions for NH3 vapor [217].
In fact, as we described above, the gas sensor does not
focus on the chemically modified conventional electrode
but the replace semiconductor materials of porous or
membrane electrode by semiconductor nanoparticles be-
cause the grain size and surface reactivity of these particles
can rapidly increase their catalysis effect and the sensitivity
of relative sensors. So many reports focusing on this gas
sensor have appeared such as the CO sensor [218, 219].

Of course, the chemically modified conventional elec-
trode-based gas sensors are also investigated in recent years,
especially for the studies of dissolved gas species such as O2

and NO using metal and semiconductor nanoparticles.
However, almost all studies on dissolved O2 are focusing
on the mechanism of O2 reduction or the catalysis researches
of nanoparticles materials and not the sensing applications
[220]. On the contrary, a large quantity of NO sensors has
been designed utilizing the special characteristics of metal
and semiconductor nanoparticles. NO, a radical-like diatomic
molecule, has been established recently as one of the most
important cellular messengers. It has been associated with
many physiological and pathological processes. The mea-
surement of NO in the biological media is a very challenging
task because of its short lifetime (a few seconds), low
concentration, and high fugacity. The demand to measure
the small amount of NO released in situ in real time has
led to an extensive effort in developing nanoparticles-
based electrochemical sensors with excellent sensitivity.
Besides the protein-based sensor in Part 3, many other new
sensing methods have been introduced. Several years ago,
a sensitive, selective and stable NO microsensor was
described, which was modified by nano-Au colloid and
Nafion [221]. A low detection limit, high selectivity and
sensitivity for NO determination could be obtained using this
microsensor. The microsensor was successfully applied to
the measurement of the direct real time production of NO in
the smooth muscle cells continuously. After that, Caruso’s
group [222] prepared a novel sensor by infiltrating
4-(dimethylamino) pyridine-stabilized gold nanoparticles
(DMAP-AuNP) into PE multilayers preassembled on indium
tin oxide (ITO) electrodes. The results showed that gold
nanoparticles in the PE multilayers showed high electro-
catalytic activity to the oxidation of NO. The sensitivity of
the composite films for measuring NO could be further
tailored by controlling the gold nanoparticle loading in the
film. Subsequently, gold nanoparticle arrays, Pt-Fe(III)

nanoparticle, carbon nanotube-gold nanoparticle and cop-
per nanoparticle were also used to design NO sensors [92,
223–226].

Nanomedicine

Nanomedicine is the medical application of nanotechnology
[227]. The approaches to nanomedicine range from the
medical use of nanomaterials, to nanoelectronic biosensors,
and even possible future applications of molecular nano-
technology. Current medicinal uses of nanosensors mainly
revolve around the potential of nanosensors to accurately
identify particular cells or places in the body in need. By
measuring changes in volume, concentration, displacement
and velocity, gravitational, electrical, and magnetic forces,
pressure, or temperature of cells in a body, nanosensors
may be able to distinguish between and recognize certain
cells, most notably those of cancer, at the molecular level in
order to deliver medicine or monitor development to
specific places in the body (http://en.wikipedia.org/wiki/
Nanosensor) [228, 229]. In addition, they may be able to
detect macroscopic variations from outside the body and
communicate these changes to other nanoproducts working
within the body. The design of nucleic acid machines based
metal and semiconductor nanoparticles/QDs has attracted
increasing interest in the last few years [230]. DNA-based
scissors [231], motors [232], walkers [233], and trans-
porters [234] have been developed. The possible use of
DNA-based machines for sensing purposes has recently
become an emerging research area. Recently, Willner has
reported on an autonomous DNA-based machine that
amplified the DNA biorecognition event by the generation
of a nucleic acid product that induces aggregation of Au
NPs. The optical features of the Au NP aggregates allowed
the colorimetric imaging of the machine functions and the
optical readout of the biosensing event. Besides the
important demonstration of the machine-induced amplified
detection of DNA with visual imaging, the system revealed
an approach for the “sensing” of NP aggregates that
included a controlled number of Au NPs in aggregated
clusters. Such aggregates might be building blocks for
assembling nanodevices [235]. Many similar works have
been also reported by them [236, 237]. In the field of
electrochemical analysis, more and more publications
concerning the recent but very important role of metal and
semiconductor nanoparticles/QDs for nanomedicine
appeared [238–241], such as cell analysis, microbe detec-
tion and drug discovery.

Ju has reported the electrochemical study of K562
leukemia cells based on chitosan nanocomposite gel
encapsulated Au NPs [242]. A novel nanocomposite gel
was prepared by neutralizing a designer nanocomposite
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solution of chitosan encapsulated Au NPs formed by reducing
in situ tetrachloroauric acid in chitosan. The bio-inspired gel
was designed for immobilization and electrochemical study of
cells and monitoring adhesion, proliferation, and apoptosis of
cells on electrodes. Using K562 leukemia cells as a model, an
impedance cell sensor was constructed. The living cells
immobilized on glassy carbon electrode exhibited an irrevers-
ible voltammetric response and increased the electron-transfer
resistance with a good correlation to the logarithmic value of
concentration ranging from 1.34×104 to 1.34×108 cells/mL
with a limit of detection of 8.71×102 cells/mL at 10σ. As
shown in Fig. 8a, K562 cells were capable of not only
adhering to GNPs-CHIT gel film but also proliferating on
the film upon extended culture. With an increasing
incubation time, the density of cells adhered on the film
increased. After incubation for 72 h, K562 cells apparently
spread evenly over the entire surface (photo c, Fig. 8a).
The cells were alive, as evidenced by the morphology of
the distinguishable filopodia, a good indicator of cell
adhesion to material surfaces and cell viability. A longer
incubation time caused the loss of cell normal character-
istics and viability, presenting an abnormal morphology on
the film (photo d, Fig. 8a). These observations could be
monitored with impedance measurements. With an in-
creasing incubation time of cells/GNPs-CHIT gel/GCE,
Ret increased (curves a–c, Fig. 8b), resulting from the cell
proliferation on the electrode, which introduced a barrier
for electrochemical process. The inset in Fig. 8b indicates
that the Ret of the probe increased gradually up to the
incubation time of 50 h and then tended to a relatively
steady value during the incubation time of 50–70 h. After
the incubation time of 70 h, drastically increased resis-
tance was observed (curve d, Fig. 8b). This change might
be related to the apoptosis of cells, which were congre-
gated on the electrode surface [243]. These results were
consistent with the observation from optical microscopy.
They have also researched tumor cell adhesion and
viability based on Colloidal gold nanoparticle modified

carbon paste interface. This simple and rapid method
could be applied for the electrochemical investigation of
exogenous effect and characterization of the viability of
living cells [244]. Thus, besides the detection of cell
immobilization, this method could be employed to
monitor both proliferation and apoptosis of cells on
electrode surface. This work implied that the nanocompo-
site gel based on biopolymer and nanoparticles possessed
potential applications for biosensing and provided a new
avenue for electrochemical investigation of cell adhesion,
proliferation, and apoptosis.

Recently, the use of super-paramagnetic particles or
magnetic beads (MB) as labels in biosensing has become a
very important tool in nanomedicine research. These
magnetic particles are especially designed for labeling cells
[245]. For example, magnetic particles coated with immu-
nospecific agents have been successfully used to lung
cancer cells [246]. Polyethyleneimine (PEI) conjugated
magnetic beads were used as novel virus concentration
method to enhance the sensitivity of virus detection by
PCR. PEI has the possibility of adsorbing viruses [247].
Hassena [248] developed a biosensor based on streptavidin
functionalized magnetic nanoparticles for HIV and HBV
DNA detection. The magnetic layer is composed of the
streptavidin functionalized magnetic nanoparticles immobi-
lized on a gold electrode via a 300 mT magnet. The
biotinylated HBV and HIV DNA probes were then linked
through a strong biotin–streptavidin interaction
(Ka∼1015 M) and finally DNA hybridization detection
was conducted by impedimetric measurements. Non-faradic
impedance spectroscopy allowed to detect 50 pmol of HBV
DNA and 160 pmol of HIV DNA on sample of 20 μL.
Saturations were reached for the same concentration
12.65 nmol·mL−1 for a same quantity of immobilized
DNA probes.

The detection of pathogenic bacteria remains a challeng-
ing and important issue for ensuring food safety and
security, for controlling water and soil pollution, and for

Fig. 8 Photos of K562 cells
proliferated on GNPs-CHIT gel
film coated on glassy dishes at a
24, b 48, c 72, and d 96 h (a),
and EIS measurements of K562
cells proliferated on GNPs-
CHIT gel/GCE after cell incu-
bation for a 24, b 48, c 72, and d
96 h (b). Inset in b: relationship
between electron-transfer resis-
tance and proliferation time of
K562 cells on GNPs-CHIT gel/
GCE. Reprinted from [240]
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preventing bioterrorism and nosocomial diseases [249].
Both Jaffrezic-Renault and Wang reported the works
concerning the E. coli detection based on metal and
semiconductor nanoparticles [249–251]. Moreover,
Jaffrezic-Renault showed the results of comparison of two
innovatives approaches for bacterial detection: paramagnet-
ic nanoparticles and self-assembled multilayer processes
[248]. In view of their results, the authors hypothesized that
the immunomagnetic sensor elaborated for E. coli detection
was much more sensitive than the biosensor based on the
self assembled multilayer system. In fact, paramagnetic
beads are among the new technologies greatly needed to
improve laboratory tests that can be used in point-of-care
clinical settings. With their ease of use and affordability,
they would become a popular choice for biomolecule
selection and purification [250].

Additionally, applications of nanoparticles in nanomedi-
cine are also involved in the detection of RNA, drug
analysis, nonviral transfection in vitro and so on [252–254].
On the whole, many approaches to nanomedicine being
pursued today are already close enough to fruition that it is
fair to say that their successful development is almost
inevitable, and their subsequent incorporation into valuable
medical diagnostics or clinical therapeutics is highly likely
and may occur very soon.

Conclusions and perspective

The integration of nanotechnology with biology and
electrochemistry is expected to produce major advances in
the field of electrochemical sensors. This review has mainly
addressed recent advances of electrochemical sensors based
on metal and semiconductor nanoparticles. Recent progress
focused on, on one hand, the development of functional
nanoparticles that are covalently linked to biological
molecules, such as peptides, proteins and nucleic acids, on
the other hand, the chemically modified electrode using the
metal and semiconductor nanoparticles or their functional-
ized particles. Throughout this review the metal and
semiconductor nanoparticles are attractive materials for
electrochemical sensors applications, maybe for electroan-
alytical and bioelectroanalytical applications, because of
their several advantages [2, 3, 63]: (i) Their small size (1–
100 nm) and correspondingly large surface-to-volume ratio
could generate a roughened conductive-high-surface area
interface after they have been immobilized on the electro-
des surface, which can enables the sensitive electrochemical
detection of organic or inorganic molecules or other
analytes. (ii) Chemically tailoring for metal and semicon-
ductor nanoparticles of physical properties which directly
relate to size, composition, and shape, and their function-
alization with molecular, polymer, biomatetial or other

nanomaterial coatings reveal that different electrochemical
sensors could be tailored on kinds of electrode surface
using such functional nanoparticles discussed above. We
could functionalize different nanoparticles with different
modifiers according to the characteristics of different
analytes and develop corresponding electrochemical sen-
sors. (iii) Because the size of metal and semiconductor
particles mentioned in this chapter is nano-scaled, the
overall structural robustness and their conductive perspec-
tive enable the design of electroanalytical and bioelectroa-
nalytical systems with pre-designed and controlled
electrochemical functions. (iv). The unusual target binding
properties can make nanoparticles act as effective labels for
the amplified electrochemical analysis of the respective
analytes, such as DNA, protein, and the others.

In most cases, the extension of the concept for nano-
particles has provided more chances to accomplish design
new sensing devices. Generally the integration of metal and
semiconductor nanoparticles with other nanowires or nano-
tubes is advantageous to the design new sensors with kinds
of functions. Certainly this topic includes one kind of
excellent nanocrystals, quantum dots (QDs) [255]. The
unique properties of QDs may allow the design of simple,
inexpensive electrochemical systems for detecting ultra-
sensitive, multiplexed assays. The electrochemical proper-
ties of QD nanocrystals make them extremely easy to detect
using simple instrumentation. QDs nanocrystals are made
of a series of semiconductor nanoparticles that can easily be
detected by highly sensitive techniques, such as stripping
methods. In addition, these electrochemical properties may
allow the design of simple, inexpensive electrochemical
systems for detecting ultra-sensitive, multiplexed assays.
The electrochemical coding developed could be adapted to
other multi-analyte biological assays, particularly immuno-
assays. The use of semiconductor nanoparticles or nano-
crystals in photoelectrochemistry would sometimes enlarge
their applications in electroanalytical chemistry and bio-
analytical chemistry. Although the unique properties of
nanoparticles have offered many advantages for their
applications in electrochemical sensors, nanoparticles need
to have surface functionality amenable to biological
modification, solubilization solubility and long-term stabil-
ity in a range of buffered saline solutions and pH values,
and limited non-specific binding to fabricate more analysis
systems with better sensitivities and simple process. Further
efforts should be made focusing on this aim.

To date, with the development of the electroanalytical
applications of functionalized nanoparticles, it is mature to
fabricate bulky sensors according to the collective proper-
ties of the metal and semiconductor nanoparticles ensem-
bles. Now, in order to fully use the unique properties and
other advantages in our day life we must be in the face of a
challenging topic, which is the miniaturization of the metal
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and semiconductor nanoparticles ensembles with the
ultimate goal of using a single functionalized nanoparticle
for the electronic sensing events. So based on the unique
properties of nanoparticles and the nanoscale dimension of
the active sensing elements future advances will require
continued interdisciplinary efforts by of chemists in close
collaboration with experts in physics, biology, material
science and medical fields, which future could yield new
generations of miniaturized sensing devices.
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