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Abstract. A fast method of determining ascorbic acid

and isoascorbic acid by capillary zone electrophoresis

with a photodiode array detector was developed.

Response surface methodologies based on three-level,

three-variable designs, such as the Box-Behnken design,

central composite face-centered and full fractional

design, were used comparatively for optimization of

buffer pH, buffer concentration and operation voltage.

Statistical interpretation of the variables concerning

different responses, such as resolution and migration

time of the last migrated analyte, were performed. The

optimum conditions of these variables were predicted

using a second-order polynomial model fitted to the

results obtained by applying three designs. The re-

sponse surface plots using three experimental designs

revealed a separation optimum with Tris–HCl buffer of

pH 8.5, a concentration of 50 mM, and an operation

voltage of 30 kV. The significance of the statistical de-

signs were confirmed by the generally good agreement

obtained between predicted responses and actual exper-

imental data. We concluded that experimental designs

offer a rapid means of optimizing several variables and

provide an efficient test for the robustness of the ana-

lytical method.

Key words: Response surface methodology; capillary electrophor-

esis; ascorbic acid; isoascorbic acid; multi-criteria decision.

Many methods have been developed in order to op-

timize the parameters of interest in capillary electro-

phoresis and related techniques [1, 2]. In chemometric

approaches experimental measurements are performed

in such a way that all variables vary at the same time.

An objective function is utilized in which the analyst

introduces the desired criteria (selectivity, resolution,

time of analysis). The advantage of chemometrics

tools is that no explicit models are required, and when

models are available, optimization is easier to perform

by regression methods. Optimization of a CE separa-

tion condition is a critical step, since the wide array of

variables, such as applied voltage, buffer composition,

ionic strength, temperature, capillary length, and injec-

tion time, can influence the separation efficiency, mi-

gration time, resolution etc. and a complete and quite

general physicochemical model in CE is still missing

[3–5]. One approach to achieving optimum separation

is to vary the experimental parameter steps while keep-

ing other parameters constant. Yet searching for the

optimum separation condition using this approach re-

quires too much experimental work and is tedious and

time-consuming. Furthermore, when interaction ap-

pears, univariate optimization is not suitable for finding

the best experimental conditions since the influence of� Author for correspondence. E-mail: yupzhang@hotmail.com



any given variable depends on the magnitude of the

other variables.

A suitable alternative to overcoming the aforemen-

tioned shortcomings lies in experimental design tech-

niques. Moreover, the number of experiments to be

carried out can be reduced drastically when following

these chemometric strategies [6–9]. Chemometrics

are involved in the preliminary stages of establishing

a CE method and the analysis of CE data to extract the

maximum amount of significant information. It allows

a large number of parameters to be screened simul-

taneously and to achieve this in a small number of

mathematical runs, it is the most important aspect

of mathematical design and provides a mathemati-

cal framework. Experimental designs such as the

Plackeet-Burman design (PBD), Box-Behnken design

(BBD), central composite face-centered design (CCF),

central composite circumscribed design (CCC), full-

factorial design (FFD) etc. have been used for CE

separation studies [10–16]. Several studies have been

reported on the use of multivariate statistical analysis

to optimize CE methods. Depending on the design,

the response model can show the relationship between

each parameter. BBD, CCF are the response surface

methods used to optimize CE separation [17, 18],

which is an efficient statistical tool for optimization

of multiple variables to predict the best performance

conditions using a minimum number of experiments.

L-ascorbic acid (L-AA), also known as vitamin C,

is a natural antioxidant in food and biological systems

with important nutritional benefits for human health,

e.g. its effect against scurvy, cardiovascular disease

and cancer. D-isoascorbic acid (D-IAA), also known

as erythorbic acid, the C5 epimer of L-AA, displaying

about 10% of the bioactivity of L-AA is usually added

to foods for nonvitamin purposes [19]. However, the

stereochemical structures and properties of L-AA and

D-AA are so close that quantitative analysis of L-AA

in food systems with D-IAA additives is difficult.

Several methods used to determine ascorbic acid have

been published, including high-performance liquid

chromatography (HPLC), gas chromatography (GC),

capillary electrophoresis (CE) [20]. Capillary zone elec-

trophoresis (CZE) possesses the advantages of short

analysis time, low sample consumption, high separa-

tion efficiency, simple experiment operation and so on.

In the present work, BBD, CCD and FFD have been

compared to determine the optimum separation con-

ditions by CZE. Furthermore, in order to find the best

compromise between several responses, a multicriteria

decision-making approach was used, where the reso-

lution response and migration time response can be

simultaneously optimized. Baseline separation of the

analytes was obtained in 5 min with a resolution larger

than 1.5.

Experimental

Chemicals

L-AA, HCl, oxalic acid, EDTA.2Na, tris (hydroxymethyl) amino-

methane were purchased from Beijing Chemical Reagent Company,

D-Isoascorbic acid was obtained from Beijing Bailingwei Chemical

Reagent Company (www.jkchemical.com), doubly distilled water

was obtained from a super-purification system (Danyangmen

Corporation, Jiangshou, China). The mixed standard of L-AA and

D-LAA with a concentration of 10mg=mL, respectively, were dis-

solved in a solution containing 0.1% oxalic acid and 1 mM EDTA

for stabilization. All electrolyte solutions and samples were filtered

through a 0.45mm pore size filter and degassed in an ultrasonic bath

for 15 min before use.

Apparatus

CE separation was performed with an HP3D CE system with a

photodiode array detector, an autosampler, and a power supply able

to deliver up to 30 kV (Agilent Technologies, Inc., Walbronn,

Germany). CE ChemStation (Hewlett-Packard) software was used

for instrument control, data acquisition, and data handling. All ex-

periments were carried out the cationic mode (anode at the inlet and

cathode at the outlet). An uncoated fused silica capillary (Yongnian

Optical Conductive Fiber Plant, Hebei, China, www.rui-feng.com)

of 75mm I.D. and 48.5 cm (40 cm effective length) was employed

throughout all experiments. The capillary was conditioned before

each analysis by flushing successively with H2O and buffer for

5 min, respectively. Samples were injected with 50 mbar pressure

for 5 s and separated at the operating voltage.

Software

Polynomial equations and the statistical analysis of the response

variables were supported by Microsoft Excel 2000 software (version

5.0; Microsoft Corp., Redmond, WA). Origin 6.0 (Origin Corp.,

MA, USA) was used for making the response surface diagrams

and contour plots.

Results and discussion

Statistical experimental design

The pH of the carrier electrolyte has a dramatic influ-

ence on the separation of L-AA and D-AA. The elec-

troosmotic flow is a significant factor when L-AA is

analyzed by CE, because it has a highly anionic char-

acter in neutral conditions, and can thus migrate

quickly on CE using a fused silica capillary. With pKa

values of 4.17 and 11.57 for L-AA, the buffer pH must
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be above 4.2 to ionize the L-AA. L-AA migrates fas-

ter at a higher pH (pH�7.0), whereas the peak of L-

AA does not appear at the lower pH (pH � 4.0)

because the electroosmotic flow is very slow under

these conditions. However, at and above pH 8.5,

imperfect baseline fluctuations occur, and the peak

of L-AA is interfered with by the solvent peak. There-

fore, the optimum pH of the buffer was about pH 8.0.

Increasing the voltage results in shorter migration

time and improved separation efficiency. However,

as the voltage is further increased, excessive Joule

heating results in band broadening. Hence, maximum

resolution is obtained by maintaining the voltage

below the level at which Joule heating becomes a

limiting factor, so an organic buffer was used in our

studies. The separation temperature affects the mobi-

lity of the species and of the EOF by changing the

viscosity of the electrolyte. In our study, it was kept

constant at 20 �C.

Initial method screening to determine the most sig-

nificant variables for the analytes did not require an

experimental design approach due to previous CE stu-

dies [21–25]. As shown in Table 1, three important

variables were chosen for the optimization designs,

namely the pH, the concentration of the buffer and

the applied voltage. In order to calculate quadratic

regression model coefficients, each design variable

has to be studied at three distinct levels at least.

The BBD, CCFD and FFD models were used com-

paratively for the multivariable approach. The CCD is

based on a full factorial design (Fig. 1a), which is

augmented by centre points, axial or start points,

which are described as a star (Fig. 1b). So there are

8 cube points (for a full factorial) with levels of �1

and þ1, 6 axial or start points with levels of �� and

þ� and 6 replicates of the centre point. Depending on

the � value, three types of CCD are distinguished:

central composite circumscribed if �>1, central com-

posite inscribed if �<1, and central composite face

centre if �¼ 1. The first two types are spherical

designs, while the latter (CCFD) is a cubic design.

Here, for three variables and three levels, a total of

20 experiments were considered.

As with the CCD model, BBD is a response surface

method used to examine the relationship between one

or more response variables and a set of quantitative

experimental parameters. The BBD is not directly

based on a full factorial design, as it uses middle

points instead of corner points (Fig. 1c). The experi-

mental plan for a three-parameter design is laid out

according to the following pattern: two variables have

a combination of their extreme levels, while the other

is set to its mean value. For a three-parameter design,

all experimental points are located on the edges of a

cube around the centre points. BBD requires fewer

experiments than CCD but covers a slightly smaller

experimental region. It is also a spherical design.

The levels of three variables for three designs are

shown in Table 1. The maximum and minimum con-

centration for buffer pH (x1) were fixed at 7.5 and 8.5,

respectively. Likewise, Tris–HCl buffer concentration

(x2) was used in the range of 30–50 mM with an

operation voltage (x3) of 20–30 kV. The BBD model

with a total of fifteen experiments (the twelve middle

Table 1. Coded and true values of BBD, CCF and FFD model

variables

Variables Code Level

Coded

value

True

value

�1 0 1

pH x1 X1 7.5 8.0 8.5

Buffer concentration

(mM)

x2 X2 30 40 50

Voltage (kV) x3 X3 20 25 30

Fig. 1. Representation of FFD, CCFD and BBD models
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points of the edges on a cube and 3 centre points), the

CCFD model with a total of twenty experiments, and

FFD with twenty seven experiments are depicted in

Tables 2, 3 and 4, respectively. All other experimental

plans and the runs were randomized to exclude any

bias. The resolution response (R2) and the migration

time (t2) were monitored during processing. The re-

spective calculated responses for the analytes are also

included in Tables 2, 3 and 4.

In order to define the relationship between the re-

sponses and the variables, a quadratic regression model

should be applied on the basis of a multiple linear

regression (MLR). The selected model included 10

coefficients (the constant term, B0, three main effects,

three quadratic terms and three interaction terms, as

indicated in the equation [26–28]:

y ¼ B0 þ
Xn

i¼1

BiXi þ
Xn

i¼j¼1

BijXiXj ð1Þ

In our studies, it can be changed into the following

equation according to the n value and the coded values

of three variables.

y ¼ B0 þ B1x1 þ B2x2 þ B3x3 þ B12x1x2 þ B13x1x3

þ B23x2x3 þ B11x1
2 þ B22x2

2 þ B33x3
2 ð2Þ

where y is the response to be modeled (Rs and t2), Bi

are the coefficients of the models by MLR, x1 is the

buffer pH (in coded variable), x2 is the buffer concen-

tration (in coded variable) and x3 is the operation volt-

age (in coded variable).

Table 3. Experimental design and response results using the CCFD

model

Run x1 x2 x3 Rs t2

Exp. Pred. Exp. Pred.

1 �1 �1 �1 1.16 1.17 6.38 6.46

2 1 �1 �1 0.88 0.86 5.40 5.25

3 �1 1 �1 1.95 1.96 9.08 8.86

4 1 1 �1 1.17 1.23 6.75 6.98

5 �1 �1 1 1.12 1.07 3.91 3.71

6 1 �1 1 0.85 0.85 3.30 3.54

7 �1 1 1 1.86 1.89 4.83 5.01

8 1 1 1 1.23 1.23 4.22 4.16

9 �1 0 0 1.64 1.64 5.83 5.99

10 1 0 0 1.19 1.15 5.21 4.96

11 0 �1 0 0.55 0.61 3.80 3.84

12 0 1 0 1.29 1.20 5.48 5.35

13 0 0 �1 1.11 1.05 6.34 6.40

14 0 0 1 0.99 1.01 3.77 3.62

15 0 0 0 1.08 1.02 4.82 4.79

16 0 0 0 0.99 1.02 4.75 4.79

17 0 0 0 1.03 1.02 4.76 4.79

18 0 0 0 0.97 1.02 4.78 4.79

19 0 0 0 1.01 1.02 4.71 4.79

20 0 0 0 0.97 1.02 4.71 4.79

Table 4. Experimental design and response results using the FFD

model

Run x1 x2 x3 Rs t2

Exp. Pred. Exp. Pred.

1 �1 �1 �1 1.16 1.15 6.38 6.18

2 �1 �1 0 1.20 1.20 4.40 4.68

3 �1 �1 1 1.12 1.09 3.91 3.65

4 �1 0 �1 1.75 1.71 7.17 7.51

5 �1 0 0 1.64 1.75 5.83 5.78

6 �1 0 1 1.69 1.65 4.26 4.50

7 �1 1 �1 1.95 2.03 9.08 8.38

8 �1 1 0 2.22 2.06 6.11 6.41

9 �1 1 1 1.86 1.95 4.83 4.89

10 0 �1 �1 0.53 0.56 4.70 4.95

11 0 �1 0 0.55 0.62 3.80 3.68

12 0 �1 1 0.59 0.53 3.05 2.86

13 0 0 �1 1.11 1.01 6.34 6.11

14 0 0 0 0.97 1.07 4.37 4.60

15 0 0 1 0.99 0.98 3.77 3.55

16 0 1 �1 1.23 1.22 6.09 6.81

17 0 1 0 1.29 1.28 5.48 5.06

18 0 1 1 1.20 1.18 3.80 3.77

19 1 �1 �1 0.88 0.86 5.40 5.29

20 1 �1 0 0.94 0.94 4.24 4.24

21 1 �1 1 0.85 0.87 3.30 3.65

22 1 0 �1 1.28 1.21 6.43 6.29

23 1 0 0 1.19 1.28 5.21 5.00

24 1 0 1 1.26 1.21 4.11 4.16

25 1 1 �1 1.17 1.31 6.75 6.82

26 1 1 0 1.57 1.38 5.28 5.29

27 1 1 1 1.23 1.31 4.22 4.22

Table 2. Experimental design and response results using the BBD

model

Run x1 x2 x3 Rs t2

Exp. Pred. Exp. Pred.

1 �1 �1 0 1.20 1.24 4.40 4.46

2 1 �1 0 0.94 0.98 4.24 4.33

3 �1 1 0 2.22 2.18 6.11 6.02

4 1 1 0 1.57 1.53 5.28 5.22

5 �1 0 �1 1.75 1.74 7.17 7.02

6 1 0 �1 1.28 1.26 6.43 6.26

7 �1 0 1 1.69 1.70 4.26 4.43

8 1 0 1 1.26 1.27 4.11 4.26

9 0 �1 �1 0.53 0.50 4.70 4.78

10 0 1 �1 1.23 1.28 6.09 6.33

11 0 �1 1 0.59 0.53 3.05 2.81

12 0 1 1 1.20 1.23 3.80 3.72

13 0 0 0 0.97 0.97 4.37 4.37

14 0 0 0 0.97 0.97 4.37 4.37

15 0 0 0 0.97 0.97 4.37 4.37
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Coefficients using three mathematical models of dif-

ferent responses could be calculated with the help of

the Microsoft Excel MLR kit. They were calculated

and plotted from Fig. 2a and b. The comparative

effects for three models have been clearly shown.

When the coefficient is not included in the 95%

confidence interval, this means that it is statistically

different from 0 and that therefore the variable as-

sociated with this has a significant influence on the

response. If it is positive, it favorably influences the

response, no matter whether it represents a main, a

quadratic effect or a first-order interaction.

As shown in Fig. 2a, buffer concentration, pH and

its quadratic term have strong, significant influences

on the resolution in the three models. As for retention

the time, Fig. 2b shows that pH, buffer concentration,

voltage and pH quadratic terms have significant influ-

ences on the retention time in the three models.

The significance of the parameters estimated by the

least-squares can be assessed using classical statistical

tools such as ANOVA. When different single-responses

or multi-responses are chosen as the objective func-

tion, the most significant variables for different re-

sponses will be different. The three models were found

to describe the experimental data adequately, with a

high confidence level (p<0.05), and led to a coeffi-

cient of determination (r2) of 0.9940, 0.9840 and

0.9646 for Rs and 0.9855, 0.9871 and 0.9567 for t2,

respectively, indicating the suitability of these models,

and allowing the establishment of response surfaces

and contour plots and the prediction of any responses

within the experimental domain.

On knowing the coefficients, it was possible to ob-

tain the function of the experimental responses related

to three variables. Based on the mathematical model,

the response surface can be explored graphically. In

this case, one can plot the response surfaces and their

two-dimensional contour plots against two of the vari-

ables, while the third is held constant at a specified

level, usually the center value. Figures 3–8 show the

Fig. 3. Response surface plot of Rs using BBD model

Fig. 2. (a) Relationship between the resolution response and the

coefficients of three models with corresponding SD; (b). The re-

lationship between retention time of the second peak and the

coefficients of three models with corresponding SD. Error bars

represent �SD, -significant at level 0.05
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response surfaces and contour plots for the epimeric

separation optimization, obtained plotting pH versus

buffer concentration, and pH versus voltage. It can be

observed that the responses (Rs) show the same behav-

ior among the three models studied. An increase in

buffer concentration (C) will clearly improve the reso-

lution, while the pH has a negative effect and voltage

a small effect on it. For the migration time (t2), volt-

age has an apparent negative effect, while buffer

concentration and pH have little effect on it.

Derringer’s desirability function

Generally, responses were transformed into an appro-

priate desirability scale to balance between different

responses. Frequently, different weight factors should

be assigned to each response, with larger weights cor-

responding to more important responses and smaller

weights to less important responses [17, 29]. After

the individual desirabilities were calculated for each

response, they were combined to provide a measure

of the composite desirability of the multi-response

system. This measure is the weighted geometric aver-

age of the individual desirabilities or the responses.

Sometimes, it is very difficult to choose different

weights according to the importance of different vari-

ables. The most popular methodology applied to mul-

tiple response optimization is the desirability function

approach [1].

The measured properties of each response Yi, i¼ 1,

2, . . .m, are transformed into a dimensionless desir-

ability scale (di), defined as partial desirability func-

tion. This allows combining the results obtained for

properties measured on different scales. The scale of

the desirability function ranges between d¼ 0, for

a completely undesirable response, and d¼ 1, if the

response is at the target value. Once the function di is

defined for each of the m responses of interest, an

overall objective function (D), representing the global

desirability function, is calculated by determining

the geometric mean of the individual desirabilities.

Therefore, the function D over the experimental do-

main is calculated as follows: D ¼ ð� diÞ1=m
. Taking

into account all requirements for m responses, we can

Fig. 4. Response surface plot of t2 using BBD model Fig. 5. Response surface plot of Rs using CCFD model
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choose the conditions of the design variables that max-

imize D. In our study, only the resolution response (Rs)

and the migration time of the second enantiomer (t2)

were considered. In order to define D quality response,

t2, and Rs were normalized. The shortest t2 and the

highest R value (the more desirable situation) in all

experiments were given the value 1 (maximum), while

the longest t2 and the lowest R2 value (the unwanted

one) were given the value 0 (minimum). Linear in-

terpolation allowed us to calculate the normalized

values for the remaining t2 and R, normalized values

were called d1, and d2, which could be calculated ac-

cording to the following equations: d1 ¼ ðRi � RminÞ=
ðRmax � RminÞ; d2 ¼ ðtmax � tiÞ=ðtmax � tminÞ.

A value of D different from zero implies that all

responses are in a desirable range simultaneously

and consequently. For a value of D close to 1, the

combination of the different criteria is globally opti-

mal, so that the response values are near target values

(Fig. 9).

After calculation by the SOLVER program in

Microsoft Excel, the parameters obtained for the com-

bination responses of the studied analytes using the

three experimental designs were as follows:

DBBD ¼ 0:0000 � 0:1401x1 þ 0:2549x2 þ 0:0331x3

þ 0:0747x12 � 0:0291x13 þ 0:005779x23

þ 0:4538x1
2 þ 0:06186x2

2 þ 0:1559x3
2 ð3Þ

DCCD ¼ 0:1560� 0:1524x1 þ 0:1983x2 þ 0:03787x3

þ 0:01916x12 � 0:04602x13 þ 0:08129x23

þ 0:3275x1
2 þ 0:004924x2

2 � 0:1092x3
2 ð4Þ

DFFD ¼ 0:2777 � 0:1469x1 þ 0:2235x2 þ 0:03576x3

� 0:03767x12 � 0:04038x13 þ 0:05613x23

þ 0:2872x1
2 � 0:08167x2

2 � 0:05698x3
2 ð5Þ

One optimal condition (�1, 1, 1) for three experimen-

tal designs was obtained with a global degree of satis-

faction of D for the combination responses. The coded

variable values (x, x, x3) corresponded to maximum

DBBD (1.0), DCCD (0.88) and DFFD (0.97), respectively.

An optimal experiment that tested the predictability of

Fig. 6. Response surface plot of t2 using CCFD model
Fig. 7. Response surface plot of Rs using FFD model
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the three models was performed using the optimal

condition with buffer of pH 7.5, 50 mM Tris–HCl, and

30 kV. Figure 10 shows the electrophoretogram of the

studied analytes achieved using the optimized experi-

mental conditions. The results of the experiment were

compared to the predicted values from the three mod-

els (see Table 5). Compared with the BBD method,

closer agreement using the CCF and FFD models could

be found in most cases between the observed and pre-

dicted responses.

Conclusions

The simultaneous evaluation of the experimental vari-

ables involved in the CE optimization using the typi-

cal analytes was carried out by means of the BBD,

CCFD and FFD models with efficient estimation of

the first and second-order coefficients. BBD has fewer

design points, which is less expensive to run than the

CCFD design with the same number of variables.

Moreover, CCFD usually has axial points on the sur-

face of the ‘‘cube’’. FFD is the combination of de-

signed points using BBD and CCFD. Therefore, for

the three designs, all design points are sure to fall

within a safe operating zone, with similar results for

optimization and prediction in our studies. An ap-

propriate use of experimental designs ensures that ex-

perimental data contain a maximum of information

Fig. 8. Response surface plot of t2 using FFD model

Fig. 9. Shape of the di function associated with the response Yi,

resolution (Rs); (b) migration time of the last peak

Fig. 10. Electropherogram of the studied analysis using the opti-

mal conditions: Tris–HCl ¼50 mM, pH¼ 7.5, 30 kV, wavelength

254 nm. The first peak is ascorbic acid, the second peak is isoas-

corbic acid

Table 5. Observed and predicted response for testing the predict-

ability of the models

Response Experimental

average value

(n¼ 3)

BBD

pred. value

CCF

pred. value

FFD

pred. value

Rs 1.86 2.10 1.89 1.95

t2 4.83 5.12 5.01 4.89
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and provide answers to real chemical problems, and

confirm the necessity of applying chemometric techni-

ques in analytical chemistry and show their success-

ful implementation. Compared to empirical methods,

chemometrics can greatly simplify the optimization

procedure of finding the appropriate experimental

conditions.
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