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Abstract. Electronic noses (e-noses) employ an array

of chemical gas sensors and have been widely used for

the analysis of volatile organic compounds. Pattern re-

cognition provides a higher degree of selectivity and

reversibility to the systems leading to an extensive range

of applications. These range from the food and medical

industry to environmental monitoring and process con-

trol. Many types of data analysis techniques have been

used on the data produced. This review covers aspects

of analysis from data normalisation methods to pattern

recognition and classification techniques. An overview

of data visualisation such as non-linear mapping and

multivariate statistical techniques is given. Focus is then

on the use of artificial intelligence techniques such as

neural networks and fuzzy logic for classification and

genetic algorithms for feature (sensor) selection. Appli-

cation areas are covered with examples of the types of

systems and analysis methods currently in use. Future

trends in the analysis of sensor array data are discussed.

Key words: Electronic noses; sensor arrays; pattern recognition;

sensor selection.

Instrumental methods of determining volatiles, such as

gas chromatography – mass spectrometry (GC=MS),

are expensive and require trained personnel. As a re-

sult there has been a drive to establish a device for

rapid, inexpensive analysis of volatile organic com-

pounds (VOC) that do not require specialist technicians.

Chemical sensors are transducers that incorporate

a chemical detection layer and transform a chemical

interaction into a measurable signal; they offer rapid

and inexpensive detection of VOC with simple inter-

pretation. The ideal gas sensor would exhibit reliabil-

ity, robustness, sensitivity, selectivity and reversibility.

High selectivity with high reversibility is difficult to

attain, either a compromise is necessary or the detec-

tion layer of the sensor must be regenerated.

An e-nose is an instrument consisting of an array of

reversible but only semi-selective gas sensors coupled

to a pattern recognition algorithm. The selectivity of

the instrument is achieved through the application of

pattern recognition techniques to the responses from

the senor array. Persaud and Dodd [1] first reported

the design of an e-nose to analyse a pattern of re-

sponses from a sensor array to differentiate between

members of a pre-defined set of volatiles.

Sensor types used in e-noses have been many and

varied. Conducting polymer sensors (CP), piezoelec-

tric – surface acoustic wave (SAW), thickness shear

mode (TSM), metal oxide semiconductor (MOS), metal

oxide semiconductor field effect transistor (MOSFET),

electrochemical (EC), Pellistor and optical sensor ar-

rays are reviewed by Albert et al. [2] and James et al.

[3]. Assessments of chemical sensors may be found in

[4–8]. General books and reviews [9–11] cover as-

pects of sensor technology. Headspace mass spectro-

metry (HS-MS) systems (MS based e-noses) consist

of introducing volatile components present in the HS� Author for correspondence. E-mail: z.ali@tees.ac.uk



of a sample without prior chromatographic separation

into the ionization chamber of a mass spectrometer.

The spectrum resulting from simultaneous ionization

and fragmentation of the mixture of molecules intro-

duced constitutes a pattern that is characteristic of the

product under analysis [12, 13]. Most applications for

e-noses concentrate on four major areas; food [14–19],

medical diagnosis [20, 21], environmental monitoring

[22–26] and bioprocess control [27–30].

Data acquisition and feature extraction

Data acquisition is the first step for data analysis;

sensors collect the data and convert it into an electri-

cal signal pattern that is more suitable for computer

analysis. This step often causes the difficulty in the

classification problem as the characteristics and lim-

itations of the transducer may limit or distort the

available information. The output is a pattern vector,

in pattern space. The pattern vector is passed into the

second stage, the feature extractor. Feature extraction

is the use of one or more transformations of the input

features to produce new salient features. Feature ex-

traction may be regarded as a dimensionality reduc-

tion process; data is converted from pattern space into

feature space. Features should be easily evaluated, there

are two kinds, the first have a clear physical meaning,

the second have not and are called mapping features.

In the context of e-noses the features that are usually

considered are the maximum sensor responses, but

some groups have used temporal data or mapping

features such as constructs of gradient information.

Data pre-processing can affect the classifier, there

are no general guidelines to determine the appropriate

data pre-processing technique. Concentration may

have a scaling effect on the patterns of the sensors.

While a pattern recognition algorithm normally ex-

amines the differences between the patterns, a scaling

effect may mask the interrelations between them.

Normalization is normally used to remove this effect.

Table 1 shows several standard data normalisation

techniques [10, 11, 31].

X is the feature matrix of n samples from p sensors,

Xij is the ith sample of the jth sensor, xj contains all n

response samples for sensor j, xi contains all p

responses for sensors at the ith sample. Relative scale1

gives a global compression of values with a maximum

value of 1, Relative scale2 compresses values per fea-

ture with a maximum value of 1, Relative scale3

is relative to a reference, and Relative scale4 is the

Euclidean distance norm. Relative scaling is often

used in qualitative applications. Signal average uses

the mean of several runs to smooth the noise present

in the signal or the mean of several of the same sensor

types in an array. Mean-centre sets the mean of the

data to the origin. Auto scale sets the mean at the

origin and the variance within the data to 1, often used

when responses are on different magnitude scales.

Range scale1 and range scale2 set the limits at [0, 1]

and [�1, 1] respectively. Background subtraction

attempts noise correction by removing the response

from a blank sensor. A baseline subtraction removes

the base reading of a sensor, and is often used in tem-

poral data collection. Applications that use temporal

data produce a large number of measurements; typi-

cally these are reduced by pre-processing before pat-

tern recognition is attempted.

Curse of dimensionality

The notion of the curse of dimensionality was intro-

duced by Bellman [32] as a result of studies in adap-

tive control processes. The problem stems for the

number of data points needed to adequately represent

a data set with a high number of features; it is quite

possible that within high dimensional data, clusters

exist in separate sub-spaces. All classifiers can suffer

Table 1. Standard data normalisation techniques

Normalisation Equation

Relative scale1 Xij ¼
Xij

maxðXÞ
(1)

Relative scale2 Xij ¼
Xij

maxðxjÞ
(2)

Relative scale3 Xij ¼
Xij

maxðxrÞ
, xr

is a 1�p reference response

(3)

Relative scale4 Xij ¼
Xij

kxik
(4)

Background

subtraction

xi ¼ xi � xb, where xb

is the 1�p blank response

(5)

Signal average
Xij ¼

1

N

XN

k¼1

Xk
ij, N

replicates of data

(6)

Auto scale
Xij ¼

Xij � xxj

�xj

(7)

Range scale1
Xij ¼

Xij � minðxjÞ
maxðxjÞ � minðxjÞ

(8)

Range scale2
Xij ¼

2ðXij � minðxjÞÞ
maxðxjÞ � minðxjÞ

� 1
(9)

Baseline

subtraction

Xij ¼ Xij � X1j (10)
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from the curse [33]. The only practical way to beat the

curse is to apply prior knowledge on the data [34], or

to carefully select the minimum number of features to

adequately represent the problem.

Feature selection

Feature selection is the process of identifying the most

effective subset of the original features to use in the

classification process that lead to the smallest classi-

fication error. Blum and Langley [35] classify feature

selection techniques into three basic approaches. In

the first, known as the embedded approach, features

are added or removed in response to prediction errors

of a simple embedded classifier. The second are filter

methods and work independently to remove features

without knowing the effect on the classification algo-

rithm, typical linear methods used are principal com-

ponent analysis (PCA), linear discriminant analysis

(LDA) and independent component analysis (ICA)

[36, 37]. The third are wrapper methods and evaluate

candidate feature sets using a classification algorithm

on the training data. The feature subset selection algo-

rithm conducts a search for a good subset using the

classifier as part of the evaluation function [38].

Similarity

The idea of similarity is fundamental to the definition

of a cluster of objects. Similarity is usually measured

by a distance function defined on pairs of patterns. As

there are a wide variety of feature types and scales, the

distance measure should be chosen carefully. It is

most common to calculate the dissimilarity between

two patterns using a distance measure defined on the

feature space. The most popular metric for continuous

features is the Euclidean distance.

dðxi; xjÞ ¼
Xd

k¼1

ðxik � xjkÞ2

 !1
2

ð1Þ

¼ kxi � xjk ð2Þ
The Euclidean distance has an intuitive appeal and

is commonly used to evaluate the proximity of objects

in two and three-dimensional space. The drawback

of this metric is the tendency of the largest scaled

variables to dominate the others. Solutions to this

problem include normalisation of the continuous fea-

tures or other weighting schemes. Linear correlation

among features can also distort distance measures.

This distortion may be alleviated by using the squared

Mahalanobis distance

dMðxi; xjÞ ¼ ðxi � xjÞ
X�1ðxi � xjÞT ð3Þ

where xi and xj are assumed to be row vectors, ðxi � xjÞT

is the transpose of the ðxi � xjÞ vector and
P�1

is the

inverse of the sample covariance matrix of the patterns

or the known covariance matrix of the pattern genera-

tion process; dM assigns different weights to different

features based on their variances and pair wise linear

correlations.

Pattern recognition techniques

The data produced by an e-nose result in a set of semi-

independent variables (the sensor array output) and a

set of dependent variables (odour classes). There are

two distinct types of pattern recognition, those used

as exploratory and confirmatory techniques. Two other

types of analysis used are for feature selection and

sensor drift counteraction techniques.

Most exploratory techniques are unsupervised, whilst

classifiers are supervised.

– During supervised learning the data vectors are

tagged with a descriptor, the classes are learned

and grouped according to their description. After

learning is complete an unknown vector may be

classified using the relationships found a priori

from the known vectors.

– In unsupervised learning there are no descriptors,

the classes are learnt based on some form of simi-

larity measure alone.

Statistical methods are parametric as they assume

the data may be described in terms of probability

density functions and include PCA, hierarchical clus-

ter analysis (HCA), principal component regression

(PCR), discriminant factor analysis (DFA), analysis

of variance between groups (ANOVA), partial least

squares (PLS) regression method, principal compo-

nents regression (PCR), soft independent modelling

class analogy (SIMCA) [39] and clustering algorithms

such as k-means.

Artificial intelligence (AI) techniques are generally

non-conventional, intuitive approaches for problem

solving often biologically inspired and may be split

into three sub-groups.

– Artificial neural networks (ANN), including multi

layer perceptrons (MLP) and radial basis function
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networks (RBF), self organising maps (SOM), learn-

ing vector quantization (LVQ) and self organising

competitive systems such as the adaptive resonance

theory (ART) or growing cell family of algorithms.

– Fuzzy logic and fuzzy rules based algorithms.

– Genetic algorithms (GA) are used for feature

selection.

Graphical methods for exploratory analysis

Sensor arrays may generate a large volume of high-

dimensional data, it is often a challenge to extract

useful information from the data to solve the problem

under investigation. Graphical methods are a simple

exploratory way of analysing data, some methods may

plot the high-dimensions produced, whilst others re-

duce the data to two or three dimensions for visual

analysis.

Bar charts

Bar charts are a simple and useful way of visualising

the sensor response patterns that are produced by a

sensor array. The sensor responses are plotted as a

height value with a small width, next to each other.

Individual or the mean of several samples are plotted

for each analyte. An estimation of the effectiveness

and composition of the array may then be made based

on the patterns produced. Walmsley et al. [40] used

bar charts of the response of 4 MOS sensor array to

show that the patterns produced were different for

each of 6 analytes. McAlernon et al. [41] used 3D

bar charts, PCA and multivariate analysis of variance

(MANOVA) to interpret the frequency change patterns

of an array of 8 TSM sensors for o-xylene, toluene,

dodecane and tetradecane. Park and Zellers [42] used

bar charts to show the relative response patterns of

polymer coated SAW sensors to toluene and trichlor-

oethylene. Groves and Zellers [43, 44] analysed sol-

vent vapours in breath and ambient air with an array

of 4 polymer coated SAW sensors. Time response

curves and bar charts were used to show the relative

response patterns for 16 solvents. The bar charts pro-

vided a visual indication of the discriminating cap-

ability of the array to the various solvents.

Polar plots

Polar plots or radar plots a.k.a Star plots [45] display

multivariate dimensional data in two dimensions for

exploratory analysis. Axes for each feature radiate from

the origin at equal angles with the magnitudes of the

features joined by straight lines. Figure 1 shows a typ-

ical plot for a 6 sensor array. Some pre-processing

of the data may exaggerate small difference in shapes

so that they may be more easily seen. For example a

reference data set may be subtracted from the feature

vectors and rescaled to emphasise the differences.

Brezmes et al. [46] used polar plots to compare both

the difference between repeated measurements and

measurements of different aromatic species; cinnamon,

red pepper, thyme, pepper and nutmeg. The method

showed large differences in the shapes for different

species, and possible poor reproducibility by smaller

differences between repeated runs of the same groups.

Jonsdottir and co-workers [47] characterised the fla-

vours of ripened cod roe by polar plots utilising the

results of a sensory panel. From this an array of 4 EC

sensors were used to examine the same cod roe sam-

ples. Gan et al. [48, 49] characterised responses to

palm olein and vegetable oils from a virtual array of

SAW sensors, based on a single sensor responding to

the analyte being desorbed from a GC column trap,

plotting the raw frequency shift as amplitude and the

time as the angle. PCA scores were plotted to demon-

strate the separation achieved but no classification

algorithm was tried.

Hierarchical cluster analysis (HCA)

HCA techniques attempt to separate data into specific

groups [50], based on a similarity measure. Initially

each data point represents its own cluster, then the

threshold for the decision when to declare two or more

objects to be members of the same cluster is lowered

Fig. 1. A polar plot of sensor response data
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incrementally. As a result more and more objects are

linked together and aggregated into larger and larger

clusters of increasingly dissimilar elements. Finally,

all objects are joined together. The result of hierarch-

ical clustering methods may be displayed as a dendro-

gram, as shown in Fig. 2; the vertical axis denotes the

similarity. With classification set at a similarity level of

50%, the data has been classified into 3 groups. There

are many types of similarity linkage, the three most

common are single linkage (nearest neighbour), the

distance between two clusters is determined by the

distance of the two closest objects in the clusters.

Complete linkage (furthest neighbour), the distances

between clusters is determined by the greatest distance

between any two objects in the different clusters. Group

average, the distances between clusters is determined

by the mean distance of objects in different clusters.

Sammon mapping

Sammon mapping is a nonlinear mapping (NLM)

technique [51] that attempts to preserve the structure

of the data in the projected space from the original

high dimensional space by maintaining the distances

between points under projection [52, 53]. The dis-

tance metric usually employed is the Euclidean,

although others have been used [54, 55]. If the dis-

tance between two points i and j in the input space of

vector x is d�ij ¼ dðxi; xjÞ and the distance between the

points in projected space of vector y is dij ¼ dðyi; yjÞ.
Sammon suggested looking for values of y to mini-

mise an error function called the mapping stress E:

E ¼ 1Pn�1
i¼1

Pn
j¼iþ1 dij

Xn�1

i¼1

Xn

j¼iþ1

ðd�ij � dijÞ2

d�ij
ð4Þ

Sammon used a method of steepest descent for

(approximate) minimisation of E but there are many

local minima on the error surface and it is unavoidable

for the algorithm to become stuck. The algorithm is

usually run several times with different initial con-

figurations and the outcome with the lowest stress

chosen. There is a high computational load, which

is O(n2). At every iteration nðn � 1Þ=2 distances and

error derivatives must be calculated. As n the number

of patterns increases the computational requirements

increase quadratically.

Sammon mapping applications

Persaud et al. [56] used Sammon mapping to help

determine the clusters of detected volatiles found in

pig slurry from animals fed on two different diets, and

whether biscuits had become slightly rancid on ageing

from the normalised responses of 20 CP sensors.

Byun et al. [57] applied Sammon mapping to data

from an array of 20 CP sensors to show the cluster-

ing obtained from 5 test alcohols using Euclidean

distances. Persauds’ group [58] used bar charts of

sensor responses, PCA scores and Sammon mapping

to describe results of environmental monitoring of the

MIR space station from an array of 20 CP sensors

operating at 40 �C. The system was able to provide

information of transient changes of the atmosphere at

30 second intervals, including a retrospective analy-

sis to detect an ethylene glycol leak of the cooling

system.

Other graphical methods

Bourgeois et al. [59] used a graph of sensor re-

sponses against the sample number in a continuous

wastewater sampling system to show the dilution

effect of rain on the samples. Biswas et al. [60] used

an array of 5 SAW sensors to differentiate between

fresh and oxidised vegetable oils. Plots of peak

frequency change against oxidisation time (days)

showed that the system could detect the difference

between the oils and also could be utilised as an

analytical tool for following the breakdown of vege-

table oils. Nonaka et al. [61] used a preconcentration

system with an array of 6 MOS sensors, analysing

data by multiple linear regression, receiver-operating

characteristic (ROC) plots and organoleptic tests show-

ed that oral malodour intensity may be evaluated by

an e-nose.

Fig. 2. Dendogram illustrating HCA data clustering
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Principal component analysis

Principal component analysis (PCA) a.k.a. the

Karhunen-L�ooeve expansion or singular value decom-

position (SVD) is an unsupervised multivariate proce-

dure and is a well known linear data compression and

feature extraction technique. The scores produced may

be plotted in two or three dimensions to inspect the

data. PCA derives new, uncorrelated variables that

are linear combinations of the original variable set

ordered by reducing variability. It is mainly used to

reduce the dimensionality of a data set while retaining

as much information as possible by eliminating the

lowest ranking variables. PCA is a simple and fast

method but remains a linear approach therefore any

non-linear correlation between variables will not be

retained.

If the original feature vectors are held in a matrix X,

they may be approximated by a product of two small

matrices – the score and loading matrices, such that,

X¼TPT where X is the original data matrix of n

rows and k columns (features), T is the scores matrix

(a rows and n columns – the number of principal

components) and P is the weight or loading matrix

with k columns and a rows, PT is the transpose of the

P matrix (k rows, a columns). For each score variable

t, the influence of the original variables is the cor-

responding loading profile, p. This is a direct link

between the scores T, and the original X-variables

and is very useful when interpreting scatter plots of

scores and loadings.

The space is analysed and a low-dimensional hyper-

plane that best summarize all the variation in X, in

terms of least squares is found as shown in Fig. 3. The

loading values (weight) for each PC component are

the cosine of the angle between the principal compo-

nent direction and each of the original coordinate axes.

The smaller the angle between the vectors the higher

the correlations between the features, highly corre-

lated features provide little additional information.

Uncorrelated features are orthogonal to each other.

Loadings in the origin of the coordinate system re-

present unimportant features for that component. The

length of the feature with respect to the axes gives the

proportion of the eigenvectors that the feature repre-

sents. The part of X that is not explained by the model

forms the residuals (Enk) and is the distance between

each point in K-space and its point on the plane. The

scores, loadings and residuals together describe all of

the variation in X.

X ¼ TPT þ E ¼ t1pT
1 þ t2pT

2 þ . . .þ E ð5Þ

The loadings (P) are ranked in the order of the largest

eigenvectors of (XTX) and the score vectors (T) are

ranked in the order of the largest eigenvectors of

(XXT). As PCA describes the data in terms of var-

iance it is often necessary to normalise the data, typi-

cally in terms of standard deviations e.g. Auto scaling

– Eq. (7).

In Fig. 4 there are four features, A, B, C and D. A

and B are at 90�, cosine 90¼ 0, therefore they are

uncorrelated. A and D are at 180�, cosine 180¼�1,

therefore they are anti-correlated. B and C are at 80�,

cosine 80¼ 0.1736, therefore there is little correlation

between them. C and D however are at 10�, cosine

10¼ 0.9848, they are therefore correlated.

PCA applications

The identification of bacteria that cause ear, nose and

throat (ENT) diseases, Staphylococcus (S.) aureus,

Legionella pneumophila, and Escherichia (E.) coli have

Fig. 4. PCA loading propertiesFig. 3. PCA scores properties
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been investigated and detected with a high degree of

success [62]. It is a clinical advantage to be able to

detect these pathogenic bacteria in the very early

stages of their growth. A 32 CP array for the diagnosis

of ENT infection [63] utilised PCA. Wet and dry

swab samples were taken from patients and analysed

by e-nose and standard microbiological techniques.

Separate PCA scores plots of the wet and dry swab

samples using the information from the standard

microbiological tests showed visual clustering of

different types of organisms. The organisms were

found to give specific response patterns and thus were

found to occupy distinct areas of the PCA scores

plot. The application of PCA to e-nose data is facile

to implement and the interpretation for this ex-

ample involves the visual examination of separation

between groups, this suitable for a non skilled opera-

tor to carry out. However if automation of the system

were important, then a classification technique would

be required.

Barko and Hlavay [64] characterised 4 GC station-

ary phases initially selected by differing McReynolds

parameters as coatings on TSM sensors to 7 VOC

offering diverse chemical properties using eigenvector

information. It was found that the factors of the sen-

sing compounds selectivity were dependent upon the

VOC, and when the factors of the sensing com-

pounds differed the VOC could be selectively distin-

guished. Guadarrama et al. [65] used a 6 sensor CP

array to characterise two red wines from different

geographical regions and one white wine. Two sam-

pling techniques, static and dynamic headspace ana-

lysis were tested. PCA analysis showed that dynamic

sampling out performed static by decreasing the

cross interference of water and ethanol, thus permit-

ting higher discrimination of the different wine

types. The same team [66], used an array of 12 CP

sensors on three white wines and two red. PCA ana-

lysis showed that sampling using a SPME fibre lead

to noticeable differences in the responses of the sen-

sors towards different wines and that the degree of

selectivity obtained was not possible from ordinary

sampling.

Partitional clustering algorithms

A cluster is a subset of the full data set; partitional

clustering algorithms attempt to obtain partitions

in the data instead of a clustering structure, such as

the dendogram. A common problem with partitional

methods is the need to specify the desired number of

clusters before computation begins. The partitional

techniques usually produce clusters by minimising a

criterion function defined either locally or globally.

Cluster prototypes are not usually known beforehand,

and are calculated by the algorithm simultaneously

with the partitioning of the data. Accordingly cluster-

ing techniques are among the unsupervised learning

methods.

k-means clustering

The k-means algorithm works unsupervised and is

popular as it is easily implemented. If n is the number

of patterns, k is the number of clusters, and l is the

number of iterations taken, the time complexity is

O(nlk). Typically l and k are fixed so the algorithm

has linear time complexity to the size of the data set.

A major drawback to this algorithm is that it is sensi-

tive to the selection of the initial partition and may

converge to a local minimum of the criterion function

if the initial partition is not well chosen [67].

A typical k-means algorithm minimises the squared

error function:

E ¼
XC

k¼1

Xnj

i¼1

kx
ðkÞ
i � ckk2 ð6Þ

where C is the number of clusters, x
ðkÞ
i is the ith pat-

tern belonging to the kth cluster, and ck is the centre

of cluster k. The result is a hard partition of the data,

assigning each pattern to a particular cluster. Several

variants of the k-means algorithm have been reported

[68], many attempt to estimate a good initial parti-

tion so that the algorithm is more likely to converge

at the global minimum value. Another variation of

the algorithm is to split and merge the resulting

clusters. This type of variant allows an optimal parti-

tion starting from almost any arbitrary initial parti-

tion, providing well-determined threshold values are

specified.

k-means applications

Grate et al. [69] used several exploratory methods in-

cluding k-means, PCA and bar charts to show that 4

TSM sensors coated with different films of monolayer-

protected nanoparticle (MPN) materials behaved dif-

ferently to one another and poly(isobutylene) and

poly(epichlorohydrin) sorptive polymer test cases.
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Classifiers

A typical pattern classification system as summarised

in Fig. 5, may be broken down into a number of inde-

pendent stages incorporating:

1. Data acquisition system

2. Feature extraction system

3. Classifier

4. Decision making strategy

The conceptual boundary between a feature

extractor and classifier proper is almost arbitrary.

An ideal feature extractor would make a representa-

tion of data that reduces the classifiers job to trivial;

conversely a universal classifier would not need a

sophisticated feature extractor [70]. The task of a

classifier is to use the feature vector provided by

the feature extractor to assign the object it represents

to a category. The degree of difficulty of the classi-

fication problem depends on the variability in the

feature values for objects in the same category rela-

tive to the difference between feature values for

objects in different categories. The variability in

the feature values for objects in the same category

may be due to complexity, and may be due to noise.

The simplest measure of classifier performance is the

classification error rate, the percentage of patterns

that are assigned to the wrong category. The final

stage of a pattern classification system is usually

making a decision on the class assignment to the

input patterns based on measurements taken from

the selected features. E-noses are expected to be

employed in particular environments and be small,

portable, low power devices that are easy to operate.

Given these qualities, Shaffer et al. [71] proposed

6 requirements that an ideal classification system

should possess.

1. High accuracy – there should be as few misclassi-

fications as possible.

2. Fast – for real-time analysis, the algorithm must

be able to produce a classification with minimum

delay.

3. Simple to train – in many applications the database

of training patterns will be updated periodically

and the classifier retrained. This procedure should

be quick and simple to perform.

4. Low memory requirements – for small portable

systems that may be used as handheld devices the

classifier would need to consume few resources.

5. Robust to outliers – in uncontrolled environments

the algorithm must be able to reduce the potential

for misclassifications by being able to differentiate

between a pattern on which it was trained to recog-

nise and one that it was not. The assumption is that

the system has been trained on all relevant patterns

so any ambiguous patterns should be recognised as

such.

6. Produce a measure of uncertainty – for many

applications the algorithm needs to produce a mea-

sure of the match level of the classification, or a

statistical measure concerning the certainty of the

classification.

Testing and validation

Cross-validation a technique to compensate for an

optimistic apparent error rate caused by training and

testing on the same small data set. The apparent error

rate is the percent of misclassified observations. The

cross-validation routine omits each observation, one

or more at a time (leave-one-out or leave-n-out) and

recalculates the classification function using the re-

maining data, and then classifying the omitted ob-

servation. Splitting the data into two sets is used to

calculate a more realistic error rate on larger data sets.

One set to create the discriminant function and the

other set to act as a validation set.

Discriminant function analysis

Discriminant function analysis (DFA) techniques are

supervised and multivariate, they were first reported

by Fisher [72, 73] on the well known iris data of

Anderson [74]. There are the two types, linear and

Fig. 5. Conceptual pattern classifier
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quadratic, normal distribution is assumed for the

classes in both cases [75].

Linear discriminant analysis

Linear discriminant analysis (LDA) finds a linear dis-

criminant function (LDF) which is a linear combina-

tion of the of the original variables x ¼ ðx1; x2; . . . ; xpÞ,
such that the ratio of the between-class scatter and the

within-class scatter is maximized [45]. The class

means are estimated �k ¼ 1
Nk

PNk

i¼1 xi where Nk is the

number of samples in class k ¼ 1; 2; . . .K and N is the

total number of samples. The true values of the dis-

tributions � are not known so are estimated, �k ¼ Nk

N
.

An assumption is made that covariance matrices are

equal for all groups, so are pooled. An estimate of the

pooled covariance matrix is:

X
¼ 1

N � K

XK

k¼1

XNk

i¼1

ðxi � �kÞðxi � �kÞT ð7Þ

The linear discriminant function is:

�kðxÞ¼ xT
X�1

�k �
1

2
�T

k

X�1
�k þ logð�kÞ ð8Þ

where
P�1

is the inverse of the covariance matrix, xT

is the transpose of the x matrix and �T
k is the transpose

of the �k vector. The decision boundaries are linear

equations in x, and the boundary between two classes,

A and B may be written:

log

�
�A

�B

�
� 1

2
ð�A þ �BÞT

X�1ð�A � �BÞ

þ xT
X�1ð�A � �BÞ ¼ 0 ð9Þ

where �A and �B are the class mean vectors for classes

A and B, �A and �B are the estimated distributions of

classes A and B. There are K-1 discriminant functions

available; these may be used for graphical display of

the data.

Quadratic discriminant analysis

There is no assumption with quadratic discriminant

analysis (QDA) that the groups have equal covariance

matrices so they are estimated separately for each

class; this requires more data than LDA for an accu-

rate estimate.

X
k

¼ 1

Nk

XNk

i¼1

ðxi � �kÞðxi � �kÞT ð10Þ

The quadratic discriminant function is:

�kðxÞ ¼ � 1

2
log

����X
k

����� 1

2
ðx � �kÞT

X
k

�1ðx � �kÞ þ log ð�kÞ ð11Þ

Decision boundaries are quadratic equations in x.

QDA often fits the data better than LDA but has more

parameters to estimate.

DFA applications

Di Natale et al. [76] used an 8 TSM sensor array in a

preliminary study for the identification of lung cancer

by breath analysis. Alkanes, benzene derivatives and

aniline are possible volatile markers for lung cancer.

Breath samples were taken from 35 volunteers with a

form of lung cancer, 9 individuals after surgical ther-

apy and 18 healthy volunteers. Analysis was carried

out by partial least squares-discriminant analysis

(PLS-DA), a linear technique. Correct classification

of lung cancer patients was 100%, with 94% and

44% correct classification of non-cancer and post-sur-

gical categories respectively.

Oliveros et al. [77] used a 12 MOS sensor nose to

detect olive oil adulteration, including non-adulterated

oil. Data was collected every second for 60 seconds

then reduced to 8 points per sensor by selecting points

at specific times; this was used as raw data. This was

further reduced by PCA or other methods. LDA and

QDA were applied to the extracted variables. BP-MLP

networks were applied to the raw data set. The discri-

minant analysis techniques were found to give predic-

tion rates above 95% for the oil samples. The BP-MLP

gave worse results, probably due to the lack of feature

selection.

Goschnick et al. [78] used a microarray of 38 MOS

sensors for discrimination and recognition of tap water,

ammonia contaminated water and chloroform con-

taminated water. Resistance values were normalised

and then analysed by PCA and LDA. When sampling

at 1 second response; using LDA with a leave-one-

out cross validation, 93% of all points were correctly

classified.

Gonzalez-Martin [79] employed a sensory array

consisting of 6 MOS sensors with controlled tempera-

ture and humidity with LDA for the differentiation of

Iberian breed swine hams according to their feeding
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regimes. The classes investigated were feed only,

feed plus acorns and acorns only. Initially 48 vari-

ables were to be used for the LDA (8 points per

sensor), however due to software limitations a selec-

tion process was employed to choose only those giv-

ing differential information (actual number of

variables used not given). The LDA gave results of

96% and 100% correct for raw and normalised read-

ings respectively. The authors suggest that the e-nose

with LDA can be considered a simple and rapid

method for classification of Iberian breed swine on

the basis of their diet.

k – nearest neighbour

The k – nearest neighbour algorithm (KNN) is a

supervised hard partitional algorithm that is concep-

tually simple and easy to implement. Training the

model simply consists of storing the training data.

The distance between an unclassified pattern vector

and every sample from the training set is calculated,

it is assigned to the class of the k neighbours with

the closest distances. The choice of the value of k

is usually empirical, k¼ 1 is the most widely used

and is known as the 1-NN or nearest-neighbour, the

decision boundaries resulting are piecewise linear.

1-NN has an error rate which is twice as large

as the Bayes optimum [80]. Larger values of k

give smoother boundaries. The time complexity is

O(n2) however, meaning that if the number of ob-

servations doubles the computational time quadruples.

The distance metric most commonly used is the

Euclidean.

KNN applications

Schiffman et al. [81] classified five fungal species

commonly found in indoor environments using an

array of 15 MOS sensors to sample air. LDA, KNN

and least square analysis (LS) were employed to

classify the data. The system was capable of discri-

minating among the fungi with up to 96% accuracy.

It was also able to recognise five selected VOCs that

are emitted by fungi (ethanol, 2-methyl-1-propanol,

3-pentanone, 3-octanol and 3-octanone). Carmel et al.

[82] used a feature extraction method based on a

curve fitting model of transient signals from arrays

of either 8 MOS or 8 TSM sensors with KNN as the

classifier. Classification rates of up to 97.8% were

achieved.

Neural networks

Neural networks offer a powerful non-linear mapping

capability, many types have been employed for e-nose

data classification including Kohonen networks, learn-

ing vector quantization (LVQ) and its variations, MLP

with variants of the backpropagation (BP) algorithm

and ART.

Neural network architecture

A neural network is characterized by properties

such as:

– the activation function used in the neurons (kernels)

– the network topology

– the learning (training) algorithm used

Multi-layer perceptrons

Of all the various artificial neural network (ANN)

structures the multi-layer perceptron (MLP) is the most

used. The MLP as shown in Fig. 6 are feed-forward

networks with one or more layers of neurons between

the input and output neurons. The additional layers

contain hidden units that are connected to either the

inputs or outputs by weighted connections. The cap-

abilities of MLPs stem from the nonlinearities used

within neurons.

Sigmoid function

The most popular continuous activation function used

within MLP networks is the sigmoid or logistic func-

tion shown as Eq. , which is non-linear, scaled and

differentiable. The sigmoid function kernel partitions

the feature space with hyper-planes.

f ðnetÞ ¼ 1

ð1 þ e�netÞ ð12Þ

where net¼
P

input�weight, for a neuron.

Fig. 6. A 3 layer MLP
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Backpropagation training

The most used method for training the MLP is based

on minimisation of a cost function and is known as the

backpropagation (BP) algorithm [83]. Many alternate

forms of backpropagation have been used; Jondarr [84]

reviewed 65 varieties of this algorithm. The actual

derivations for the formulae used in the BP algorithm

come from the generalized delta rule. The delta rule is

based on the error surface which represents cumula-

tive error over a data set as a function of the network

weights. Each possible network weight configuration

is represented by a point on this error surface. A feed

forward phase is first performed on an input pattern to

calculate the net error. The partial derivative of the

network error with respect to each weight gives in-

formation about the direction the error of the network

is moving. If the negative of this derivative is taken

(i.e. the rate change of the error as the value of the

weight increases) and then added to the weight, the

error will decrease until it reaches a local minimum.

The error correction starts from the output layer to

hidden layer weights, then to input layer weights, back-

wards through the network. Training continues until the

error is minimised or a maximum number of training

epochs has elapsed. A method often used to introduce

adaptive learning into BP to lessen the possibility of

chaotic behaviour is the momentum term.

The number of adjustable parameters P, within a

MLP is dependent on the architecture used.

P ¼ H þ O þ ðI�OÞ þ ðH�OÞ ð13Þ
where I is the number of input neurons, H the number

of hidden neurons and O the number of output neu-

rons. Jurs et al. [31] recommended that there is at least

twice the number of training patterns than adjustable

parameters to properly adjust the network.

Ntrain�2P ð14Þ
The number of hidden neurons is important for

achieving generalization. In general, an increased num-

ber of neurons can result in over-training while a small

number of neurons would normally result in under train-

ing (insufficient learning). The problem of finding an

optimal setup is difficult as each specific configuration

has a unique set of optimal parameters. These issues and

others are discussed by Pardo [85]. The most commonly

used analysis techniques for electronic nose data are

PCA and MLPs. PCA is typically used for exploratory

data analysis to see how the multivariate data is clus-

tered and to assess the linear separability of the odour

classes. MLPs are used to provide a predictive classifi-

cation of unknown odour vectors from selected features.

BP-MLP applications

Garcia-Gonzalez and Aparico [86] used 18 MOS sen-

sors to distinguish between lampante virgin olive oil

from other categories. Temporal profiles were taken for

each sensor and the data reduced by a windowed time

slicing method. A wrapper genetic algorithm was ap-

plied to select the features for a neural network. Eleven

features from 7 sensors were selected as input into a

conjugate gradient trained MLP, producing 100% accu-

racy. This method is complex to apply but the benefits

achieved in the classification accuracy are impressive;

the results could be achieved with maximum response

data only as the composition of the oils is unlikely to

alter over the sampling time. This would help reduce the

problem complexity as well as the processing time.

Pardo et al. [87] used a hierarchical system of PCA

and BP-MLPs in cascade and a comparative SIMCA

(Soft independent modelling of class analogy) technique

to classify measurements for 14 olive oil types using a

12 MOS array. The PCA and BP-MLP was found to

appreciably outperform the SIMCA for this task.

Zou et al. [88] used PCA as a filter to reduce 4

points from each of an array of 5 MOS sensors to

10 features. A BP-MLP was then used in a 10-8-2

configuration to distinguish between two types of

vinegar with 98% accuracy, once again demonstrating

the benefits of feature selection.

Radial basis function neural networks (RBF)

RBF networks are feed-forward connectionist architec-

tures consisting of a hidden layer of kernels and an

output layer of linear neurons. In RBF networks output

units form a linear combination of the basis functions in

the hidden layer. A basis function may be viewed as an

activation function that produces a localised response to

the input vector. The hidden processing elements are

radially symmetric and have three properties:

1. A centre that is a vector in the input space, and

which is typically stored in a weight vector from

the input layer to the hidden processing element.

2. A distance measure to determine how far an input

vector is from the centre.

3. A transfer function to evaluate the output of the

hidden processing element by mapping the output

of the distance function (e.g. Gaussian function).
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There are several possible learning processes for

a RBF network depending on how the centres of the

hidden layer are specified. The different layers of a

RBF network perform different tasks, so it is reason-

able to separate the optimisation of the hidden and

output layers by using different techniques [89]. The

locations of the centres may be chosen randomly

from the training data set or unsupervised clustering

[90–92], or a genetic algorithm [93, 94] may be used

to estimate the centres. An estimate of the variance of

the input vector with respect to each centre provides

the radius. Finally with the first two variables set, the

weights may be calculated using a least mean squares

algorithm, as per the BP algorithm. The most general-

ised form of supervised training is error correction

learning [95] and allows simultaneous adjustment of

the hidden neuron centres, the kernel width (spread

parameter) and the output weights by a steepest des-

cent method. RBF network decision boundaries are

typically hyper-spheres.

RBF applications

Distante et al. [96] used an array of MOS sensors

collecting data of several odorants such as pentanone,

hexanal, water, acetone and three mixtures of these. A

RBF network with 3 input and 6 output neurons was

trained by starting with one hidden neuron and at each

training iteration a new neuron was added until the

network sum square error was below a threshold; then

training stopped, resulting in a 3-157-6 configuration.

The results were found to significantly outperform a

BP-MLP, signifying that the adaptive insertion or de-

letion of hidden layer neurons in response to training

errors is a powerful technique.

Szczurek and Maciejewska [97] used a 6 MOS

based array to investigate the recognition of benzene,

toluene and xylene in air with variable humidity.

Response patterns were initially visualised using PCA

and indicated that humidity was the main classifica-

tion factor in the measurement dataset. LDA was able

to classify benzene from toluene and xylene, however

on occasion misclassification between toluene and

xylene occurred. The first four PCs from the PCA

were used as input into a four neuron input and one

neuron output RBF network, this gave 100% classifi-

cation. Demonstrating the power of feature selection

and the non-linear decision boundaries of the RBF

network.

Ali and co-workers [98, 99] classified different

types of edible oil. Figure 7 shows the discriminant

boundaries for four classifiers on this data, BP-MLP,

RBF, QDA and LDA. The classes of edible oil show

differing variance within groups and there is overlap

Fig. 7. Discriminant boundaries of BP-MLP, RBF, QDA and LDA, classifiers
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between the non-virgin olive oil and sunflower oil.

The DFA and ANN algorithms may yield compara-

ble performance on well defined classification tasks,

whereas ANNs usually obtain better performance on

tasks that involve non-linear classification boundaries,

such as where there is overlap. DFA techniques how-

ever have vastly reduced learning times.

Probabilistic neural networks

The probabilistic neural network (PNN) of Specht

[100] is a parallel implementation of the Bayes statis-

tical technique and is a four layer feed forward MLP.

By replacing the sigmoid activation function often

used in MLP networks with an exponential function

(Gaussian), a PNN can compute nonlinear decision

boundaries which approach the Bayes optimal. The

decision requires an estimate of the probability den-

sity function (pdf) for each class. An estimated pdf is

used in a Bayes decision rule with appropriate scaling,

to produce a class estimate on the testing data. The

PNN has only one adjustable parameter �, the kernel

width, which determines the degree of interpolation

that occurs in determining the pdf. The PNN is limited

to applications involving relatively small datasets;

large datasets would lead to large network architec-

tures and would increase the rate of misclassification.

PNN applications

McGill et al. [101] used a 3 SAW array for the de-

tection of chemical agents and other toxic gasses

and vapours. A PNN was able to distinguish between

nerve, blister agents and over 20 different interferents

with 100% accuracy. Lozano, Santos and Horrillo

[102] used an array of 16 sputtered thin film MOS

sensors to analyse white wines. The aromas of the

wines were split into five categories; floral, fruity,

herbaceous, microbiological and chemical. A PNN

achieved 100% accuracy for floral, fruity, herbaceous

and microbiological aromas; the accuracy to the che-

mical aromas was 97.2%. Santos et al. [103] used an

array of 7 SAW sensors on Spanish wines of different

grape varieties and ageing processes, a PNN classified

86% correctly.

Self-organising map

The Self-Organising Map (SOM), is a feed forward

unsupervised learning network [104]. The SOM is a

clustering type algorithm and is used for exploratory

data analysis.

The SOM consists of a regular, typically two-

dimensional grid of processing neurons (map units).

Each unit is connected to adjacent ones by a neigh-

bourhood relation. The number of map units used

determines the accuracy and generalisation capability

of the SOM. The map is trained iteratively; the best

matching unit to the input is altered so that it closer

matches that input, units close to the winner are also

updated according to the neighbourhood relation.

Figure 8 shows the architecture of a SOM and the

linear relationship of neuron updating with the

Euclidean distance from the winning unit. Although

not a classification system SOM may be used as such

by post processing the best matching map unit.

SOM applications

Davide [105, 106] used a SOM for a two-odour re-

cognition problem and later extended the algorithm

into a very large scale integration (VLSI) chip. The

same group used the SOM system for the evaluation

of tomato quality [107]. Tomatoes from conventional

and organic land (classes) were split and labelled into

4 separate groups ranging from very good to poor due

to their quality. PCA and SOM were then used to

visually interpret the results. Although PCA showed

a large separation for the poor organic tomatoes, the

rest of the data was quite similarly distributed and it

Fig. 8. Rectangular neuron arrangement and reducing neighbourhood scheme in SOM
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was not possible to discriminate into groups. Using a

SOM utilising 8 input neurons and a 10 by 10 map

layer, it was possible to discriminate all four groups

for each class of tomato and much less spread was

observed within individual category groups.

Learning vector quantization

Learning Vector Quantization (LVQ) is a supervised

variant of the SOM [108] and is a dedicated classifier.

LVQ algorithms directly define class boundaries based

on prototypes, a nearest neighbour rule and a winner-

takes-all paradigm. The input space is covered with

‘codebook vectors’ (CV) each representing a region

labelled with a class. A CV may be thought of as a

prototype of a class member localised in the centre of

a class decision boundary. A class may be represented

by any number of CV, but one CV represents only one

class. Class boundaries are built piecewise-linearly as

segments of the mid-planes between CVof neighbour-

ing classes. During learning the weights are modified,

adjusting the position of a CV in the input space and

therefore class boundaries. The winning CV is moved

closer to the input, if it is labelled with the correct

class, otherwise it is moved farther away. Classifica-

tion after learning is on the label of the nearest CV to

the sample.

LVQ applications

Kusumoputro [109] developed a neuro-fuzzy LVQ

using a quartz resonator sensor system. Seyama et al.

[110] used an array of 8 plasma polymerized film

(PPF) coated TSM sensors on citrus and woody odours.

LVQ was used to produce ‘odour maps’. KNN proces-

sing resulted in 74% for the citrus and 91% accuracy

for the wood odours respectively. Qian et al. [111]

studied toxic vapour classification and concentration

estimation for space suits after space walks. Studies

were conducted using classifiers including LVQ, BP-

MLP and PNN; results of up to 99% correct estima-

tion of concentration of vapours such as hydrazine

were obtained.

Fuzzy logic

Fuzzy set and system theory originated with the work

of Zadeh [112, 113], and provides a superset to the

traditional forms of logic and set membership that has

predominated since the ancient Greeks. This theory

extends the classical notion of true and false to

include the range of real numbers [0, 1]. New opera-

tions for the calculus of logic were proposed which

were generalisations of classic logic. In classical set

theory an object either belongs to a set or it does not.

Probability explains how events occur in random

space; fuzzy logic includes situations where there is

imprecision due to vagueness rather than randomness.

Fuzzy and crisp sets

A requirement of probability is that the mutually in-

dependent probabilities of a system must add to one,

fuzzy membership functions do not possess this prop-

erty. Fuzzy membership functions can be developed

using a wide range of techniques including pdfs.

Probability deals with the likelihood of an outcome

and fuzzy logic deals with the degree of ambiguity.

A probability of 1 indicates that the event is certain

to occur. In fuzzy logic a membership of 1 means a

complete lack of ambiguity. The linguistic statement

‘there is a 50% possibility of a cloudy day’ states the

chance (0.5) of an ambiguous (cloudy) outcome. The

membership function is the fundamental idea in fuzzy

set theory. The values measure the degree to which

objects satisfy imprecisely defined properties. A wide

variety of membership functions can be used includ-

ing triangular, trapezoidal and Gaussian.

Fuzzy c-means

Fuzzy c-means (FCM) is a clustering method of data

analysis based on the fuzzy membership of each data

point to each of the clusters of data formed [114].

The objective of the fuzzy c-means algorithm is to

minimise the sum of the weighted squared distances

between the data points, zk and the cluster centres, vi.

The distances D2
ik are weighted with the membership

values �ik. The objective function is then:

JðZ;U;VÞ ¼
Xc

i¼1

XN

k¼1

ð�ikÞm
D2

ik ð15Þ

where:

U ¼ ½�ik� is the fuzzy partition matrix

V ¼ ½v1; v2; . . . ; vc� is a vector of cluster prototypes

(centres)

m2ð1;1Þ is a weighting exponent that determines

the fuzziness of the resulting clusters, it is commonly

chosen to be m¼ 2. As m ! 1, the partitioning

becomes hard. Fuzzy clustering may be converted into
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hard clustering by assigning each pattern to the cluster

to which it has the highest membership.

Dik may be determined by any appropriate norm,

for example the Euclidean norm distance which results

in point prototypes and spherical clusters.

Fuzzy c-means applications

Dutta et al. [115] used FCM, PCA and SOM to ana-

lyse data from a 32 CP array on eye bacteria and for

the identification of Staphylococcus aureus infections

in hospital environment [116]. They also used FCM

and SOM feature extraction techniques along with a

RBF neural network and achieved 100% correct clas-

sification for five different tea samples with different

qualities from a 4 MOS array [117]. A commercial 6

sensor MOS based system was used by Marcelloni

[118] to monitor the quality of doped food packaging

material. Samples were taken every second for the

duration of the sampling cycle of 166 seconds giving

696 points for each sample. Feature selection was

performed by filtering using a supervised version of

FCM (SFCM), giving an average of 47.6 features.

These features were used in KNN for classification.

It was found that using feature selection by SFCM

increased accuracy from 79.58% to 82.15%.

Applications of other fuzzy systems

Dumitrescu et al. [119] used Fast Fourier Transforms

(FFT) and PCA to filter features from an array of 8 CP

sensors taking continuous samples in three phases. An

unsupervised fuzzy divisive hierarchical classification

system (UFDHC), basically a fuzzy binary search tree

was then applied to some test cases including Hexanal,

Nonanal and Hexanol, FFT was applied to the sensor

signals keeping the first 3 coefficients – giving 24

features. PCA was applied to filter this to 9 features,

the UFDHC was applied to these using a leave-one-out

cross validation resulting in 100% correct classifica-

tion. Lazzerini et al. [120] developed a fuzzy-based re-

cogniser of olfactory signals (FROS) and applied it to

samples taken from a 16 CP based system. Odorants

acetone, butanol and o-xylene were combined into 7

mixtures. Each sample consisted of 450 readings for

each of the 16 sensors. The output from a shape based

and a dynamic based recogniser were combined to

produce a list of fuzzy match pairs, odorant and match

value, the highest match gave the classification – 82%

of the samples were correctly classified. Singh, Hines

and Gardner [121] compared the ability of a fuzzy

neural network and a BP-MLP to classify odour sam-

ples that were obtained by an e-nose employing 4 or

12 MOS sensors. Coffee and tainted water samples

were used as test cases. BP-MLP achieved best classi-

fications of 86% on the coffee and 75% on the water

data. The fuzzy network achieved 93% on the coffee

and 85% on the water samples, Scott et al. [122]

used a fuzzy set similarity classifier to discriminate

between edible oils from an array of 6 TSM sensors.

The data set of 346 samples was randomly split into

233 for training and 113 for testing. The technique

was shown to be understandable and provided fast

classification with discrimination rates up to 99% for

the test set.

Adaptive resonance theory networks

Fuzzy ARTMAP (FAM)

Adaptive resonance theory was devised by Grossberg

[123]. The aim was to solve some of the problems

from which other neural networks suffer and to have

a stable memory structure even with fast on-line

learning that was capable of adapting to new data

input, even forming totally new category distinctions.

The most advanced model of the ART family is Fuzzy

ARTMAP (FAM) [124, 125] which was developed

for supervised slow learning. Unlike traditional MLP

neural networks the architecture of FAM is self-

organising; this phenomenon is known as the plasti-

city-stability dilemma; how a network retains learned

patterns (stable) while remaining able to learn new

ones (plastic). In a standard MLP network used for

pattern classification an output neuron is assigned to

every class of object that the network is expected to

learn and must be trained off-line. In FAM the net-

work dynamically assesses the assignment of output

neurons to categories by competitive learning.

Two ART modules are interconnected by an as-

sociative memory and internal control structures as

shown in Fig. 9. The ARTa module handles input pat-

terns whilst ARTb the class patterns, both modules use

a competitive strategy in updating, fuzzy comparisons

are made between the input pattern and the neuron

weights. The associative memory maps ARTa patterns

to ARTb classes. The orienting subsystem is respon-

sible for generating a reset signal whilst the gain con-

trol sums the input signal. The network is able to

perform real time learning without losing previously

learnt patterns by using an incremental weight update

procedure known as slow recoding.
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Simplified fuzzy ARTMAP (SFAM)

The main drawback to the ART family of networks is

the complicated architectures instead of simple algo-

rithms. This problem has been tackled by several

authors such as Kasuba [126] who developed SFAM

which is a simplified version of FAM. SFAM aims to

remove the redundancies in FAM and so trains much

faster. Vakil-Baghmisheh and Pavesic [127] report that

their version of SFAM is capable of obtaining almost

Bayes optimal classification rates with an increased

training speed of over 50% compared to that of

Kasubas’ version.

Applications of FAM

Llobet et al. [128] used FAM on cows breath data

from a 6 MOS array. The samples were split between

healthy, ketotic and sub-clinical ketotic. The network

performed with an accuracy of 79%, higher than the

accuracy from a comparative BP-MLP, whilst also

providing quicker training. Vinaixa et al. [129] used

a MS e-nose with a solid-phase microextraction

(SPME) preconcentration system to collect data of

fungal growth in bakery products. Averages of mass

spectra along detected peaks were used as sensor mea-

surements. PCA was applied to the response matrix,

and the first 10 PCs used as data for further processing.

DFA was performed and the range scaled Eigenvalues

obtained used as input in FAM. Predictions of the

correct fungal genus reached 78% and 88% after 24

and 96 hours of incubation respectively. The same

group used the MS e-nose to detect the rancidity of

potato crisps [130]. FAM classification using 78 input

variables was used, the average classification rates of

crisp samples in four rancidity stages was 88%. A

PCA filter was used to reduce the number of features

to 10; with this input the classification of crisp ran-

cidity improved to 93%. This shows although the

algorithm can train rapidly on large data sets, redun-

dancy within the data is still an important condition

that must be addressed for optimal performance.

Selecting more than 10 PCs did not improve the

results. Ali [131] used SFAM on data from 6 TSM

sensors to discriminate between edible oil samples

with over 99% accuracy. The algorithm was found to

offer easy implementation to maximum sensor re-

sponse data from the e-nose whilst rapidly providing

automation capable results.

Growing networks

The ART family and derivatives are not the only adap-

tive networks, the growing cell structure (GCS) net-

work of Fritzke [132] is based on the SOM, but

comprised of k-dimensional simplices. The value of

k is typically 2, making the simplices triangular, a new

node is inserted every � iterations, where � is a con-

stant. The new node is positioned to support the node

that has accumulated the highest error during the pre-

vious cycle. The network grows and adapts until a

stopping criteria is met, either a predefined size or

the error has reached an acceptable level. The growing

neural gas (GNG) network, also of Fritzke [133] adds

nodes every � iterations but the structure is not con-

strained. The grow when required (GWR) network of

Marsland et al. [134] may add a new node at any time,

positioned dependent on the input and current win-

ning node. Cheng and Zell [135] used the maximum

response data from an array of 12 TSM sensors of

seven coffee brands and achieved 86.7% correct clas-

sification from a GCS network.

Comparisons of classification techniques

Shaffer et al. [71] ran a comparison of 7 pattern recog-

nition systems including LVQ, PNN, BP-MLP, KNN

and LDA from simulated and actual data from 4 and

6 SAW sensor sets for chemical warfare agents. Six

criteria were examined, speed of operation, simplicity

of use, memory requirements, robust handling of out-

liers, a statistical measure of uncertainty and classifi-

cation rate. BP-MLP achieved 93% accuracy, was fast

but not simple to train and had low memory require-

ments. KNN gave 91% accuracy, was slow to operate

Fig. 9. FAM architecture
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but was simple with high memory requirements. PNN

gave 94% accuracy was slow but simple to operate but

had high memory requirements. LVQ gave 95% ac-

curacy was fast, sometimes simple to train and had

low memory requirements. PNN was recommended

for applications where a confidence measure and fast

training are critical, but speed of classification and

memory requirements are not, and LVQ for all other

applications.

The performance of LVQ, BP-MLP and FAM were

compared in determining the ripeness of bananas

using a MOS sensor based system by Llobet et al.

[136]. LVQ correctly classified 92% of banana sam-

ples into seven stages of ripeness, whilst FAM and

MLP networks performed 90% and 83%, respectively.

FAM however was shown to learn new samples with-

out degrading in performance on previous samples

and trained more quickly than both BP-MLP and

LVQ. Gardner et al. [62] compared the performance

of LVQ, BP-MLP and FAM whilst classifying potable

water containing cyanobacteria using a 6 MOS sensor

array. It was found that LVQ gave a slightly better

prediction rate of 95.1% than the other two methods

which both gave 92.3%, but that FAM used an order

of magnitude less iterations to train.

Vaid et al. [137] compared several discriminant

algorithms including, KNN, LDA and QDA on data

from an array of 20 carbon black CP sensors using

data from compositionally similar pairs of compounds.

KNN performed the worst. LDA was found to perform

the best, better than QDA, a surprising result attribu-

ted to the covariance matrix estimates of QDA being

based on a class by class basis rather LDA using

pooled data, so being less likely to reflect the true

covariance matrices; the use of more data could have

solved this problem.

Martin et al. [75] compared pattern recognition

techniques on data taken by an array of 6 MOS sen-

sors on vegetable oils. Data was taken every 1 second

for 60 seconds for each sensor. The feature numbers

were reduced by selecting 8 points on the curve for

each sensor, resulting in 48 points for each sample.

KNN, QDA and BP-MLP were applied to this feature

set and a LDA reduced data set consisting of 9–36

points. KNN produced 80%, QDA and BP-MLP up to

94% correct. The better classification rates were

achieved using lower feature numbers.

An array of 8 carbon black CP sensors was used by

Bicego et al. [138] to discriminate between acetone,

ethanol and 2-propanol using KNN and a MLP. The

MLP was trained using a reactive Tabu search. Using

all 8 features KNN gave a classification rate of 99%,

whilst the MLP gave 100%. Using filter reduction by

PCA to 3 features both classifiers achieved 100% cor-

rect predictions.

Dutta et al. [139] used an array of 4 MOS sensors to

collect data for the determination of egg freshness.

Measurements were taken every 5 seconds over the

sampling period but only the maximum response was

used in analysis. The data was normalised by dividing

each reading by the maximum value. PCA, SOM and

FCM were applied to establish data cluster and that

results were not arbitrary; they all corresponded with

the three egg freshness states. BP-MLP, LVQ, PNN

and RBF networks were applied as classification sys-

tems. A BP-MLP using a 4-4-3 configuration gave

71%, LVQ with 4-3-3 gave 84%, PNN gave 89%

and RBF 90% correct classifications. Training times

were 7 hours for MLP, LVQ took 2 hours, RBF took

61 minutes and PNN took 57 minutes. It was concluded

that LVQ was a good solution, but RBF preferred.

Kuske et al. [140] used a MOS sensor array to

detect Aspergillus versicolor growing on different

building materials. Moulds are known to produce a

wide range of VOCs, including alcohols and ketones,

which make their detection by e-nose feasible. The

standard method for their detection would involve

collection onto an adsorbent which would then be

used in GC=MS analysis. A comparison of KNN

and fuzzy KNN classifiers was studied on the mould

sample data. It was found that both algorithms per-

formed with very similar classification rates with the

KNN slightly outperforming the fuzzy KNN. Using

LDA as a filter technique the fuzzy KNN gave the

highest classification rate of 89%.

Kinetics modelling

Some research groups have used part of or the entire

response curve of the sensors, either during the sam-

pling phase, or the whole sample=purge cycle to help

improve separation between analytes. The shape of

the response curve varies according to the analyte-

sensor interactions. Saunders et al. [141] used normal-

ised kinetic profiles of TSM sensors in conjunction

with an BP-MLP as a classification technique. They

found it was possible to identify different compounds

by the change in shape of the response curve observed

in the normalised results. Freeman et al. [142] using

TSM sensors, suggested that by building a database of
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response curves for compounds, faster classification

would be possible by curve fitting of the initial re-

sponse readings. Wavelet transforms have been ap-

plied as a feature extraction and data compression

technique (mapping features) to temporal profiles

[143–146]. Total time profiles were analysed by Skov

and Bro [147] by using PARAFAC2 multi-way mod-

elling. PARAFAC is an extension of PCA producing

tri-linear models of the underlying data. PARAFAC2

is a development of the original PARAFAC which

aims to handle generally varying profiles in an effi-

cient manner, instead of one loading matrix being

produced there is a time loading matrix for each

sensor. Tests were made on data taken from liquorice

samples using 12 MOS sensors. There were three

groups, good, bad and fabricated bad. Classifications

were made by KNN using the Euclidean distance of

scores and compared to PCA processed data. PAFA-

FAC2 processed data produced marginally better re-

sults than PCA, 59 correct from 60 samples over 57

correct for PCA.

Sensor selection

There are several factors that need to be addressed for

selection of sensors, including drift, robustness and

reliability. Feature selection algorithms have three

goals, to improve classification accuracy, to reduce

the cost of extracting features and to improve the

reliability of the performance. Large feature sets often

contain redundant information that degrade the accu-

racy and speed of the classifier. Initial sensor selection

may be achieved by a rational analysis of the vapour-

sorbent interactions of each sensor. This involves

careful analysis of the components of the test volatiles

to cover what Grate [148] calls ‘‘coating space’’. It is

pointless to select a set of sensors from a pool that

does not include the most suitable for the task.

Wilson et al. [149] used a 30 MOS array with rank-

ordering feature extraction on samples of breath alco-

hol mixtures (beer, wine, vodka). The centroid of each

cluster was computed, then the Euclidean distance to

each of the samples. These distances were then ranked

according to the closeness to a particular centroid.

The samples closest to each centroid were filtered

out by determining whether they belonged to the clus-

ter. From this, a centroid proximity metric was calcu-

lated and a ranking of each sensor contribution to this

produced. The results from the full feature set were

compared to the reduced set using BP-MLP and RBF

networks. The feature extraction improved the classi-

fication rate for the BP-MLP from 92% to 95% and

the RBF from 87% to 94%.

Carey et al. [150] analysed the results from 27 TSM

GC stationary phase coated sensors to discriminate

between mixtures of up to 14 analytes. PCA eigen-

vectors were analysed and using the contribution of

each sensor to the highest ranking eigenvectors a

subset of 7 sensors were selected that provided the

maximum variance within the data. Lau et al. [151]

considered the linear solvation energy relationship

(LSER) to select several GC stationary phase coated

TSM sensors. The results of testing were examined

by the PCA eigenvector technique and a subset of 8

sensors was derived. Kermani et al. [152] used PCA

eigenvector analysis on an array of 32 CP sensors on

coffee data to select a subset of only 3, these gave no

degradation in classification performance. This tech-

nique selects features that produce the highest varia-

tion, but does not guarantee that the selected features

give the best classification rate as it ignores the con-

tribution a feature makes to classification.

An alternate approach to feature selection is to

search for combinations of sensors that produce the

highest classification rate. Park et al. [153] used the

responses to mixtures of subsets of 16 organic vapours

collected by 6 polymer coated SAW sensors. Monte-

Carlo simulations coupled with pattern recognition

analysis was used to derive statistical estimates of

vapour recognition rates as a function of the number

of sensors in the array. It was found up to 4 vapour

subsets could be recognised by an equal number of

sensors to the number of vapours. It was also found

that for 6 vapour subsets increasing the number of

sensors did not improve performance. They concluded

that large arrays are not needed for accurate vapour

recognition and quantification. Benedetti et al. [154]

analysed the data from 70 honey samples from a 12

MOS and 10 MOSFET sensor array. Using bar charts

of sensitivity for the sensors as a filter, it was found

that only three sensors responded well to the samples.

A BP-MLP using 3 inputs was able to separate the

honey into their four regions of origin. Pardo et al.

[155] selected sensors from a hybrid array of 7 TSM,

8 MOS and 4 EC sensors. An exhaustive search using

cross-validated KNN (k¼ 3) on subsets of 2, 3 and 4

was performed from a pool of 19 candidate sensors.

PCA scores plots were used to show an improvement

in discrimination from all sensors to the best perform-

ing two sensor subset.
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The sequential forwards and sequential backwards

selection (SFS and SBS) algorithms are commonly

used search methods for feature selection. They apply

a local search to test the current feature subset. The

algorithms begin with a single solution and iteratively

add or remove a feature if it provides the best im-

provement in performance, until some termination cri-

terion is met. The forward type starts with the empty

set and adds features, the backward starts with the

full set and removes features. They cannot backtrack

however; that is, to reinstate a feature that has been

discarded.

Eklov et al. [156] selected features using the se-

quential forwards search (SFS) method from the tran-

sient signals of an array of 7 pt-MOSFET sensors

monitoring E. coli biomass concentration. The root

mean square error (RMSE) from a multi-linear re-

gression model was used as the selection criterion.

It was found that 10 features from a set of 85 gave

the best prediction performance. The SFS algorithm

was used as a wrapper around a BP-MLP by Polikar

et al. [157] to select a subset of sensors from an array

of 12 TSM sensors when classifying 12 VOCs. It was

found that 2–4 sensors could adequately classify a

VOC, and that the performance of classifiers typically

degrades as the number of sensors increase beyond

that number. It was noted that the SFS method is

prone to being trapped in local maxima in the perfor-

mance space.

Genetic algorithms

A genetic algorithm (GA) operates on a population

of potential solutions applying the principle of sur-

vival of the fittest to produce successively better

approximations to a solution. The population of po-

tential solutions allows the technique to be massively

parallel in operation [158]. At each generation of a

GA, a new set of approximations is created by the

process of selecting individuals according to their

level of fitness in the problem domain and reprodu-

cing them using operators borrowed from natural

genetics. This process leads to the evolution of popu-

lations of individuals that are better suited to their

environment than the individuals from which they

were created; mimicking natural adaptation. A fit-

ness or objective function is a method of calculating

how good or bad the individual solutions within the

population are at solving the specific problem. A GA

may be used as a wrapper technique for a classifier;

the GA selects the features and possibly the classifier

configuration.

GA applications

Schiffman et al. [159] used data from an array of

32 CP sensors on a medication spray off-odour. Time

response curves of 30 points for each sensor were

reduced to mapping features using windowing func-

tions and integrating to 4 points per sensor, and then

further reduced by PCA to one point per sensor. PCA

scores of different time slices suggested that the Freon

propellant of the spray was carrying leached com-

pounds from the container. Kermani et al. [160] used

the same complicated filtering technique on fragrance

data. A LM-MLP (Levenberg-Marquardt trained MLP)

was set heuristically and results compared to a GA

wrapped LM-MLP. The GA selected feature input

and set parameters for the LM-MLP. Classification

rates were 86.87% for the LM-MLP and 95.23% for

the GA wrapped LM-MLP, demonstrating that the GA

controlled feature and network parameter selection

was a valuable aid in improving classification rates.

A comparison study of some neural network tech-

niques conducted by Jurs et al. [31] used data taken by

a polymer-coated fiber optic sensor array on 20 or-

ganic vapours. Feature selection was performed using

a GA wrapper with a LVQ classifier and achieved 90%

correct classification; BP-MLP networks set heuristi-

cally only performed 73% correct classification. A 14

CP sensor based system using a dynamic bubbler for

sampling was used by Pavlou et al. [161] to detect

and discriminate between 6 gastroesophageal isolates,

including Staphylococcus aureus and Helicobacter

pylori from the headspace of complex broth cultures.

Four points were taken from each sensor giving 56

features per sample. A BP-MLP gave a prediction rate

of 98%. Data from the headspace of H. pylori on three

different media (enriched, normal and sterile) was

processed by a GA wrapped BP-MLP. A 16 feature

subset was found to give a correct prediction rate of

94%. Corcoran [162, 163] used a GA wrapper techni-

que around a distance measure based on normalised

mean distances between pairs of classes to reduce a

feature set of 208 to 21, simultaneously increasing

classification rates from 69% to 93%.

Data fusion from 4 different electronic noses was

used to classify fruit solutions by Boilot et al. [164].

Range scale normalisation was performed on the data

sets so that they could be combined. The fused data
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contained 72 features and gave a prediction rate of

86.7% using RBF and 80% using PNN. Selecting a

subset of 8 features by analysing PCA loadings pro-

duced the same classification rates. However using a

GA wrapped PNN classifier to select 6 features

resulted in 95% correct predictions.

Aleixandre et al. [165] conducted tests on mixtures

of air pollutants such as NO2, toluene and octane

using an array of 8 MOS sensors. Dynamic sampling

was used and several features taken from the transient

signal. BP-MLP and PNN were used in classification

tests on different feature subsets. It was found that as

more features were added to the input the networks

took longer to train and the results barely improved.

When using all of the features the BP-MLP was no

longer able to converge. A GA with a PNN fitness

function was used to extract feature subsets, it was

found that 6 features performed as well as the full

feature set. The BP-MLP gave a slightly higher clas-

sification rate using this feature set than the PNN, but

took longer to train.

Llobet and co-workers [166] used a GA wrapper for

a FAM classifier to analyze single vapours and binary

mixtures of three VOC. Data was taken by a 12 ele-

ment MOS array and 10 samples used from the

dynamic curves. The GA allowed the number of fea-

tures used to be reduced from 120 to 9, which sig-

nificantly increased the generalization of the FAM

classifier. Classification rates of 91.67% and 88.33%

were reached for single vapours, and single vapours

and their binary mixtures respectively. Gardner et al.

[167] used a fixed length integer gene based GA wrap-

per around a PNN to select subsets of specific num-

bers of features from 32 carbon black CP sensors and

found that 5–6 sensors could achieve almost as high

classification rates as 32. The fixed length of the gene

implies that the optimum number of sensors is known

before the selection procedure is applied.

Wrapper type search methods have been found to

be useful for feature selection, although they do not

prevent irrelevant or correlated features from being

selected. For best classifier performance the features

selected would also need to be checked for correla-

tion to ensure that redundant or irrelevant informa-

tion did not exist. To address this Kermani et al.

[168] used their windowing functions and integration

before filtering by PCA to produce uncorrelated fea-

tures, and then a GA wrapper around a LM-MLP to

select a combination of features to provide the best

classification performance. This very complicated

pre-processing and feature selection process will

produce features that are both uncorrelated and pro-

vide the best separation for classification; it does not,

however, help to reduce the cost of extracting fea-

tures. A simplification and refinement of this techni-

que may provide a generalised, practical method of

feature selection to ensure that a minimum number

of features are both uncorrelated and provide a max-

imum classification rate.

Drift calibration and counteraction

The stability of a sensor is its ability to give the same

output when measuring a constant input, measured

over a period of time. The term drift is used to de-

scribe the change that may occur. Some sensors types

are prone to drift. One of the critical limitations of

e-nose systems is measurement scattering over time

due to sensor drift, this causes data clusters to shift or

merge over time gradually reducing the systems clas-

sification performance. If this drift is predictable it

may be compensated for, or a counteraction scheme

put into place [169]. The alternative is frequent reca-

libration of the system to ensure that the prediction

model remains valid, such as using a reference analyte

[170]. Sisk and Lewis [171] found that a simple linear

sensor by sensor calibration scheme was effective at

restoring classification performance in binary separa-

tion tasks, the frequency of which was determined

by occasional testing of the LDA classifier. Adaptive

models using SOMs [172, 173] use newly collected

data that match stored analyte signatures to continu-

ously retrain the classifier. This technique is simple

as no actual recalibration is performed by the user.

Llobet et al. [136] and Gardner et al. [174] found

that FAM was plastic enough to learn new samples

without degrading in performance on previous

samples. The drift, however, must be gradual as a

discontinuity in response would immediately invali-

date the classification model. This method also

assumes that the sensors are drifting and not the

analyte composition=concentration. The calibration

and standardisation of drift counteraction algorithms

is an ongoing topic of research by the NOSE II net-

work [175].

Conclusions

A chemical sensor array system may detect and iden-

tify any analyte, provided certain criteria are met. The
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array must contain some sensors that are sensitive to

the analytes of interest, and these must be selective

enough to distinguish between them and all others.

These sensors must be stable enough to give consis-

tent responses during the training phase and later use.

The array should be trained on all potential analytes

that may be encountered, and employ a pattern clas-

sification algorithm that is suitable for the sensor

response patterns that will be generated. For example,

some classifiers work well for binary separations of

data that is largely multivariate Gaussian (e.g. LDA),

while others work well for classifying many groups of

highly nonlinear data (e.g. ANN).

The above criteria reduce the flexibility of any

chemical sensor array, particularly for situations for

which it is not known which analytes that may be

encountered. Without this knowledge, it is not feasible

to tailor an array with a suitable number of task-

appropriate sensors, and impossible to train the array

on every possible analyte. Even if it were possible to

do so, retraining would be occasionally necessary if

there was drift in the sensor responses. Choosing an

inappropriate classification algorithm could result in

poor results, either because the algorithm lacks suffi-

cient plasticity to model nonlinear data, or because a

highly plastic model was over trained on an insuffi-

cient number of training data. This situation has

restricted applications to situations in which it is

known approximately what to search for. Rarely have

applications been applied where it is not known what

analyte may be encountered because of the sensor

selection and training required.

In the past simple analysis techniques were used to

classify patterns, increasingly there has been a shift

towards powerful mapping systems such as MLP, RBF,

LVQ, PNN and FAM. MLPs are often outperformed

by LVQ and FAM. These techniques and other self

adjusting methods are becoming the benchmarks for

predictive classifiers in VOC recognition. Neuro-fuzzy

methods are being increasingly used as they have the

ability to cope with imprecise data in a predictable

way such as noise and drift. Continuous measure-

ments from large array based systems produce a data

rich environment; data processing becomes proble-

matic. It is a challenge to be able to reduce the

dimensionality of the incoming data whilst preser-

ving the relevant information. Analysis techniques

are rarely used alone, raw data is feature extracted,

plotted and classified. Sophisticated sensor selection

to target specific the differences between analytes are

starting to become used, this should lead to more

application areas.
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