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Summary

The block sizes in a rock mass play an important role in many rock engineering projects
and therefore the assessment of in-situ block size distribution (IBSD) has been an increasing
pursuit of researchers in mining, quarrying and highway cutting operations. This paper
discusses further developments in the assessment of IBSD which build upon a broadly ac-
cessible approach for engineers published previously by the Geomaterials Unit. The original
research provided look-up tables appropriate for ®eld data, with theoretical joint set spacing
distributions and an assumption that discontinuities extend inde®nitely. The developments
reported in the paper include: the prediction of IBSD with special reference to discontinuity
sets with fractal spacing distributions; the in¯uence of impersistence of discontinuities on
the prediction of IBSD; and the use of grey correlation analysis when selecting a closely
®tting theoretical distribution for discontinuity spacing data. Various approaches to IBSD
assessment are discussed.

1. Introduction

The formation of individual blocks of intact rock of di¨erent sizes and shapes, i.e.
in-situ blocks, results from the mutual intersection of discontinuity sets with dif-
ferent spacing and orientation characteristics. The ISRM (1978) has suggested that
the in-situ block sizes are governed mainly by the spacing and the persistence of
discontinuities, as well as the number of discontinuity sets.

In recognition of the fact that the IBSD is a major contributing factor in
assessing the technical viability of a new quarry source of large blocks for armour-
stone production, a computer program was written (Wang et al., 1991; Wang,
1992). The program solves the problem of deriving the block sizes and shapes
formed by pre-de®ned planar discontinuities which intersect each other. In fact,
engineers have increasingly recognised that the IBSD plays an important role in
many rock engineering projects. It has been examined in: mining and quarrying
blast operations (Cunningham, 1983; Da Gama, 1983; Ord and Cheung, 1991;
JKMRC, 1991; Wang et al., 1991), rock mass characterisation (Franklin, 1974;



ISRM, 1978; Hoek et al., 1992), stability analysis of excavations in jointed rock
masses (Hoek and Bray, 1981; Goodman and Shi, 1986) and indirectly in fracture
network ¯ow modelling (Rives et al., 1992; Dershowitz, 1993). The prediction of
IBSD (a better term would be `assessment' since the true IBSD can rarely be
evaluated) has been one of the main pursuits of mining and quarrying operations
as it is believed to greatly in¯uence blasting performance generally (Da Gama,
1983; Cunningham, 1983; Wang et al., 1990, 1991; JKMRC, 1991), and rock
amour production for coastal defence in particular (CIRIA/CUR, 1991; Latham
et al., 1994). In blasting for highway cuttings (Wang et al., 1992; Matheson, 1995)
the IBSD is also important but, in all these applications, it remains notoriously
di½cult to assess. Certainly, the IBSD is becoming one of the main inputs to new
blast design models.

Recent research (Lu and Latham, 1996; Lu, 1997) has built on an approach
that Wang referred to as ``the equation method''. His approach provided the en-
gineer with a practical formula and a series of look-up tables (Wang et al., 1990;
Wang, 1992), an alternative to computer simulation requiring licensed software,
in order to ®nd appropriate coe½cients to make up the cumulative curve for the
in-situ block sizes. This paper outlines the average in-situ block volume and IBSD
assessment methods of other researchers, draws together several recent re®nements
in the use of Wang's equation method and discusses the strengths and weaknesses
of the various approaches to IBSD assessment.

2. Prediction of IBSD

2.1 Developments in IBSD Prediction

The earliest quantitative description to bear a relation to in-situ block sizes was the
Rock Quality Designation (RQD), the proportion of borehole core that consists
of 0.1 m or more of intact length of sound rock (Deere, 1964). Priest and Hudson
(1976) extended RQD to scanline survey data and proposed an analytical relation
between RQD and the discontinuity frequency from the scanline survey (Hudson
and Priest 1979). The RQD value obtained from a borehole or a scanline is in¯u-
enced by the measuring direction. To overcome this disadvantage, Kazi and Sen
(1985) suggested the use of the Volumetric Rock Quality Designation (V. RQD).
This parameter, which is similar to an average block volume, tells us little about
the proportions of very small or massive blocks and the distribution of block
volumes as a whole.

When a single representative measure or index of block size is all that is
required, such as for rock mass ratings, there have been a number of proposals in
addition to RQD. Franklin (1974) proposed a fracture spacing index If , to help
describe block sizes. If is the diameter of a ``typical block'', estimated by visually
selecting typical sizes of core or outcrop material and recording their average di-
mension. The ISRM (1978) suggested a Block Size Index Ib that is similar to If

and estimated by selecting by eye several typical block sizes and taking their av-
erage dimensions. Obviously, both If and Ib are semi-quantitative and have more
limited use in practice. It also suggested the Volumetric Discontinuity Count Jn,
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which is the sum of the number of discontinuities per meter for each discontinuity
set present.

Palmstrom (1985) suggested empirical equations to link Jn, RQD and linear
fracture frequency, and proposed a correlation between the in-situ block size and
Jn. This method could roughly estimate upper and lower ranges of block sizes. Sen
and Eissa (1992) derived analytical expressions and charts for di¨erent character-
istic shapes, such as bars, plates or prisms, relating Jn, RQD, and block volumes.
The block volume information of the rock mass was again given only in terms of
average block volume. To assess the entire in-situ block volume distribution has
been a more recent pursuit, bene®ting from computer technology and modelling
(for example, Da Gama, 1983; Hudson and Priest, 1979; Stewart, 1986; Xu and
Cojean, 1990; Kleine and Villaescusa, 1990). While these modelling developments
have greatly promoted our understanding of the IBSD of rock masses and advanced
the assessment of IBSD, the restricted in-house or commercial nature of such com-
puter modelling tools has discouraged many engineers from using IBSD informa-
tion, which is now widely recognised to be of relevance to rock engineering projects.

Before looking at the recent developments that follow on from Wang's work,
it is perhaps interesting to outline a general approach to deriving IBSD from
simulated discontinuity networks, which has been adopted by several other teams
of researchers. For example, Aler et al. (1996) have exploited the stochastic
modelling methods of Xu and Cojean, (1990). The number of joint sets, requiring
independent characterisation to create the network, is determined by analysing
the discontinuity ®eld data with both visual inspection of stereoplots and a dis-
continuity grouping program. For each set, statistical parameters that best describe
the distributions of spacing, semi-trace length, dip angle and dip direction are
considered. The objective is to obtain the optimum selection of sets and statistical
parameters to generate a realistic discontinuity network for a statistically homo-
geneous region of the site in question. The simulated rock mass is then made up
of intersecting discontinuities that are represented by ¯at discs, and their 3-D
characteristics are derived from ®tted distributions of the two-dimensional
measures of the various geometrical parameters. Aler et al. (1996) reported that
disc centers were generated with a uniform distribution, while size in 3-D was
estimated from the ®tted distribution of the semi-trace lengths observed in outcrop.
Orientation of discs was generated from normal distributions calculated from
observed dip and dip directions. Kolmogorov-Smirnov tests were then used to
evaluate the quality of ®t of di¨erent theoretical distribution parameters, particu-
larly in the characterisation of discontinuity spacings and semi-trace lengths. Once
the computer had simulated all the circular discs in space, the mutual intersections
were examined and parts of planes that did not isolate complete blocks were
eliminated. The computer program then calculated the block size distribution of
all the completely formed blocks. The physical resemblance of the simulated ge-
ometry to that of the actual rock mass is probably one of the main criteria for
assessing the degree of con®dence in the results produced. For many potential
users, the need for access to the simulation software remains a probable obstacle
for this type of simulation. The FRACMAN program (Dershowitz et al., 1993) has
a similar stochastic simulation capability designed originally for ¯ow modelling.
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2.2 Wang's Methods

The two techniques developed at QMWC by Wang and his co-workers (Wang
et al., 1990, 1991; Wang, 1992) have been applied widely and di¨er from the above
approach. The techniques use either orientation and location data from individual
discontinuities or, only location data of the discontinuities mapped by either
scanline or downhole CCTV techniques, combined with a knowledge of the main
discontinuity set orientations derived from any suitable survey method. Both of
them are incorporated in a computer program and these are called respectively the
Dissection Method and the Equation Method (Wang, 1992). However, of great
signi®cance, the equation method can also be handled by simple manual methods
and calculations.

Dissection Method

The Dissection Method uses a computer program to determine the exact IBSD
produced by intersecting discontinuities within a boundary block formed by six
persistent planes. The algorithm developing in this computer program was mainly
based on the block theory by Goodman and Shi (1985). The algorithm and the
associated program is brie¯y described below (see Wang et al., 1991 for details).
The data set required to run the program contains discontinuity orientation
parameters and intercepts with reference to an oriented scanline, all of which can
be provided from detailed scanline surveying. Six discontinuities are chosen to
form an executable six-sided block called the boundary block, for which the IBSD
is to be computed. This boundary block is ®rst dissected into two blocks of varying
shape by a discontinuity, which is read from the discontinuity data ®le. These two
are further dissected into three or four blocks by the next discontinuity. The dis-
section process is carried out until the last discontinuity in the working data ®le is
executed, yielding an intermediate ®le of co-ordinates of corners of all natural
blocks existing in the boundary block formed by the dissecting discontinuities. The
sizes of these blocks are given in terms of volume, maximum length, and nominal
diameter. Accordingly, the block size distribution is given. Block shape statistics
are also available and may be of particular interest to producers of dimension
stone. The geometrical pattern of discontinuities intersected with the boundary
block can be viewed in three dimensions from the computer program. Their exact
visual similarity with ®eld exposure can be striking when introducing successive
discontinuities deterministically, i.e. in their correct position relative to an origin in
the ®eld. An example of a 3-D view, created using the dissection method, is shown
in Fig. 2. The authors are now aware that similar software has been developed
elsewhere (e.g. MAKEBLK, see Maerz and Germain, 1996).

Equation Method

The Equation Method uses a set of empirical equations to estimate the IBSD. This
set of empirical equations relates the IBSD to the principal mean spacings and the
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mean orientations of the three principal sets of discontinuities, the latter being
determined from a weighted grouping algorithm designed to best characterise the
rock mass. Here, the principal mean spacing is the mean spacing in the direction
parallel to the pole of mean orientation of a discontinuity set, as shown in Fig 1.
The equations are obtained using the exact dissection method solutions described
above and were derived from calibrating the results of extensive computer runs,
which had di¨erent prede®ned mean spacings and spacing distributions. Each run
utilises di¨erent random sequences to create the required theoretical distributions,
and the results of each run provide the input data from which the best-®t equations
yield the calibrated equations of interest ± essentially a Monte Carlo simulation
process. Depending upon which speci®c spacing distribution is chosen, di¨erent
sets of empirical equations are o¨ered which summarise the best ®t for results from
all the separate runs. The equations were all given by the general equation below:

Vi;p � Ci;p � �Spm1 � Spm2 � Spm3�
cos y cos f cos a

; i � 10; 20; . . . ; 100; �1�

where, Vi;p and Ci;p �i � 10; 20; . . . 100� are respectively block sizes of percentage
passing and empirical coe½cients calibrated from the results of computer runs; i
are percentages; Spm1, Spm2 and Spm3 represent the three principal mean spacings;
and y, f and a are the angles between the mean orientations of the three disconti-
nuity sets. The Ci;p in Eq. (1) for discontinuity sets with negative exponential and
uniform distributions as well as with a certain lognormal distribution spacing law,
obtained by Wang (1992), are summarised in Table 1. The possible error range
introduced when using this method will be wider than implied by the con®dence

Fig. 1. Principal mean spacing: determined from the known spacing and orientation of the scanline and
the mean orientation of the discontinuity set. (D1, D2 and D3 are three adjacent discontinuities)
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limits given if the real data are only poorly ®tted by the assumed theoretical
distributions.

In the dissection method, it is crucial to select the six boundary planes carefully
in order to form an ``executable boundary block'' capable of yielding meaningful
and reliable block size distributions. In addition, the execution of the computer
programme is often very time-consuming owing to problems with the dissection
method in terms of user-friendliness and user access. The equation method evolved
from the dissection method as a simpler, time-saving method that has often been
used successfully by masters-level students without recourse to the in-house so-
phisticated simulation or dissection software. Thus, the equation method is pref-
erable to the dissection method in terms of cost-e¨ectiveness, accessibility and
user-friendliness.

2.3 Problems with the Equation Method

First, the estimation of IBSD of rock with discontinuities with a fractal spacing
distribution has not been achieved. A systematic study of research data reported
in the literature (Lu, 1997) has indicated that for spacings, while negative expo-
nential, lognormal and uniform distributions appear popular, the fractal spacing
distribution is also one encountered in rock masses (Gillespie et al., 1993; Boadu
and Long, 1994; Lu and Latham, 1996), which is being increasingly recognised in
geological engineering (Turcotte, 1992; Xie, 1993; Hobbs, 1993). However, there
have been no studies reporting the prediction of the IBSD of rock with dis-
continuities described by a fractal spacing distribution. The probability density
function for negative exponential spacing distributions is the well known simple
relation

f �x� � leÿlx; �2�

Table 1. Ci; p with 90% con®dence intervals for the relationships in
Eq. 1

Uniform Neg. exp. Log-nor
P (%) Ci; p Range Ci; p Range Ci; p Range

10 0.375 0.157 0.332 0.131 0.469 0.099
20 0.700 0.292 0.710 0.249 0.965 0.207
30 1.052 0.435 1.207 0.423 1.513 0.334
40 1.460 0.607 1.852 0.645 2.22 0.542
50 1.939 0.787 2.708 0.984 3.099 0.731
60 2.548 1.036 3.980 1.550 4.287 1.029
70 3.343 1.384 5.867 2.596 5.956 1.501
80 4.495 1.802 8.948 4.581 8.497 2.243
90 6.623 2.691 15.332 9.532 13.377 4.227

100 17.772 9.348 38.992 23.734 38.277 17.569

Range is the standard deviation multiplied by a constant of 1.64.
The 90% con®dence interval for Ci; p can be derived from Ci; p G
Range.
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where l is the mean frequency. For fractal spacings it can be written

f �x� � Axÿ�1�D�; �3�
where D is the fractal dimension and the spacings, x, have an upper and lower
cuto¨ at a and b such that

A � D=�aÿD ÿ bÿD�; 0 < D < 1: �4�
Second, with the possible exception of Aler et al. (1996), consideration of the

in¯uence of discontinuity persistence has not concentrated on the estimation of
IBSD, although signi®cant progress in characterising and representing the in¯u-
ence of discontinuity persistence on mechanical and hydraulic properties of rock
masses has been seen in recent years (Dershowitz and Herda, 1992; Einstein, 1993;
Mauldon, 1994). Apart from the stochastic simulations, such as those based on
intersecting discs of ®nite size, as described above, almost all reported methods to
estimate the IBSD, including the techniques developed by Wang, assume that all
discontinuities to be included in the analysis of a rock mass are persistent. A
conceptual device, which coded the degree of persistence in such a way that both
all and a subgroup of mapped discontinuities are analysed, enabled Wang et al.
(1991) to provide upper and lower bounds for the IBSD when using the dissection
method. Certainly, a rock mass with impersistent discontinuities is the normal,
indeed, the universal case. This suggests that it would be a useful re®nement if the
in¯uence of impersistence on Wang's equation method prediction of IBSD could
be incorporated.

Last, classical, statistical procedures for the identi®cation of the distribution
law for discontinuity spacing, the law being a necessary prerequisite for using the
equation method, leave room for improvement. Obtaining a functional relation-
ship, which closely describes or nearly ®ts the distribution of a ®eld measurement,
say discontinuity spacing, is helpful to understand the nature and the implications
of the variation of this parameter. Identi®cation of the best type of theoretical
spacing distribution to ®t the ®eld discontinuity data is just as important when
applying the equation method to predict IBSD as it is when selecting a theoretical
discontinuity network for stochastic simulation. This identi®cation might be made
using a conventional goodness-of-®t test, say the w2 or Kolmogorov-Smirnov test;
but the conventional statistical methods for evaluating goodness-of-®t and select-
ing a preferred ®t have shortcomings (Benjamin and Cornell, 1972). To overcome
these, the introduction of a new technique was considered to be a useful additional
tool.

3. Re®nements

3.1 Prediction of IBSD for Discontinuities with a Fractal Spacing Distribution

The IBSD of rock masses intersected by discontinuity sets with fractal spacing
distributions has been investigated by employing Wang's dissection method algo-
rithm and Monte Carlo calibration methods in the manner described above.

Assessment of In-situ Block Size Distributions of Rock Masses 35



Figure 2 is an example of one of the 50 or so simulations used to calibrate Eqs. (5)
and (6).

To make a valid simulation, appropriate cuto¨s to exclude invalid spacing
values have to be set for the fractal distribution. When taking ®eld measurements,
discontinuity spacing values below the resolution on a measuring tape will not be
recorded. As such, there exists a lower cuto¨. On other hand, both actual expo-
sures and discontinuities are of ®nite size and spacing. Setting aside mechanistic
reasons that may be the cause of a real scale dependence, the introduction of
cuto¨s acts like a long and short wavelength ®lter designed to remove sampling
bias at the extremes, so that any underlying scale independence can better show
itself. Discontinuity spacings in an actual engineering project will therefore have
an upper cuto¨. Thus, the spacing values measured will fall within a range de®ned
by the lower and upper cuto¨s. The lower cuto¨s are often set out around 0.01±
0.05 m (Priest and Hudson, 1976; Wang, 1992; Boadu and Long, 1994), and the
upper cuto¨s were usually reported below 10 m (Priest and Hudson, 1976; Wang,
1992; Gillespie et al., 1993). The lower and upper cuto¨s were therefore chosen to
be 0.05 m and 10 m in this simulation.

Two sets of empirical equations for predicting the IBSD of a rock mass with
discontinuities of fractal spacing distributions have been derived from recent
investigations (Lu and Latham, 1996; Lu, 1997) and are given by:

Vi;p � Ci;p � �D1 �D2 �D3�ÿbi; p ; �5�

Fig. 2. 3-D view of a simulated rock mass consisting of discontinuities with fractal spacing
distributions (D � 0:36, the rock mass volume V � 2163 m3)
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and

Vi;p � Ci;p � �Spm1 � Spm2 � Spm3�bi; p : �6�
Where Vi;p �i � 10; 20; . . . ; 100� are block volumes of percentage passing (in m3),
and, Ci;p and bi;p are empirical coe½cients, see Tables 2 and 3; i are percentages;
D1, D2 and D3 are the fractal dimensions of the three sets of discontinuity spacing
values, and Spm1, Spm2 and Spm3 are the principal mean spacing values of the three
sets of discontinuities.

Eqs. (5) and (6) provide us with a tool for predicting the IBSD of a rock mass
for which the three sets of discontinuities have fractal spacing distributions.

Whereas Eq. (1) is a linear relationship between the IBSD and the principal
mean spacings, Eq. (6) is non-linear. This indicates that the IBSDs of rock masses
with fractal spacing distributions appear di¨erent from those with negative expo-
nential, lognormal and uniform spacing distributions when identical mean spacings
are considered. This might be explained as follows: discontinuities with a fractal
spacing distribution tend to give a pattern in such a way that some discontinuities
are closely clustered while others are sparsely distributed (see Fig. 2); in contrast,
both the negative exponential and the uniform spacing distribution are fairly
evenly distributed. It is therefore important to distinguish whether the type of
spacing distribution of discontinuities is clearly of a fractal form in applications

Table 2. Coe½cients Ci; p and bi; p for the relationship between Vi; p and the
product of fractal dimensions of discontinuities with fractal distributions (Eq. 5)

Passing Coe½cient Standard 90% con®dence level
Ci; p error Lower Upper Range Errora (%)

10 0.0468 0.0033 0.0417 0.0526 0.0055 11.66
20 0.1440 0.0099 0.1284 0.1614 0.0165 11.47
30 0.3098 0.0218 0.2755 0.3485 0.0365 11.78
40 0.5642 0.046 0.4926 0.6462 0.0768 13.62
50 0.8453 0.066 0.7422 0.9628 0.1103 13.04
60 1.4447 0.1121 1.2695 1.6440 0.1872 12.96
70 2.5625 0.2379 2.1959 2.9904 0.3973 15.55
80 4.4490 0.5492 3.6254 5.4598 0.9172 20.62
90 9.2825 1.2878 7.3777 11.679 2.1507 23.17
100 31.3330 3.5021 26.025 37.722 5.8485 18.67

bi; p

10 0.5949 0.025 0.5529 0.6368 0.0418 7.03
20 0.5423 0.0246 0.5010 0.5836 0.0411 7.59
30 0.5012 0.0253 0.4588 0.5436 0.0422 8.42
40 0.4711 0.0292 0.4220 0.5201 0.0488 10.36
50 0.4712 0.0280 0.4242 0.5181 0.0467 9.92
60 0.4404 0.0278 0.3938 0.4871 0.0465 10.55
70 0.4199 0.0332 0.3642 0.4756 0.0555 13.22
80 0.4072 0.0441 0.3333 0.4811 0.0736 18.07
90 0.3609 0.0494 0.2780 0.4438 0.0825 22.87
100 0.3054 0.0399 0.2384 0.3724 0.0667 21.84

aError is the ratio of Range over the corresponding coe½cient expressed in %.
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for which the in-situ block size distribution is likely to be of major signi®cance.
This will certainly be the case in quarrying for armourstone, aggregates and
building stone, especially for operations of quarrying in which the proportion of
big blocks is deemed critical (see Fig. 4).

3.2 Consideration of the In¯uence of Impersistence

Persistence is a very important property but di½cult to characterise (ISRM, 1978).
There are two de®nitions of persistence in current usage. One is suggested by the
ISRM (1978), where the persistence is de®ned as the percentage of total area of a
plane through the rock mass, which is formed by discontinuities co-planar with this

reference plane. That is, the persistence Pl is a ratio de®ned by Pl �
�X

i

aDi

�
=AD

(where, AD is the area of a sampled region of the plane, i.e. the reference plane,
and aDi is the area of the ith discontinuity in AD). Another is suggested by Einstein
et al. (1983), where the persistence is de®ned as the limit of the above ratio as the
size of the reference plane, AD approaches in®nity. The persistence, according to
the ®rst de®nition, will be closely related to the value of AD. The greater AD, the
smaller will be the value of Pl . According to the second de®nition, the persistence
could approach zero as AD approaches in®nity. In other words, these two de®-
nitions would lead to a scale-dependent persistence value. The work on disconti-

Table 3. Coe½cients Ci; p and bi; p for the relationship of Vi; p and the product of
principal mean spacing values of discontinuities with fractal distribution (Eq. (6))

Passing Coe½cient Standard 90% con®dence level
Ci; p error Lower Upper Range Error (%)

10 0.4649 0.0077 0.4523 0.4779 0.0128 2.75
20 1.1685 0.0245 1.1283 1.2101 0.0409 3.50
30 2.1606 0.0448 2.0871 2.2367 0.0748 3.46
40 3.5458 0.0965 3.3882 3.7107 0.1612 4.55
50 5.3165 0.115 5.128 5.512 0.1920 3.61
60 8.0903 0.1855 7.7864 8.4061 0.3098 3.83
70 13.3920 0.5029 12.578 14.258 0.8398 6.27
80 22.6070 1.3562 20.455 24.985 2.2649 10.02
90 39.6660 3.0117 34.954 45.0130 5.0295 12.68

100 108.9700 5.7909 99.724 119.070 9.6708 8.88

bi; p

10 0.7882 0.0109 0.770 0.806 0.018 2.30
20 0.7200 0.014 0.697 0.743 0.023 3.21
30 0.6719 0.0137 0.649 0.695 0.0228 3.40
40 0.6433 0.0179 0.613 0.673 0.03 4.66
50 0.6440 0.014 0.620 0.668 0.024 3.70
60 0.6053 0.0151 0.580 0.631 0.0252 4.17
70 0.5874 0.0247 0.5459 0.629 0.0413 7.03
80 0.5900 0.0395 0.5237 0.656 0.0659 11.18
90 0.5335 0.0499 0.4497 0.617 0.083 15.63

100 0.4675 0.035 0.4088 0.526 0.058 12.50
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nuity persistence by Dershowitz and Herda (1992) and Mauldon (1994) focussed
on the description of discontinuity intensity and is helpful in understanding the
persistence related to scale and non-scale dependence. However, the work appears
not to address the issue of the in¯uence of impersistence on the prediction of
IBSD. Whether the assumption of all-persistent discontinuities (this will be re-
ferred to as the ``all-persistent discontinuities'' assumption) is good or not, in the
context of prediction of IBSD, it is critically dependent upon two factors: one is
the scale of the in-situ rock mass of interest, and another is the mean size of dis-
continuities. The greater the scale of the rock mass, the worse the approximation;
the larger the mean discontinuity size, the better the approximation (Fig. 3). The
assumption is probably acceptable for a small volume of a rock mass or for a rock
mass with discontinuities having a large mean discontinuity size (Fig. 3a), but with
the increase of the rock mass in question, the errors related to this assumption will
increase (Fig. 3b). As such, a factor to characterise these properties has been
introduced for the prediction of IBSD (Lu, 1997). The factor is referred to as the
``relative impersistence factor'', Fimp, as follows

Fimp �
SD

Sr
SD < Sr

1 SD VSr

8<: ; �7�

where SD is mean discontinuity size, which can be estimated using the techniques
developed by Lu (1997) as brie¯y shown below, and Sr represents the characteristic
size of the rock mass under consideration, say, the cube root of the volume of the
rock mass (see Fig. 2) of interest.

Fig. 3. Schematic illustration of the relative impersistence factor
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Provided that an estimation of mean discontinuity size can be made, it has been
shown that the in¯uence of impersistence on in-situ block size can be elucidated by
comparing the mean discontinuity size to the scale of the domain of in-situ rock
mass of interest (Lu, 1997).

Assuming that discontinuities are circular discs of negligible thickness and the
centers of discontinuities hold a three-dimensional Poison process, Warburton
(1980) has made a valuable derivation of the distribution of trace lengths formed
by where the intersections of parallel circular planar discs, which is given by

f �l� � 1

md

�y
l

lg�R� dR����������������
R2 ÿ l 2
p ; �8�

where l represents the trace length of a discontinuity, R is the diameter of the
discontinuity with the circular disc shape, md represents the mean diameter of
discontinuities, f �l � is the probability density distribution of the discontinuity trace
lengths, and g�R� represents the probability density distribution of the discon-
tinuity diameters.

Theoretically, the distribution of discontinuity diameter can be estimated for
any continuous form of g�R� by applying Warburton's derivation. However,
di½culties in both mathematics and practical sampling make it hardly possible
to determine g�R� and its control parameters directly. Therefore, alternative tech-
niques of determining the discontinuity diameter distribution and its governing
parameters (Warburton, 1980; Villaescusa and Brown, 1992) were sought. It was
found that there is a prerequisite that an analytical form of discontinuity diameter
distribution has to be set up in advance when utilising the techniques used by
Warburton and Villaescusa and Brown. Although it might be reasonable to as-
sume that the diameters of discontinuities would take a particular form, the im-
possibility of dismantling a rock mass and the di½culties raised in sampling have
so far made it impossible to prove the assumption.

By contrast, it is possible and easy to con®rm assumptions about the distribu-
tion forms of trace lengths produced by discontinuities. Consequently, imposing a
distribution form of trace lengths is more reasonable than doing so for discontinuity
diameters. An algorithm and the associated computer program, DIATRACE, for
determining the discontinuity diameter distribution, which is not based on the as-
sumption of the distribution of discontinuity diameters, but on that of trace
lengths, has been developed by Lu (1997). Note that Aler et al. (1996), in their
work on block size assessment, reported use of the simplifying assumption that the
diameter distribution is the same as the trace length distribution. Using the pro-
gram DIATRACE to relate discontinuity diameter distribution to the distribution
of measured trace lengths, one is able to estimate the mean diameter of a popula-
tion of discontinuities. This estimation is further facilitated by the developments of
techniques for the estimation of mean trace length of discontinuities with fractal
and lognormal (Lu, 1997) and with negative exponential distributions (Priest and
Hudson, 1981). The estimation of mean trace length can be obtained from a
simple counting survey of an exposure, with discontinuities censored at di¨erent
pre-de®ned levels. The method to estimate the discontinuity size is still subject to
the commonly applied constraint of circular disc discontinuities. Nevertheless, it
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provides a tool to estimate discontinuity size. This is of great signi®cance for con-
sidering the in¯uence of impersistent discontinuities on the prediction of IBSD.

Introducing the above relative impersistence factor Fimp, a prediction of IBSD,
which incorporates the in¯uence of impersistent discontinuities, can be made very
simply by extending the existing equation method as follows:

Vi;p � 1

�Fimp�q �Vi;p�0; �9�

in which �Vi;p�0 represents the prediction result of IBSD from the all-persistent
assumption, Vi;p is the corrected result, incorporating the in¯uence of impersistent
discontinuities on the result, and q is a constant less than 1. It was tentatively
suggested that it would take a value of between 1/5 and 1/2, which was later sup-
ported by a case study (Lu, 1997). It is also worth noting that the impersistence
factor can be applied with equal relevance and simplicity to the block size output
from the dissection method.

Now Eq. (1) for predicting IBSD of discontinuities can be updated to give

Vi;p � Ci;p

�Fimp�q
Spm1 � Spm2 � Spm3

cos y cos f cos a
; i � 10; 20; . . . ; 100 �10�

while Eqs. (5) and (6) for predicting IBSD of discontinuities with fractal spacing
distributions can be updated to give

Vi;p � Ci;p

�Fimp�q �D1 �D2 �D3�ÿbi; p �11�

Vi;p � Ci;p

�Fimp�q �Spm1 � Spm2 � Spm3�bi; p ; �12�

The above technique has been successfully applied to a highway cutting site in
which the impersistence factor was calculated from analysis of ®eld data (Lu,
1997).

3.3 Comparison of IBSD for Discontinuities with

Di¨erent Types of Spacing Distribution

Comparison of Eq. (1) and Eq. (6) indicates that the non-linear form is noted for
the fractal spacing distribution, whereas a linear form was found for the rock mass
with negative exponential, lognormal and uniform spacing distributions. Figure 4
gives a comparison of IBSD curves for the special case where the principal mean
spacing value of each discontinuity set has been given the same value of 1.0 m.
Clearly, there is a signi®cant di¨erence between the resulting IBSDs. The IBSD
of a rock mass with discontinuities that have a fractal spacing distribution is
much larger than that with the other three spacing distributions. The fractal IBSD
curve is less steep, giving blocks that are more widely distributed. That is, more
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small and more ``mammoth'' blocks will be produced from the rock mass with
discontinuities with fractal distributions. Among the four di¨erent spacing dis-
tributions, the IBSD intersected by discontinuities with a uniform spacing
distribution will form the lower boundary IBSD curve (see. Fig. 4).

In practice, the more typical situation is that between the various sets, a mix of
two or more kinds of theoretical distributions are needed to best describe the dis-
continuity spacings. In such cases, we can reasonably predict that the IBSD will
fall in the range formed by the uniform (lower boundary) IBSD curve and the
fractal (upper boundary) IBSD curve (see Fig. 4).

This is supported by a preliminary examination made in a highway cutting
case study, as shown in Fig. 5 (Lu, 1997). The discontinuity spacing data from
each of three sets, which characterise the rock mass at the ®eld site, was subject to
statistical analysis to determine which distribution law would give the best ®t to
the spacing data. It was typically found that more than one type of distribution
law was required to give the best ®t for all three sets of spacing data. In Fig. 5, the
dissection result using the raw scanline data is likely to be the most representative,
not only because the other results introduce theoretical spacing distributions, but
also because only one type of spacing distribution is imposed on all three sets of
spacing data. Further research is therefore needed to address how to weigh the
combined in¯uence when two or more kinds of discontinuity spacing distribution
laws are acting together in a rock mass. For example, Monte Carlo type proce-
dures, similar to those reported in Wang et al. (1990) and in Lu and Latham
(1996), could be used to include two or more di¨erent, discontinuity spacing
distributions.

Fig. 4. Comparison among IBSDs with 4 di¨erent spacing distributions (all the mean spacings
are 1.0 m)
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3.4 Goodness-of-Fit Using Grey Correlation Analysis

It is necessary, when using the equation method, to identify the spacing distribu-
tion law of discontinuities, and further con®dence is required in obtaining these.
The technique of Grey Correlation Analysis was introduced to help select a close
®tting distribution for discontinuity spacings (Lu, 1997). A Grey Correlation
Analysis is the analysis of correlation between various parameters in¯uencing a
system and the identi®cation of which parameter relationships will be dominant.
This is outlined as follows:

Let the main data set of interest be the parent array X0, and the in¯uencing data
sets be sub-arrays, Xi; i � 1; 2; . . . ; n, n is the number of in¯uencing data sets, then

X0 � fX0�1�;X0�2�; . . . ;X0�K�g;
Xi � fXi�1�;Xi�2�; . . . ;Xi�K�g:

�13�

The Correlation Coe½cient of sub-array Xi to the parent array X0 at time k,
ri�k�, is de®ned by the formula (Den, 1985) below:

ri�k� � dmin � hdmax

jx0�k� ÿ xi�k�j � hdmax
; �14�

where h is the recognition coe½cient of the range between 0 and 1, and usually
takes on the value of 0.5; dmin and dmax are given by

dmin � min
i

min
k
jx0�k� ÿ xi�k�j

� �
dmax � max

i
max

k
jx0�k� ÿ xi�k�j

� � �15�

Fig. 5. Comparison of IBSD predictions between the dissection and the equation methods at a highway
cutting ®eld site
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The above correlation coe½cient ri�k�, characterises the deviation degree be-
tween Xi and X0 at time k. Summarising the deviation degrees between Xi and X0

at all times, gives the correlation degree between Xi and X0 as

Ri � 1

K

XK

k�1
ri�k�: �16�

Ri in the above formula is referred to as the Correlation Measure (Den, 1985).
The coe½cient ri�k� and the correlation measure Ri satisfy the following relations:

0U ri�k�U 1 and 0URi U 1: �17�
The closer the relationship between Xi and X0, or the more similar Xi is to X0,

the greater will be the associated Grey correlation measure. Only when both Xi

and X0 are completely superimposed will the correlation measure be equal to 1.
The main application of the Grey Correlation Analysis relevant to this paper is

the provision of a comparative analysis between several proposed discontinuity
spacing distribution, resulting in the identi®cation of the best spacing distribution
law ®tting the measured discontinuity spacing data. In a simple clear-cut case, this
analysis may be made visually. Situations in the real world are often more com-
plicated. For example, when there are a large number of data points and the curve
shapes are similar in some intervals, but di¨erent in others, the quantitative Grey
Correlation Analysis can provide a useful statistical tool to obtain solutions to
such problems as selecting best-®t discontinuity spacing distribution.

Compared to classical regression, the Grey Correlation Analysis has the fol-
lowing characteristics: there is no need for a large population, or a lot of sample
data; sample data need not satisfy an explicit functional relation and calculation is
simple and convenient.

To select a preferable distribution of discontinuity spacing from among several
contenders, let the observed data of discontinuity spacings be represented by the
parent array X0 mentioned above, and let the values at corresponding observing
points for the ith contending distributions be represented by Xi. The Grey Corre-
lation Analysis can then compare and select a theoretical spacing distribution from
among several contending distributions. Figure 6 is an example of spacing data
from a highway cutting site that was analysed, using the Grey Correlation Analysis
(Lu, 1997). The ®tted fractal, negative exponential and Weibull distributions are
compared with the actual measurements in Fig. 6. Obviously, it is not easy to
visually isolate, from this ®gure, a preferred distribution among these three pro-
posed distributions. Applying the Grey Correlation Analysis to this case, the Grey
correlation measures of these three theoretical distributions, when correlated with
the observed spacing data, are 0.810 for the fractal distribution, 0.782 for the
Weibull distribution and 0.718 for the negative exponential distribution. The
fractal distribution appears to be the most correlated with the observed data. Using
the Kolmogorov-Smirnov test, both the fractal and Weibull distributions can be
accepted at the level of signi®cance of 0.15, while at this level the negative expo-
nential distribution should be rejected. Thus, the Grey Correlation Analysis has
helped us conclude that the fractal distribution is arguably the best choice for the
spacing distribution of this set of discontinuities.
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4. Discussion

This paper has focused on discontinuity pattern assessment with application to
IBSD prediction. Interest in IBSD is at the fringe of current work on discontinuity
pattern modelling which, judging from the literature, are primarily concerned with
¯ow studies and jointed rock stability studies (e.g. Dershowitz and Einstein, 1988;
Itasca, 1992). The UDEC programs (Itasca, 1992), originating from the discrete
element work of Cundall (e.g. Cundall and Strack, 1979), appear to provide the
main source of rock block generator. However, as far as the authors are aware, the
UDEC type block generators, though potentially suitable, have not been harnessed
to measure the average block volumes and the IBSD of rock masses. To model the
discontinuity network principally, so as to derive the IBSD and thereby provide
the necessary input to predict the fragmentation of a blast more accurately, has
been an aim of recent research (JKMRC, 1991; Wang et al., 1992; Lu and
Latham, 1996; Aler et al., 1996). There follows a brief examination of the tools
available to this group of blast fragmentation modellers, seeking estimation of the
IBSD:

It seems to the authors that the stochastic network pattern (e.g., Aler et al.,
1996) has the following features: any number of discontinuity sets with their
speci®c geometric distributions can be superimposed to create the network
of fractures and blocks for study, and the spacing and orientation distributions
of each individual joint set are separately accounted for. However, the visual rep-
resentation of the rock mass is a stochastic one so that joint locations bear no
spatial relation to a ®xed origin at a ®eld site, although the general pattern may
seem realistic. For blast modelling, this may be of little consequence. The accuracy
will be poor if the theoretical best-®ts cannot represent the measured spacing and

Fig. 6. Comparison between three proposed distributions and the measured distribution
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trace length distributions. Expertise and a license to use sophisticated simulation
software are required.

Alternatively, using the dissection method, the IBSD can be well determined
for a blocky rock mass with the advantage that the visual representation of
discontinuities bears the same positional relationships with respect to a chosen
reference origin as would the discontinuities at the ®eld site in question. The
simulation will appear to be more realistic for a rock mass with planar persistent
discontinuities. The drawbacks of the dissection method are that the in¯uence of
impersistence on IBSD is not satisfactorily included, and the implementation
usually needs experience and may give long run times. The data acquisition from
scanlines must be chosen optimally so as to best characterise the whole block
volume. In addition, the rock mass simulation software is of restricted access.

Lastly, the updated equation method with the impersistence correction as
presented in this paper is very simple to apply and there is no need for block
generation software. However, a preliminary analysis of the raw geometric data is
required. This preliminary analysis mainly involves selecting the best-®t laws of
discontinuity spacing distributions, which can now include fractal distributions,
and estimating the principal mean spacing. The Grey Correlation Analysis pre-
sented in this paper can help with the selection of the laws for discontinuity spacing
distributions. Many types of scanline and area mapping surveys can be used for
data acquisition.

However, questions with the updated equation method remain. Possible dif-
ferences in dispersion of discontinuity orientation and type of spacing distribution
within the three sets cannot be accounted for at present. Also, it is assumed that
three discontinuity sets can adequately characterise the rock mass geometry. This
approximation often holds in practice, and grouping techniques can be applied to
achieve the best three-set description. It has been suggested that the index q in
Eq. (9) take the value of 1/5±1/2. With IBSD results being sensitive to q, it is
suggested that further calibration of q is needed.

Most approaches to block creation tend to fall down in regard to structural
geological mechanisms. For example, it is the episodically evolving tectonic stress
®elds that create the networks of natural fractures and blocks in which conjugate
shear fractures and extension joint systems, including terminations of fractures
against other discontinuities, are commonplace. Stochastic models using data ide-
alised from scanlines are not usually suited to modelling such features. The blocky
rock mass generator of Heliot (1988) is one example where structural geological
principles have been introduced.

5. Conclusions

Both background to IBSD assessment and a discussion of IBSD and blocky rock
mass modelling have been presented. The very simple but relatively little known
methods of providing look-up tables for plotting IBSD have been further docu-
mented here. These methods have been re®ned in two important ways: by including
the fractal spacing distribution, which is an increasingly popular possible choice
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for the best-®t model; and by reporting the relative impersistence factor that
compensates for the assumption, used in the formula calibration, that all dis-
continuities persist. Of more general interest, a novel approach to selecting the
best-®t, when several theoretical discontinuity spacing distributions seem likely
contenders, has been introduced.
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