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Abstract A disposable electrochemical DNA-based biosen-
sor was developed and applied as a screening device to detect
an effect of a synthetically prepared quinazoline derivative on
the surface-attached double stranded calf thymus DNA.
Screen-printed carbon electrodes without and with multi-
walled carbon nanotubes interface served as the signal trans-
ducer. The quinazoline interaction with DNAwas investigated
voltammetrically using DNA-bound electrochemical indica-
tors such as [Co(phen)3]

3+, [Ru(bpy)3]
2+, methylene blue, the

K3[Fe(CN)6] complex present in the solution phase as well
as by electrochemical impedance spectroscopy. A severe da-
mage to DNA at the incubation of the biosensor in quinazoline
solution was found which leads to the loss of DNA from the
electrode surface. Agarose gel electrophoresis was used to
verify the results.

Keywords DNA-based biosensor . Double stranded calf
thymus DNA . Quinazoline . Voltammetry .

Electrochemical impedance spectroscopy

Introduction

The interactions of DNA with low molecular mass com-
pounds are in centre of interest of the life sciences. Testing of
such interactions using the DNA-based biosensors can help
to evaluate health-risk chemicals and drugs including
anticancer drugs, etc. [1]. The DNA biosensors are also
widely used to detect the presence of pathogenic micro-

organisms, various types of damage to DNA, and protective
effects of some substances towards the DNA structure [2].
A special feature of the DNA-based biosensors is in vitro the
investigation of the surface attached DNA. DNA biosensor
technologies are currently under intensive investigation owing
to their great promise for the rapid and low cost investigation
of potential drug agents [3].

In this work, we propose the electrochemical DNA-based
biosensor as a screening device for the rapid test of potential
antitumor agent interacting with the double helix of the
nucleic acid. Concerning the surface-attached DNA voltam-
metric detection, various redox indicators can be used. The
tris-(1,10-phenanthroline)cobalt(III) complex, [Co(phen)3]

3+,
interacts, depending on the ionic strength, with DNA through
hydrophobic interactions with the interior of DNA and
through electrostatic interactions with the negatively charged
DNA backbone [4–6]. Tris-(2,2′-bipyridyl)ruthenium(II)
complex, [Ru(bpy)3]

2+, was used as the DNA intercalator
already by Lerman in 1960s to define a molecule containing
planar aromatic structure which inserts itself between the base
pairs of double stranded DNA [7]. Recently, Lee et al. re-
ported a voltammetric study on the interaction of this inter-
calator with DNA [8]. Catalytic oxidation of guanine residue
by the Ru(III) complex provides a highly sensitive way to
detect the DNA base damage [9]. The detection is based on
the different accessibility and oxidation rate of guanine
moiety in intact and damaged DNA [10].

Methylene blue (MB) is an aromatic organic dye that
belongs to the phenothiazine family. The main interaction of
MB with dsDNA is its intercalation between the base pairs of
dsDNA [11], while other interactions such as a groove bind-
ing and electrostatic attraction also play some role which
depends on the ionic strength and the MB/DNA molar ratio
[12]. Compared to a label-free electrochemical method in
detecting DNA damage, the utilization of MB shows the
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advantage in that its electrochemical reduction happens at the
relatively low potential where the interferences from other
electroactive species in a sample and background can be
minimized [13, 14]. The function of the K3[Fe(CN)6] indi-
cator present in solution phase is based on the electrostatic
repulsion between the complex anion, [Fe(CN)6]

3−, and the
negatively charged DNA phosphate backbone. Cyclic
voltammetry of [Fe(CN)6]

3− was used as a routine method
for the evaluation of the DNA presence at the electrode sur-
face [15, 16].

Electrochemical impedance spectroscopy (EIS) is a pow-
erful and effective tool for the investigation of electric features
of the surface-modified electrodes in general [17]. With
respect to advantages of the EIS detection of the surface
attached DNA, particularly indicatorless procedures and
commercially available equipments and software, impedi-
metric biosensors based on the conductive multi-walled car-
bon nanotubes (MWNT) and the DNA layers are also of
great interest [18].

Quinazolines, the derivatives of 1,3-benzodiazine, are
biologically active compounds used in pharmaceutical indus-
try, agriculture and medicine. As we reported previously,
many derivatives of quinazoline have antimicrobial [19],
anticancer [20, 21] and DNA protective effects [22]. Various
quinazolines exhibit also antiinflammatory, diuretic, anticon-
vulsant, antiallergic, antihypertensive and antiparkinsonian
effects [23, 24]. In a preliminary study [25], the 3-(5-nitro-2-
furyl)-9-chloro-5-morpholin-4-yl-[1,2,4]triazolo[4,3-c] qui-
nazoline (Fig. 1) was shown as a compound with the strong
effect on DNA. The aim of this paper is a detailed inves-
tigation of its reactivity towards surface-attached calf thymus
dsDNA using the DNA-based biosensor and a variety of
detection methods in order to obtain complex and verified
results.

Experimental

Apparatus

Voltammetric measurements were performedwith the Autolab
apparatus and the software GPES (General Purpose Electro-

chemical System) version 4.9.005 from Eco Chemie, Utrecht
(http://www.autolab-instruments.com). EIS measurements
were carried out on the Autolab/FRA system with the poten-
tiostat PGSTAT 12 and FRA-DSG, FRA-ADS modules,
version 4.9.006 from Eco Chemie, Utrecht. Three-electrode
assembly (Food Research Institute, Bratislava, http://www.
vup.sk) consisting of working carbon electrode (25 mm2 geo-
metric surface area), a silver/silver chloride reference elec-
trode Ag/AgCl/SPCE (potential of 0.284 V vs conventional
Ag/AgCl/saturated KCl electrode) and the same counter
electrode was used. Electrophoretic experiments were per-
formed with standard apparatus (Multigel G44, Biometra).

Preparation of DNA modified SPCE electrodes

DNA/SPCE Five microliters of the DNA stock solution
(0.1 mg ml−1) were dropped onto the bare SPE surface and
allowed to evaporate to dryness over night.

DNA/MWNT/SPCE Five microliters of the MWNT suspen-
sion (1 mg MWNT/2 ml in 1% sodium dodecyl sulphate)
was dropped onto the bare SPCE surface and allowed to
evaporate to dryness. MWNT/SPCE was then modified by
dropping and evaporating 5 μl of the DNA stock solution
(0.1 mg ml−1) over night.

Reagents

Calf thymus dsDNA was obtained from Merck, Darmstadt
(http://www.merck.de). Its stock solution (0.1 mg ml−1) was
prepared in 10 mM Tris–HCl and 1 mM EDTA solution of
pH 8.0 and stored at −4 °C. Phosphate buffer solution of
1 mM, 5 mM and 100 mM (PBS), pH 7.0, was used for the
electrochemical measurements.

Multi walled carbon nanotubes (OD 40–60 nm, ID 5–
10 nm, length 0.5–500 μm) were obtained from Aldrich,
Taufkirchen (http://www.sigma-aldrich.de). Their suspension
was prepared in 1% aqueous solution of sodium dodecyl
sulphate (SDS) from Sigma, Steinheim (http://www.sigma-
aldrich.de).

The complex compound [Co(phen)3](ClO4)3 was synthe-
sized in our laboratory according to [26] and checked by
chemical analysis. The complex [Ru(bpy)3]Cl2 was synthe-
sized at the Faculty of Natural Sciences, Charles University,
Prague (http://www.natur.cuni.cz) according to [27] and
checked by chemical analysis. MB was from Sigma,
Steinheim and K3[Fe(CN)6] from Lachema, Brno. The
quinazoline derivative was prepared by Špirková et al. [28].
Chromatographically pure quinazoline derivative was dis-
solved before use in DMSO (Biocom, Bratislava). The
DMSO content in the cleavage medium never exceeded
0.4% (v/v).
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Fig. 1 Chemical formulae of the 3-(5-nitro-2-furyl)-9-chloro-5-morpholin-
4-yl-[1,2,4]triazolo[4,3-c] quinazoline under study
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Procedures

Before the measurement, the dry DNA modified electrode as
an original biosensor was pretreated by immersion into the 1,
5 or 100 mM PBS, pH 7.0, for 5 min under stirring depending
on the type of electrolyte used for the DNA detection. The
electrochemical signals of selected DNA indicators were
obtained as described below with optimum supporting
electrolytes typically used in literature for the individual
detection procedures. To detect an effect of the quinazoline
derivative on DNA, the same sensor was incubated in the
quinazoline solution (10, 50, 100 or 200 μg ml−1) in 5 mM
PBS for a given time (10 min, 1 or 10 h) under stirring and
rinsed with water. Then, the voltammetric response of the
corresponding DNA indicator was obtained again in the
appropriate supporting electrolyte.

Differential pulse voltammetry of [Co(phen)3]
3+ The pro-

cedure described elsewhere [29] was used. Briefly, the DNA
marker [Co(phen)3]

3+ was accumulated from its 5×10−7 M
solution in 5 mM PBS under stirring for 120 s at open
circuit. The cathodic DP voltammogram was recorded im-
mediately from 400 to −500 mV using pulse amplitude
100 mV, scan rate 10 mV s−1 and scan step 5 mV. The
marker DPV peak current was evaluated against a base-line
using the standard software and corrected to non-specific
complex adsorption (I0,DNA/SPCE−I0,SPCE) to obtain the
signal I0. Then, the DNA modified electrode was regenerated
by removing of the accumulated [Co(phen)3]

3+ ions from the
DNA layer by immersing the sensor into the solution of a
high ionic strength (100 mM PBS) for 120 s under stirring.
A negligible marker peak current was checked by the DPV
record in the blank solution. After the incubation of the
sensor in the quinazoline solution, rinsing with water and the
120 s marker accumulation from 5×10−7 M [Co(phen)3]

3+ in
5 mM PBS, the DPV peak current was obtained in duplicate.
The mean value (I) was calculated and corrected to non-
specific complex adsorption (IDNA/SPCE−ISPCE). Finally, the
normalized (relative) signal I/I0 was received.

Square wave voltammetry of [Ru(bpy)3]
2+ The procedure

described elsewhere [30] was used. The sensor was im-
mersed into 20 μM solution of [Ru(bpy)3]

2+ in 1 mM PBS
and the SWV anodic scan was recorded immediately from
300 to 1,500 mV using pulse amplitude 100 mV and scan
rate 10 mV s−1. The peak current at 850 mV was against
blank.

Cyclic voltammetry of MB After an immersion of the
biosensor into 20 μM MB in 1 mM PBS containing 20 mM
NaCl, the cyclic voltammogram was recorded within the 0 to
−700 mV potential range using the scan rate 50 mV s−1 and
the cathodic peak current was evaluated against blank.

Cyclic voltammetry of K3[Fe(CN)6] The cyclic voltammo-
gram of 1 mM K3[Fe(CN)6] in 0.1 M PBS was recorded
from 1,000 to −700 mV using the scan rate 50 mV s−1. The
difference in the anodic to cathodic peak potential separa-
tion was evaluated.

Electrochemical impedance spectroscopy The measurements
were carried out in the presence of 1 mM K3[Fe(CN)6]
as a redox probe in the 0.1 M PBS at the polarization
potential 0 V in the frequency range 0.1 to 104 Hz and with
the amplitude 10 mV.

Electrophoretic tests Five microliters dsDNA (5 mg ml−1)
were treated with quinazoline (10, 50, 100 or 200 μg ml−1)
in 5 mM PBS at 22 °C for 10 min, 1 and 10 h. Then, the
samples were subjected to electrophoresis at 40 V for 3 h in
2% (w/v) agarose gels complemented with ethidium bromide
(1 mg l−1). Separated DNA fragments (DNA ladders) were
visualized using a UV transilluminator (254 nm, Ultra-Lum
Electronic UV Transilluminator, USA).

Results and discussion

Optimization of the DNA detection modes

Electrochemical response of the DNA
marker [Co(phen)3]

3+

The cathodic reduction of the complex was evaluated as the
DNA signal. The DPV peak current obtained at a bare SPE
immediately after its immersion into the [Co(phen)3]

3+

solution represents about 5% and that after 120 s accumu-
lation of the complex by simple adsorption (ISPE) about
15% of the signal measured after the 120 s accumulation of
the complex (IDNA/SPE) at the DNA-modified SPCE
(Fig. 2a). To evaluate the specific DNA response, the total
peak current has to be corrected to the mean signal obtained
at the bare SPCE (RSD=10% for n=10) by a subtraction of
the last one (I=IDNA/SPCE−ISPCE).

Electrochemical detection with [Ru(bpy)3]
2+

The ruthenium complex [Ru(bpy)3]
2+ was utilized as an

electroactive DNA marker and catalyst of the guanine moiety
oxidation (Fig. 2b). At the optimization of the procedure, the
Ru(II) complex was accumulated at DNA/SPCE for 0, 30,
60, 90 or 120 s. Both, the specific (DNA/SPCE) and non-
specific (SPCE) SWV signals have increased with time of
accumulation, however, their ratio was approximately the
same for individual time of accumulation. So, for the DNA
detection, the procedure without accumulation was used. An
effect of the PBS concentration on the [Ru(bpy)3]

2+ signal
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was also tested and a significant influence of the ionic strength
has on the SWV current was found (Fig. 3a). The Ru(II) sig-
nal increased with a decrease of the PBS concentration and
1 mM PBS was chosen for the measurement.

Cyclic voltammetry of methylene blue (MB)

The reduction of MB was monitored by using CV. An
adsorption of MB on DNA/SPCE leads to a significantly
enhanced voltammetric response of MB comparing to bare
SPCE (Fig. 2c). However, the signal did not increase with
contact time (0, 30, 60, 90 and 120 s) of the DNA/SPCE
with MB. An effect of the ionic strength on the interaction of
MB with DNA was also investigated and a significant
increase in the cathodic peak current with decreasing PBS
concentration was found (Fig. 3b). For further experiments,

1 mM concentration of PBS containing 20 mM NaCl has
been used.

Cyclic voltammetry of K3[Fe(CN)6]

The detection of DNA is based on a fact that the negatively
charged [Fe(CN)6]

3− complex anion in the solution phase can
not reach the electrode covered with the polyanionic DNA
due to a repulsive effect of the molecules. At the bare SPCE,
the CVof K3[Fe(CN)6] in 0.1 M PBS is characterized by the
anodic to cathodic peak potential separation of 510 mV. This
ΔEp value is given by a relatively low reversibility of the
redox couple at the carbon paste working electrode substrate.
After covering the SPCE with DNA, however, the peak
potential separation is even larger, about 880 mVand the CV
peak currents are lower than those at bare SPCE (Fig. 2d).
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Fig. 2 a DPV curves of 5×
10−7 M [Co(phen)3]

3+ in 5 mM
PBS, pH 7.0, obtained after
120 s accumulation at open
circuit. Conditions: pulse ampli-
tude 100 mV, scan rate 10 mV
s−1, scan step 5 mV. b SWV
scans of 20 μM [Ru(bpy)3]

2+] in
1 mM PBS, pH 7.0 without
accumulation. Conditions: pulse
amplitude 100 mV, scan rate
10 mV s−1. c CV scans of
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tions: scan rate 50 mV s−1. d CV
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The difference in the peak potential separation was used to
detect the presence of DNA layer at the electrode surface.

The effect of quinazoline

An effect of the quinazoline derivative on the DNA layer at
the electrode surface has been evaluated after an incubation of
the biosensor in quinazoline solution at 22 °C within the
quinazoline concentration range from 10 to 200 μg ml−1. The
voltammetric detection of damage to DNA has been ac-
complished using the electroactive compounds either bound
to DNA (such as [Co(phen)3]

3+, [Ru(bpy)3]
2+, MB) or pre-

sent in solution (the K3[Fe(CN)6] complex).
The quinazoline concentration dependent change of the

surface-attached dsDNA was indicated by a decrease in the
normalized (I/I0) DPV signal of [Co(phen)3]

3+ which re-
presents a portion of DNA surviving the incubation in
quinazoline (Fig. 4a). The quinazoline effect can be seen
particularly after 1 and 10 h incubation. Similarly, the changes
in the SWV signal of [Ru(bpy)3]

2+ (Fig. 4b) and CVs of MB
and K3[Fe(CN)6] were also found to increase with the quina-
zoline derivative concentration and incubation time (Fig. 4c,d).

Concerning nature of the dsDNA change, the experiments
with [Co(phen)3]

3+, [Ru(bpy)3]
2+ and MB indicate either a

deep DNA structural degradation leading to DNA leaching
from the electrode surface or a competitive adsorption of
the quinazoline derivative on the DNA/SPCE. The tests

with K3[Fe(CN)6] present in the solution phase showed the
decrease in the peak potential separation after the DNA/
SPCE treatment by the quinazoline derivative. Such ΔEp

decrease, i.e. the increase in the electrochemical reversibility
of the redox couple indicates the loss of negatively charged
DNA from the electrode surface during the incubation and
clearly confirms the damage to DNA and the potentiality of
the quinazoline derivative under study to act as the DNA
cleavage agent.

This observation was further confirmed by electrochem-
ical impedance spectroscopy as the method for the detection
of quality and changes at the electrode surface. For these
experiments, the electrodes with nanostructured interface
DNA/MWNT/SPCE were used because of higher impedi-
metric sensitivity of this DNA biosensor comparing to
simple DNA/SPCE. The presence of MWNT on the SPCE
electrode has significantly decreased its impedance, as one
can expect, due to the high MWNT electrical conductivity.
Typically, the system is simulated by a simple parallel com-
bination of the capacitance (C) and the charge-transfer
resistance (Rp) in series with the supporting electrolyte re-
sistance (Rs). Moreover, the roughness exponent n [31] is
used to express a deflection of the transducers surface from
the theoretical homogenous or smooth surface where n=1
[30]. At n values near to 1, the constant phase element should
be reduced to capacitance C. The EIS detection window is
given by a change in the Rp value which is the highest in the
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Fig. 4 The dependence of the
DNA/SPCE response on the
concentration of the quinazoline
derivative. DNA/SPCE was in-
cubated in the quinazoline in
5 mM PBS, pH 7.0, for 10 min
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scan step 5 mV. b SWV peak
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2+
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presence of original dsDNA at the sensor surface and the
smallest for the bare MWNT/SPCE without DNA.

The EIS parameters, particularly the polarization resis-
tance (Rp), have shown a significant change already after 1
and 10 h of incubation in the quinazoline solution (Table 1).
The results correspond well with those obtained by using
the DNA redox indicators and confirm the deep degradation
of dsDNA in the presence of the quinazoline derivative.

Agarose gel electrophoresis was used as another conven-
tional independent method to confirm the damage to DNA.
The electrophoretic experiments have shown that at the given
concentrations the quinazoline does not fission DNA in
solution during 10min incubation. However, at the cultivation
of dsDNA with quinazoline for 1 and 10 h, the fission of
dsDNA to small fragments takes place (Fig. 5). In the case of
10 h incubation, even a quinazoline concentration effect could
be detected from the change of the picture in the lines 1 and 2
obtained for 10 and 50 μg ml−1 quinazoline, respectively.
However, the sensitivity of the electrophoretic method to the

quinazoline concentration changes here is lower than that of
the DNA biosensors.

There are probably several types of quinazoline–DNA inter-
actions. Consequences of these interactions involve changes in
DNA. In many cases, changes in the structure of the DNA alter
its thermodynamic stability which is manifested as a change in
the functional properties of the DNA. We have found that the
interaction of quinazoline derivative under study with DNA
immobilized on the SPCE surface leads evidently to strand
breaks, double helix opening and fragmentation of the attached
DNA. To investigate the nature of the quinazoline–DNA in-
teractions, more extensive study involving spectroscopic
methods like IR, NMR and others would be necessary.

Conclusions

The search for new drugs, their evaluation and application
requires an integrated action of many scientific disciplines
such as pharmacy, biology, chemistry and medicine. An
interest in the biosensor research is driven by increasing need
of rather specific sensors for fast and routine tests in various
fields of chemical analysis including the study of drugs and
chemicals. The electrochemical DNA-based biosensors are
known as experimentally simple devices which require only
small amount of DNA. Using nanostructured materials, they
efficiency can be significantly enhanced [32, 33]. The
investigation of the electrochemical response of DNA before
and after the interaction with a DNA-targeted drug can
provide an evidence for its interaction mechanism.

In this paper, the good detection ability of such a
biosensor at the study of deep changes of the dsDNA layer
was demonstrated, particularly using instrumentally avail-
able combination of the K3[Fe(CN)6] cyclic voltammetry
and electrochemical impedance spectroscopy. It was found
that the quinazoline derivative causes the total DNA
damage which depends on the concentration of quinazoline

Table 1 Parameters of the equivalent circuit simulating the impedance spectra for DNA/MWNT/SPCE in 1 mM K3[Fe(CN)6] in 0.1 M PBS

Time of incubation (h) Concentrations of quinazoline
(μg ml−1)

Solution resistance
Rs (Ω)

Polarization resistance
Rp (kΩ)

Capacitance
C (μF)

n

1 0 42±4 6.30±0.05 50±2 0.83
10 54±5 6.03±0.09 266±9 0.78
50 62±5 5.14±0.06 323±10 0.72

100 77±9 3.67±0.07 295±8 0.78
200 72±7 3.71±0.05 24±5 0.71

10 0 42±4 6.30±0.05 50±2 0.83
10 57±3 6.04±0.07 345±10 0.75
50 69±9 5.08±0.05 145±10 0.77

100 68±4 4.07±0.06 112±8 0.71
200 65±5 3.70±0.05 40±5 0.75

The corresponding values obtained for bare MWNT/SPCE are as follows: Rs=(44±3) Ω, Rp=(3.59±0.02) kΩ, C=(29±2) μF and n=0.89.

10 minutes 1 hour 10 hours 

 

Cn   |   1      2      3      4   |  1      2      3     4    |   1      2      3     4  |   S 

Fig. 5 Two percent agarose gel electrophoresis of dsDNA previously
treated with quinazoline in 5 mM phosphate buffer solution pH 7.0 for
10 min, 1 h and 10 h. Lines correspondence to quinazoline concentra-
tion: line 1 10 μg ml−1, line 2 50 μg ml−1, line 3 100 μg ml−1, line 4
200 μg ml−1, S standard, Cn negative control (non-treated dsDNA)
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and incubation time. Generally, it is expected that the
development through combined efforts in microelectronics,
surface/interface chemistry, molecular biology and analyt-
ical chemistry will lead to further progress in the biosensor
technology for the use in analytical biochemistry.
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