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Summary

The analysis of data collected on rock discontinuities often requires that the data be sepa-
rated into joint sets or groups. A statistical tool that facilitates the automatic identi®cation
of groups of clusters of observations in a data set is cluster analysis. The fuzzy K-means
cluster technique has been successfully applied to the analysis of joint survey data. As is
the case with all clustering algorithms, the results of an analysis performed with the fuzzy
K-means algorithm for discontinuity data are highly dependent on the distance metric
employed in the analysis. This paper explores the signi®cant issues surrounding the choice
and use of various distance measures for clustering joint survey data. It also proposes an
analogue of the Mahalanobis distance norm (used for data in Euclidean space) for clustering
spherical data. Sample applications showing the greater ¯exibility and power of the new
distance measure over the originally proposed distance metric for spherical data are given in
the paper.

1. Introduction

In the analysis of discontinuity data collected from joint surveys the rock me-
chanics expert seeks to classify the data according to similarities observed in
the recorded attributes or characteristics. Often there is little existing a priori in-
formation as to the number of fracture sets present in the data set, and also as to
how the discontinuities are distributed among the joint sets. It is therefore up to
the data analyst to discover the structure of the data (the interrelationships be-
tween the di¨erent objects or patterns in the data set) using exploratory tools of
data analysis. One such tool, which is capable of grouping data into classes without
a priori information on the classes, is cluster analysis.

Clustering, in the language of pattern recognition, is an unsupervised learning
procedure for classifying objects or patterns. Algorithms for performing cluster
analysis can be grouped into two broad categories ± hierarchical clustering
methods, and partitional clustering techniques. Hierarchical methods seek to
construct a hierarchy of the relationships between the pattern vectors in a data set.



The end result is a hierarchy of nested partitions, which can be pictorially viewed
as a tree. Partitional clustering methods on the other hand classify the pattern
vectors in a data set into a number of mutually exclusive categories.

Each of the two main categories of clustering techniques can be further broken
down into several sub-groups, but this paper shall focus on a particular class of
partitional clustering algorithms ± the class of fuzzy K-means algorithms. Fuzzy
K-means algorithms have been successfully implemented for solving problems in
several research ®elds including medical imaging, computer vision and market
segmentation. The authors of this paper proposed a variation of it for tackling the
exploratory analysis of joint survey data in (Hammah and Curran, 1998a).

Pattern vectors (observations or objects) that belong to the same cluster possess
similar attributes and therefore occupy a particular region of a pattern space. Be-
cause di¨erent clusters of vectors lie in di¨erent regions of the pattern space, the
distance between pattern vectors serves as a measure of association between
vectors. Clustering algorithms partition data into clusters based on these measures
of association or similarity between vectors in a data set. As a result one of the
major issues to consider in choosing of constructing a clustering algorithm is how
distances are going to be measured. This step is critical to the whole clustering
process because the output of a clustering algorithm will only be as meaningful as
the input distances and similarities (Everitt, 1980). It is of great importance,
therefore, to thoroughly explore all the issues surrounding the choice of one dis-
tance measure or the other.

The present paper shall cover the topics of pattern spaces in which the obser-
vations in a data set are believed to be embedded, namely, the de®nition and
di¨erent types of distance measures (metrics), the correlation between variables in
a data set and its e¨ect on clustering, and the geometric signi®cance of distance
metrics. Also a new distance measure for fuzzy K-means clustering for spherical
data shall be introduced.

2. Overview of Fuzzy K-means Clustering Algorithm for Discontinuity Data

The importance of cluster analysis to the delineation of discontinuity ( joint or
fracture) data into sets was recognized in the rock mechanics community several
years ago. It was acknowledged that the use of such a statistical technique would
introduce objectivity into discontinuity data analysis. One of the earliest clustering
tools for separating discontinuities into sets based on orientations was supplied
by Shanley and Mahtab (1976). Mahtab and Yegulalp (1982) subsequently made
improvements to the algorithm. This algorithm has been widely used in rock dis-
continuity analysis. One of its principal weaknesses, however, is that it cannot ac-
commodate non-orientation attributes of discontinuities in the delineation of sets.

Very recently Dershowitz et al. (1996) developed a stochastic algorithm for
clustering discontinuities. This new algorithm de®nes clusters as statistically ho-
mogeneous groups of data, and has the capability to include non-orientation dis-
continuity properties in the process of identifying sets. In the algorithm, probability
distributions are de®ned for each of the variables in the separate clusters. The

2 R. E. Hammah and J. H. Curran



parameters of these distributions are modi®ed iteratively until each set is statisti-
cally homogeneous. Individual observations are then assigned to sets based on
their probabilities of belonging to the sets.

The stochastic algorithm of Dershowitz et al. (1996) relies on the numerical
integration of all the probability distributions de®ned for the variables in the dif-
ferent sets. A more computationally attractive alternative is o¨ered by the fuzzy
K-means algorithm described in more detail below. All fuzzy cluster algorithms
rely on elements of the fuzzy set theory ®rst proposed by Zadeh (1965). In fuzzy
set theory an object can belong to more than one set, but with varying degrees of
membership to the sets. The degree of membership of an object to a set is based on
the certainty of the object belonging to the set. The greater the certainty of an
object belonging to a set, the closer is its membership degree to one. Fuzzy set
theory makes it possible for uncertainty to be accounted for in a natural and
realistic manner during data analysis (Bezdek, 1981). Using the idea of fuzzy sets,
Ruspini (1969) developed an algorithm for clustering data using an objective
function. Almost all subsequent fuzzy clustering methods developed can trace
their roots to Ruspini's technique (Pal and Bezdek, 1992).

Fuzzy K-means algorithms have seen substantial growth in popularity among
researchers in diverse ®elds, because of their versatility and ease of adaptation to
the needs of di¨erent research communities. Bezdek (1981) provides an excellent
treatise on the family of fuzzy K-means methods. Several of the classical works
that have helped drive the development of fuzzy clustering methods can be found
in the volume edited by Bezdek and Pal (1992).

The earliest work, known to the authors, on the application of fuzzy K-means
clustering to the analysis of joint data was by Harrison (1992). However, the
conventional fuzzy algorithm used by Harrison did not take into account the
speci®c nature of discontinuity data. As will be discussed later in this paper, one of
the fundamental problems of the conventional fuzzy K-means algorithm in its
application to discontinuity data analysis is the di½culty it encounters in dealing
with discontinuity orientations. In Hammah and Curran (1998a) modi®cations
were made to the fuzzy K-means algorithm that allowed it to overcome the
shortcomings. These modi®cations included a di¨erent distance norm for joint
orientations, and a novel approach for computing the centroids (means) of clusters
of orientation data.

One of the distinguishing features of discontinuity data is that part of the in-
formation is spherical data ( joint orientation). The measurement of distances be-
tween points on the surface of a unit sphere cannot be treated the same way as
points in Euclidean space. Another distinctive feature of joint data is the presence
of variables, which are of di¨erent kinds. For example, joint spacing is very dif-
ferent from joint orientation in that the former is measured in Euclidean space,
while the latter is spherical (or directional) data. Some of the data recorded on
joints are quantitative and others qualitative, and this feature further complicates
the picture. The use of an algorithm that is able to cope with the heterogeneous
nature of survey data is one of the attributes that sets apart this algorithm from
some of the previous tools for delineating fractures.

The fuzzy K-means algorithm partitions a data set of N objects or pattern
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vectors into K clusters or groups �K UN �. This partitioning is achieved by mini-
mizing an objective function.

Jm�U ;V� �
XN

j�1

XK

i�1
�uij�m d 2�Xj;Vi�; K UN; �1�

using an iterative procedure.
The quantity, d 2�X j ;V i�, is the distance measured from a pattern vector,

X j; � j � 1 . . . N�, to the prototype or centroid, V i, of the i-th cluster �i � 1 . . . K �.
The prototype of a cluster is de®ned as the geometric mean of the pattern vectors
belonging to that cluster. A geometrical representation of the cluster centroids and
distances from observations to centroids is given in Fig. 1. From the objective
function (Eq. 1) and the illustration in Fig. 1, it can be seen that the fuzzy K-
means algorithm identi®es clusters by looking for high-density regions in a pattern
space. In regions of high density, the distances between the centroid of a cluster
and observations belonging to the cluster are minimal.

For vectors in Rp space (P-dimensional Euclidean space), new cluster centroids
are computed using the formula:

V̂ i �

PN
j�1
�uij�mX j

PN
j�1
�uij�m

: �2�

Because spherical data has its speci®c nature, new prototypes for it cannot be
computed using formula (2) (see Hammah and Curran, 1998a). The ®rst step in

Fig. 1. Two-dimensional example illustrating the geometric meaning of cluster centroids and distances
of an observation from these centroids
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determining new prototypes for spherical data (orientation information) involves
the computation of a modi®ed orientation matrix for a cluster i (Hammah and
Curran, 1998a):

S �i �
1PN

j�1
�uij�m

XN

j�1
�uij�mxjxj

XN

j�1
�uij�mxj yj

XN

j�1
�uij�mxjzj

XN

j�1
�uij�mxj yj

XN

j�1
�uij�m yj yj

XN

j�1
�uij�m yjzj

XN

j�1
�uij�mxjzj

XN

j�1
�uij�m yjzj

XN

j�1
�uij�mzjzj

2666666666664

3777777777775
; �3�

where �xj; yj; zj� are the direction cosines of the vector X j.
The eigenanalysis of this matrix yields three eigenvalues ti1, ti2 and ti3 arranged

such that ti1 < ti2 < ti3, and three corresponding normalized eigenvectors ~xi1, ~xi2

and ~xi3. The eigenvector, ~xi3, corresponding to the largest eigenvalue, ti3, is the
desired updated prototype, V̂i, for the i-th cluster, i.e.

V̂ i �~xi3: �4�
It was proven and demonstrated in Hammah and Curran (1998a) that this
approach for computing prototypes correctly deals with clusters that contain an-
tipodal vectors (sets which wrap between upper and lower hemispheres), because it
always determines cluster centroids to lie within the acute angles between vectors.

The fuzzy K-means algorithm for joint delineation starts o¨ with K randomly
generated initial prototypes (Hammah and Curran, 1998a). The generation of the
K initial prototypes is such that no a priori information on cluster structure is
needed at all. The selection of initial prototypes is then followed by the computa-
tion of distances of the pattern vectors in the data set from the initial cluster
centroids.

Partitional clustering algorithms can be divided into two classes ± hard parti-
tional algorithms and soft partitional algorithms. A hard partitioning is one in
which observations are classi®ed as either belonging to or not belonging to a
cluster. In this case an observation has a 1 or 0 (``yes or no'') degree of member-
ship is a cluster ± it is either a member of that cluster or not. This scheme has little
ambiguity associated with it when the clusters in a data set are compact and well
separated. However, when the clusters overlap or are not so compact, some vectors
(at least) in one cluster bear some semblance to vectors in other clusters. Such
situations are quite common in data analysis, serving as an indication that degrees
of membership cannot always be so de®nitive and must therefore not be restricted
to values of either zero or one.

In soft clustering the membership degrees of pattern vectors are real number
values between 0 and 1. The sum of the degrees of membership of a vector to all K

clusters is always equal to 1. The family of fuzzy K-means clustering algorithms
comes under this class of clustering techniques. The degree of membership, uij ,
present in Eqs. (1) and (3), measures the likelihood of observation X j belonging to
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cluster i. It is a function of the computed distances of vector X j from all K cluster
prototypes and is de®ned as:

uij �
1

d 2�X j;V i�
� �1=�mÿ1�

XK

k�1

1

d 2�X j ;Vk�
� �1=�mÿ1� : �5�

The weighting exponent m is a real number greater than 1 and controls the
``fuzziness'' of the cluster memberships, uij 's. The closer m is to 1 the harder are
the membership values, i.e. the degrees of membership assume values close to
either 0 or 1. Larger values of m lead to a smoother gradation of the degrees of
membership.

After membership values have been calculated, new prototypes for each of the
clusters are determined using Eqs. (2) and (4) for the analysis of heterogeneous
data or Eq. (4) only for the analysis of purely spherical joint data. Distances from
the pattern vectors to the updated cluster centroids are again computed and
updated memberships, ûij , determined. If the absolute value of the smallest change
between the recalculated memberships and the previous memberships is less then
an established tolerance, i.e. if

max
ij
�juij ÿ ûijj� < e; �6�

then the iterations are terminated, else the procedure loops back to the step of
computing updated prototypes.

Based on the ®nal membership values vectors are assigned to respective clusters
or groups. An observation, X j , is assigned to the cluster i �i � 1 . . . K �, when its
membership degree to that particular cluster uIj , is greater than its membership
values to all other clusters. In case of ties, i.e. when the maximum membership
value of an observation occurs for two or more clusters, the observation is
assigned to the least-numbered cluster (Gustafson and Kessel, 1978). The sequence
of steps outlined above for the fuzzy K-means algorithm is illustrated with a ¯ow
chart in Fig. 2.

Because the fuzzy K-means algorithm will usually partition a data set into K

partitions, whether or not the data set actually contains K clusters, there is the
need to establish a criterion or some criteria for deciding when the true structure
has been recovered. (The true structure of a data set refers to its correct number of
clusters and correct membership of pattern vectors to their respective clusters.)
The area of cluster analysis that attempts to solve these problems is known as
cluster validity and the indices for discriminating between various partitions or
cluster results are known as validity or performance indices. The di¨erent cluster
validity indices for the fuzzy K-means algorithm for clustering joint survey data,
and their application to sample data sets, are not discussed in this paper. Detailed
discussions of cluster validity indices for the fuzzy K-means clustering of disconti-
nuity data can be found in (Hammah and Curran, 1998a; Hammah and Curran,
1998b).
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Fig. 2. Flow chart of the basic fuzzy K-means algorithm for clustering discontinuity orientations
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3. Distance Measure

It was mentioned earlier in this paper that vectors belonging to the same cluster lie
in a particular region of a pattern space. As result of this geometric property of
pattern vectors, clustering algorithms must have means of establishing associations
between vectors and various clusters. The association between vectors and clusters
can either be in the form of similarity measures, or dissimilarity measures (distance
metrics).

Similarity measures measure the relationship between two vectors or observa-
tions (both vectors are of P dimensions), based on the values of the P variables
common to both objects (Everitt, 1980). Similarity measures are large when the
two objects being compared share great commonality and small when they di¨er
signi®cantly from each other. Generally, they are real numbers between 0 (when
the objects being compared have no similarities at all) and 1 (when the objects
being compared share absolutely the same characteristics).

Distance measures vary inversely to similarity measures in magnitude. When
two objects share the same values of the P variables common to both, the distance
between them is 0. The more dissimilar the two observations are, the greater the
distance is between them. Distance metrics can be greater than 1 and must satisfy
some rigorous conditions (which are outlined in the next section). Because fuzzy
K-means clustering routines use distance measures, the rest of this paper shall
focus solely on them.

The distinctive features of joint survey data hint at the type of pattern space the
analyst of joint data is confronted with. Pattern spaces can be either homogeneous
or heterogeneous (Nadler and Smith, 1993). In homogeneous pattern spaces all
the P variates (or dimensions) of a vector are of the same nature. For example, in
a P-dimensional Euclidean space, all the axes have the same nature and therefore
the space is homogeneous. Another example of a homogeneous space is the surface
of a unit sphere (the space for spherical data). Spherical data or orientation infor-
mation is represented by the surface of a unit sphere in R3 space. Mathematically,
this space can be represented as:

W3 � fX A R3 : X 2
1 � X 2

2 � X 2
3 � 1g: �7�

The variables X1, X2, X3 are the direction cosines of vector X .
Heterogeneous pattern spaces arise when a vector possesses variables that lie

in two or more di¨erent homogeneous spaces. The space within which the analyst
of joint orientation data often has to work is heterogeneous. Part of the space
(the portion commonly analyzed on stereographic plots) is spherical, while the
other part is mostly Euclidean. Whenever qualitative data that is multivalued is
encountered in a data set, it can be treated as Euclidean. Those that are binary in
nature, ``yes or no'', ``present or absent'', may, however, be also present in joint
survey data and require di¨erent treatment. The treatment of such variables shall
not be considered in this paper. The heterogeneity of discontinuity data is one of
the primary reasons why few algorithms exist that are capable of incorporating all
recorded features of joints for their delineation into joint sets or clusters. Hetero-
geneous pattern spaces pose problems in cluster analysis mainly because of the
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di½culty of establishing an appropriate distance measure for measuring degrees of
association between pattern vectors lying in such spaces.

For both homogeneous and heterogeneous pattern spaces, the weighting of
variables is a key issue. Variable weighting refers to the means of increasing or
reducing the impact of a variable of attribute in cluster analysis by multiplying its
contribution to a distance metric with a weight. Weighting is an important element
of cluster analysis because of the di¨erent measurement scales of variables, and
the di¨erent degrees of information on cluster structure that variables, may pro-
vide. When a variable, for example, does not possess any information on the
cluster structure of a data set, it would be ideal to assign it a weight of zero.
However, since the purpose of this paper is to examine distance metrics and their
general e¨ects on cluster results, and to propose an elliptical distance norm for
spherical data, it shall not provide in-depth coverage on the topic of weighting. A
more comprehensive coverage of this topic as it relates to the cluster analysis of
discontinuities is provided in (Hammah and Curran, 1997).

The choice of distance measures must be commensurate with the pattern space
within which the clusters are believed to be embedded. Establishing which distance
measure to use is one of the most fundamental steps in designing or choosing a
clustering routine.

3.1 Properties of Distance Measures

For a distance function to be a valid measure or norm of distance between two
vectors in a pattern space, it must satisfy the following four axioms (Nadler and
Smith, 1993):

i) d�X ;Y �V 0 (distances must be non-negative)
ii) d�X ;Y � � 0 i¨1 Y � X (re¯exivity)
iii) d�X ;Y � � d�Y ;X � (symmetry)
iv) d�X ;Y �U d�X ;Z� � d�Y ;Z� (metric inequality or triangle inequality),

where X , Y , and Z are pattern vectors and d� ; � denotes a distance function.

3.2 Distance Metrics in Euclidean Space �R3�
For pattern vectors in R3 space the most commonly used distance measure is the
Euclidean norm:

d 2�X ;Y � � �X ÿ Y �T �X ÿ Y � � kX ÿ Yk2 �
XP

p�1
�Xp ÿ Yp�2; �8�

where Xp and Yp are the values of the p-th variable for the vectors X and Y .

1 i¨ is read as ``if and only if ''.
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The Euclidean distance measure is easy to use and implement, if the measure-
ment scale for the P variables involved is not of signi®cance (Everitt, 1980).
The Euclidean metric, however, can give very di¨erent results when the scale of
a variable is changed and must therefore be used with caution. A number of
researchers advocate the normalization of all variables in Euclidean space before
using them in a cluster analysis. However, careful consideration should be given
to the type of the normalization chosen. Some normalization schemes can worsen
cluster results by weakening di¨erences between clusters (Everitt, 1980).

To counter the problem of scaling when using the Euclidean distance measure,
a weighted Euclidean norm:

d 2�X ;Y � �
XP

p�1
wp�Xp ÿ Yp�2 �9�

can be used instead. In clustering algorithms, there are various ways of determining
the weighting coe½cients, wp, such as the extremal weighting method (Lumelsky,
1982), applied to the delineation of discontinuity data sets by Hammah and Curran
(1997).

Although the Euclidean distance metric enjoys the most popularity in cluster
analysis of data in RP space, there exist several other distance measures for this
pattern space. The usage of these metrics is dependent on the problem being
solved. One such distance measure is the city-block norm:

d�X ;Y �
XP

p�1
jXp ÿ Ypj: �10�

The city-block distance metric can, for example, be used for applications involving
the determination of distances traveled by vehicles within a city. Between any two
points in a city, the shortest distance a vehicle can travel is not the Euclidean
distance between the two points, but the distance traveled along city streets.

Both the Euclidean metric and the city-block distance measure are speci®c cases
of a class of distance measures known as Minkowski metrics. They are de®ned by
the general formula:

d r�X;Y �
XP

p�1
jXp ÿ Ypjr; r � 1; 2; . . . : �11�

In the context of cluster analysis, all the above discussed distance measures assume
that within clusters there is no correlation between the variables of pattern vectors.
When this assumption is violated clustering algorithms using these measures can
arrive at erroneous solutions. One of the key means of avoiding the problems
posed by correlated variables in cluster analysis is the use of distance metrics that
measure statistical relations. The Mahalanobis distance metric (Mahalanobis,
1936) falls into this category. It accounts for correlation between variables by
including the covariance matrix of a group of pattern vectors into the distance
metric, and is not a¨ected by scale changes. The Mahalanobis distance measure
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between two points in a data set is computed using the formula:

d 2�X ;Y � � �X ÿ Y �T Cÿ1�X ÿ Y �; �12�
where C is the covariance matrix of all the observations in the data set.

Its de®nition originates from the multivariate normal probability distribution
function:

f �X � � 1

�2p�P=2jC j1=2
exp ÿ 1

2
�X ÿ X �T Cÿ1�X ÿ X �

� �
; �13�

Where X is the mean of the distribution.
The covariance matrix of a group of N vectors is computed using the formula:

C �
XN

j�1
�X j ÿ X ��X j ÿ X �T : �14�

When the covariance matrix is equivalent to the identity matrix I , i.e. when

C � I �15�
the Mahalanobis distance metric becomes equivalent to the Euclidean distance
norm. The weighted Euclidean norm is also a particular case of the Mahalanobis
distance, when the covariance matrix is a diagonal matrix. The covariance matrix
is diagonal when variables are not correlated. In that case the weights of the
weighted Euclidean distance are just the inverses of the variances of the variables
of the P-dimensional pattern vectors.

For the fuzzy K-means algorithm a modi®cation of the Mahalanobis norm
that makes local variations of the correlation between the variables of vectors in a
cluster possible is given by the formula:

d 2�X j;V i� � jF ij1=P�X j ÿ V i�Fÿ1i �X j ÿ V i�T ; �16�
where F i is the covariance matrix of the i-th cluster. This metric is commonly
known as the scaled Mahalanobis distance (Krishnapuram and Keller, 1993). The
matrix F i is called the fuzzy covariance matrix (Gustafson and Kessel, 1978) and
is de®ned as:

F i �

PN
j�1

um
ij �X j ÿ V i��X j ÿ V i�T

PN
j�1

um
ij

: �17�

3.3 Distances Measured Between Points on a Unit Sphere

In the space de®ned as the surface of a unit sphere in R3, the use of the Euclidean
norm for measuring distances would not be natural. As an example let us look at
the case of three discontinuities with orientations 84/000, 86/000 and 88/180
(given in the dip/dip direction convention). Expressed in direction cosines (it is
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assumed that all the poles are being plotted in the upper hemisphere), the poles of
the three discontinuities have the following coordinates: (ÿ0:99452; 0:0; 0:104528),
(ÿ0:99756; 0:0; 0:069756), and (0.999391, 0.0, 0.034899), respectively.When plotted
in the x-z plane, it can be seen that the second of these three unit vectors is the
bisector of the acute angle between the other two, i.e. the second orientation is the
mean of the ®rst and third orientations. As such the distances measured from the
second pole to the other two should be the same. If the square of the distance of
the second vector from the ®rst vector is measured using the Euclidean norm the
answer obtained is 0.0012183. The squared distance of the third vector from the
second using the same norm is 3.98903! The only way of avoiding absurd results
would be to reverse the sign of the third vector and then use these new coordinates
to determine its squared distance from vector 2. Thus the square of the Euclidean
metric can be used for such data only by choosing distances between two vectors
as the minimum of these two values:

a) the square of the magnitude of the sum of the vectors, and
b) the square of the magnitude of the di¨erence between the two vectors.

A more natural metric for the vectors should involve the angles between the
vectors. An appropriate metric for W3 is the square of the sine of the angle between
two vectors (the cosine is a similarity measure (Anderberg, 1973)) and is written
as:

d 2�X ;Y � � 1ÿ �X � Y �2; �18�
where X � Y is the dot product of the two vectors (the cosine of the angle between
the vectors). This distance measure (which shall be called the sine-squared measure
from this point forth) satis®es all four conditions demanded of a distance metric.
When it is used in the example given above the answer obtained for both distances
is 0.001218. This does not require the reversal of signs in order to arrive at the
right answers. The sine-squared metric is ideal for clustering orientations since the
angle between two orientations never exceeds 90�. This is because orientations are
actually axial data or undirected lines in space (Fisher, Lewis and Embleton,
1987), and so their measure of closeness is the acute angle between them.

The metric supplied by Eq. (18) makes it possible for the fuzzy K-means al-
gorithm for discontinuity data to correctly delineate joint sets that wrap between
hemispheres. The example of the three orientations examined above is a simple
instance of this ability of the algorithm. More detailed cases on the correct
handling of wrapped discontinuity sets be the algorithm can be found in (Hammah
and Curran, 1998a).

The sine-squared measure enjoys additional advantages over the Euclidean
metric in the clustering of orientations. It forms the fundamental reason why the
method of computing the centroids of orientation clusters through the eigenanal-
ysis of the orientation matrix, unambiguously determines means to lie within
the acute-angled cone de®ned by the vectors of a cluster (Hammah and Curran,
1997a). In addition, this metric makes it possible to de®ne validity or performance
measures appropriate for determining the optimality (correctness) of cluster par-
titions (Hammah and Curran, 1998a).
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One major di¨erence between the sine-squared measure of distance in W3 and
the metrics used in Euclidean space is that the sine-squared measure has an upper
bound of 1. The constraint in the magnitude of this measure can result in
signi®cant di¨erences in scale, and in some cases the distances measured on a unit
sphere can be overshadowed in a cluster analysis of discontinuities by the
Euclidean distances. For example, in the cluster analysis of a discontinuity data
set involving orientations and spacing of the order of tens of metres, the contri-
bution of orientation to overall distances computed between observations will be
very small compared to that of spacing. Subsequently, the impact of the orienta-
tions of discontinuities on cluster results would be much minimized. This problem
would be worsened if the spacing were to be measured in centimetres instead of
metres. It is for these reasons that it sometimes becomes wiser to standardize
(normalize) Euclidean variables before entering them into a cluster analysis. One
other way of reducing the impact of this variable scale or range would be to apply
di¨erent weights to the di¨erent variables in an analysis. The role of variable
weighting in the clustering of discontinuity data is covered in (Hammah and
Curran, 1997).

4. Geometric Signi®cance of Distance Measures

Every distance measure induces a topology on the pattern space in which it is
employed (Bezdek, 1981). A distance measure de®nes a ``unit ball'' of a prescribed
geometry or shape in the space in which it is de®ned. This phenomenon sig-
ni®cantly contributes to the observation made by Everitt (1980) that the output of
a clustering will only be as meaningful as the input distance metric.

The Euclidean metric describes hyperspheres in P-dimensional pattern space.
In Fig. 3a the contours of equal distance (or constant probability) from a cluster
centroid described by the Euclidean metric in two-dimensional space are shown
(Bow, 1992). These contours take the shape of concentric circles. For three-
dimensional Euclidean data, contour pro®les of distance are spherical surfaces.
This indicates that distance metrics are associated with geometric shapes in space,
and therefore control the shapes of clusters that an algorithm can identify.

The Euclidean distance measure, therefore, should be used in cases when the
clusters embedded in the pattern space are expected or suspected to be hyper-
spheres. Statistically, this would be equivalent to searching for clusters of data in
pattern spaces in which the variables are uncorrelated and have equal variances.

As noted earlier on, the weighted Euclidean distance norm is equivalent to the
Mahalanobis distance with a diagonal covariance matrix. This measure describes
hyper-ellipsoids in P-dimensional space. The principal axes of these hyper-
ellipsoids are parallel to the axes of the space in which variables are measured. Fig.
3b is an example of two-dimensional ellipsoids (ellipses) de®ned by this distance
measure in two-dimensional space (Bow, 1992). The major and minor principal
axes of the ellipses shown on the ®gure are parallel to the variable axes x1 and x2.
The weighted Euclidean metric should be used for clustering data for which the
variables involved are uncorrelated, but possess di¨erent variances.
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The unit geometric shapes de®ned by the Mahalanobis distance with a fully
populated covariance matrix are also hyperellipsoids, but the principal axes of
these are not aligned with the axes of the space. It is a more general distance
metric for Euclidean space. Shown is Fig. 3c are the contours described by
the Mahalanobis distance with a fully populated covariance matrix for two-
dimensional Euclidean space (Bow, 1992).

From the above discussions, it can be seen that distance metrics control the
shape of the clusters that can be identi®ed by a cluster algorithm. An algorithm
founded on the Euclidean distance norm, for example, could experience di½culties
in identifying clusters in a data set that were elliptically shaped, with principal axes

a b

c

Fig. 3a±c. Contours of constant probability for three di¨erent cluster shapes in R2 pattern space.
a Cluster shape when covariance matrix, C , is equal to the identity matrix, I . b Cluster shape when
covariance matrix, C , is diagonal, and var�x2� > var�x1�. c Cluster shape when covariance matrix, C , is

fully populated
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not parallel to the axes of the measurement space of the variables, i.e. clusters of
the type shown in Fig. 3c.

The fuzzy clustering algorithm proposed by Gustafson and Kessel (1978)
employs the scaled Mahalanobis distance to account for di¨erences in the shapes
of the clusters in an RP pattern space. The fuzzy covariance matrix allows for these
local di¨erences to be accounted for during clustering. Bezdek (1981) observed
after running this algorithm on a sample data set that fuzzy clustering with this
distance norm yields results consistent with theoretical predictions.

Topology of Sine-Squared Distance Measure on the Unit Sphere

The distance measure (Eq. 18) for spherical data proposed by the author (Ham-
mah and Curran, 1998a) describes spherical contours of constant probability on a
unit sphere (the next section explains why this is so). The sine-squared measure
works well for circular distributions on a sphere (e.g. Fisher distributed joints). It
performs well even when the clusters to be recovered have elliptical shapes, for
which corresponding principal axes are approximately parallel. (In such cases, the
major principal axes of the clusters are sub-parallel, i.e. are close to being parallel.
This automatically implies that the minor principal axes are likewise subparallel.)
However, in cases where elliptical distributions of joints are unfavorably oriented
with respect to each other, it would prove to be inadequate. Fig. 4 is a stereo-
graphic plot2 of two elliptically shaped (approximately) distributions, each con-
sisting of 200 poles, at right angles to each other (the data are simulated). Were the

a b

Fig. 4a,b. Stereographic plots of 400 poles in a simulated data set of two approximately elliptical clus-
ters of joints at right angles to each other. a Pole plot of the joints in the data set. b Contour plot of

the data

2 All stereographic plots shown in the paper were produced using DIPS, a software package for the
interactive analysis of orientation data, developed by the Rock Engineering Group of the University of
Toronto (Diederichs and Hoek, 1996).
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two distributions to be parallel to each other, the algorithm would place the deci-
sion boundary midway between the two clusters and thus would assign poles cor-
rectly. However, under the current con®guration of the clusters, the sine squared
distance measure would encounter some problems in establishing the correct de-
cision boundary. Looking at the pole marked with an `X' in Fig. 4(b), it can be
seen on the contour pro®le that it has a greater likelihood of belonging to cluster 2
than to cluster 1. However, if the square of the sine of the angle between that pole
and the cluster centroids is used as the distance measure, the point would be nearer
to the prototype of cluster 1 than to that of cluster 2. Therefore that pole would be
assigned to cluster 1 instead of the cluster 2.

The results of the fuzzy K-means algorithm run on the data set with the sine-
squared measure con®rm the theoretical predictions. The cluster partitions
identi®ed by the algorithm can be seen in Figs 5a and 5b. 29 poles, which belong
to cluster 2, are incorrectly assigned to cluster 1, because those points were deemed
to be closer to the centroid of cluster 1 than to that of cluster 2. This happened
because the distance metric, in its `ignorance', failed to recognize that distances
were not only dependent on the angle between vectors, but also depended on the
shapes of the clusters. These incorrectly assigned points show up on the contour
plot of cluster 1 as the circular bulge, on the left side of the cluster (Fig. 5a).

5. Elliptical Distribution for Spherical Data

The most widely encountered statistical model for spherical data is the Fisher
distribution:

f �X � � c�k� exp�X �~l�; �19�

where c�k� is the normalization constant and is equal to

a b

Fig. 5a,b. Results of fuzzy K-means clustering using the sine-squared distance metric. a Contour plot
of poles assigned to cluster 1. b Contour plot of poles assigned to cluster 2
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c�k� � k

2p�exp�k� ÿ exp�ÿk�� �
k

4p sinh�k� : �20�

The Fisher distribution is a two parameter model3 (the parameters are k and l)
and is the spherical analogue of the bivariate normal distribution with equal vari-
ances. The contours of constant probability described by the Fisher distribution
are circular in shape. Note that the quantity X �~l is the cosine of the angle be-
tween a vector X and the mean of the distribution, ~l, and is the same as the dot
product term found in the sine-squared distance measure.

The spherical analogue of the general bivariate normal distribution is the Kent
distribution (Kent, 1982):

f �X � � c�k; b� expfk�X �~x3� � b��X �~x2�2 ÿ �X �~x1�2�g: �21�
The contours described by the Kent distribution are near ellipses close to the mean
of the distribution, but are generally oval in shape. It is a ®ve parameter model
with the parameters being two shape parameters k and b, and the triple of vectors
~x1, ~x2, and ~x3. ~x3 is the mean of the probability distribution. In the plane perpen-
dicular to ~x3, the contour pro®les of the distribution are oval in shape. ~x2 and ~x1

are the major and minor principal axes of the distribution pro®le, respectively. The
density of the distribution pro®le is highest along the major principal axis G~x2 and
least along the minor axis G~x1 (Fisher, Lewis and Embleton, 1987). The Kent
distribution has rotational asymmetry about the mean and is consequently more
¯exible than the Fisher distribution (Fisher, Lewis and Embleton, 1987). For a
speci®ed cluster i of elliptical shape, the geometric representation of its three
eigenvectors relative to the position of the cluster on a unit sphere is shown on
Fig. 6. Contours of equal probability of the Kent distribution representing the
cluster, rather than the individual points in the cluster, are drawn on Fig. 6 to
help arrive at a better appreciation of the shape of the cluster, and the geometric
elements of the distribution.

The shape parameter k (also known as the concentration parameter) controls
the concentraion of the poles about the mean vector. The larger the value of k the
less is the scatter of the distribution towards the mean, ~x3. b is a measure of the
ratio of the density along the major principal axis to the density alony the minor
principal axis. The greater the value of b the greater is the departure of the distri-
bution pro®le from circular symmetry. b is thus called the `ovalness parameter'.
The Fisher distribution is a limiting case of the Kent distribution when b is zero.

The Kent distribution has two main forms ± a unimodal form and a bimodal
form (Kent, 1982). These forms are determined by the ration of k to b. The
distribution is unimodal when k=b V 2, and bimodal when k=b < 2. It is the
unimodal form, which holds great interest for us (primarily because it is for this
form that the Kent distribution correctly behaves as the spherical analogue of the
bivariate normal distribution (Kent, 1982)). The normalizing constant c�k; b� is

3 The original formulation of the Fisher distribution has three parameters k; a and b. The colatitude a
and longitude b of the mean orientation of the distribution, together, are equivalent to the vector of
direction cosines, l, in the two parameter formulation of the distribution (Fisher et al. 1987).
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calculated for the unimodal form of the Kent distribution from the formula:

c�k; b� � 1

�
�2p�3=2kÿ1=2

Xy
r�0

�2r�!
r!r!

b

k

� �2r

I2r�1=2�k�; �22�

where I2r�1=2�k� are modi®ed Bessel functions.
The maximum value of the Kent distribution occurs at the mean direction

of the distribution. A vector located at the mean would be orthogonal to the
principal axes ~x2 and ~x1 thus eliminating the term b��X �~x2�2 ÿ �X �~x1�2 � at the
mean. A method for estimating the parameters of the unimodal Kent didstribu-
tion, outlined in (Kent, 1982), is provided in the appendix of this paper.

6. Spherical Analogue of Mahalanobis Distance

Just as the exponential power term of the multivariate normal distribution forms
the basis of the Mahalanobis distance measure, the corresponding term of the
Kent distribution

k�X �~x3� � b�X �~x2�2 ÿ �X �~x1�2 �
can be used to de®ne a new distance metric for spherical data. The proposed
distance measure for the fuzzy K-means clustering of spherical data has the de®-
nition:

d 2�X j;~xi3� � 1ÿ fki�X �~xi3� � bi��X �~xi2�2 ÿ �X �~xi1�2 �g2
k2

i

: �23�

Fig. 6. Position of the eigenvectors of a cluster orientation matrix, relative to the distribution of the
points (discontinuity poles) in the cluster
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The reason for normalizing the second term in Eq. (23) by dividing it with k2
i is

to ensure that distances are always positive (from Eq. (21) it can be noted that
the maximum value of the exponential term in the unimodal Kent distribution is
k). When bi � 0 the new distance metric reduces to the sine-squared distance
measure.

This new metric has approximate ellipses as its basic shape and is thus more
general than the sine-squared distance norm. It uses estimated values of the con-
centration parameter ki and `ovalness' parameter bi of the local Kent distributions,
describing the clusters present in a spherical (directional) data set, to calculate
distances.

The procedure for estimating the local parameters of the clusters follows the
conceptual model originally proposed by Kent (see Appendix). To enable the in-
corporation of the elliptical distance measure into fuzzy K-means algorighm,
the model parameters are estimated from the eigenanalysis of the modi®ed orien-
tation matrices for the clusters in a data set. It was mentioned earlier that the
eigenanalysis of a cluster orientation matrix S �i produces three orthogonal vectors.
The position of the eigenvectors relative to the cluster was illustrated in Fig. 6.

Watson (1966) furnished the geometric interpretation of the eigenvectors of the
orientation matirx of a unitary cluster (Eq. (A1) in the Appendix). For a data set
consisting of a singled cluster, all membership values, uij , in the fuzzy clustering
framework are equal to 1.) The eigenvector ~x3, corresponding to the largest
eigenvalue of the orientation matrix t3 of such a cluster of points, is the mean of
the cluster. The other two eigenvectors,~x2 and~x1, indicate, respectively, the major
and minor principal axes of the elliptical contours of the cluster. Thus the three
vectors obtained from the eigenanalysis of an orientation matrix are equivalent
to the triple of vectors present in the Kent distribution. Following this result, the
eigenvectors of the modi®ed orientation matrix, S �i , of a cluster i, can be inter-
preted as the approximations of the axes of the Kent distribution describing the
cluster (Hammah and Curran, 1998a).

Besides developing the Kent distribution, Kent (1982) also provided a method
for estimating the shape parameters of the distribution from a data sample, drawn
from the distribution. This estimation procedure is provided in the Appendix.
In this process, an intermediate value, Q (Eq. (A11) of the Appendix), is cal-
culated and used in evaluating the parameters k and b of the Kent distribution.
This value Q is very closely approximated by the quantity, Q 0, computed from the
formula

Q 0 � t2 ÿ t1: �24�

Therefore, in estimating the local parameters ki and bi of Kent distributions for
the clusters in a data set, the Q 0i s computed from the above formula using local
eigenvalues ti1 and ti2, can be used in place of the values of Q. The steps needed
to calculate the parameters of local Kent distributions in the cluster analysis of
discontinuity orientations are outlined next.

For a cluster i of orientations, estimation of shape parameters is performed as
follows:
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i) Find the mean resultant length, Ri, of the cluster using the formula

Ri � �
�������������������������������
R2

ix � R2
iy � R2

iz

q
�
�XN

j�1
�uij�m; �25�

where

Rix �
XN

j�1
�uij�mxj; Riy �

XN

j�1
�uij�m yj; and Riz �

XN

j�1
�uij�mzj : �26�

ii) Determine the value Q 0i for the cluster from the Eq. (24).
iii) The shape parameters ki and bi of the cluster are subsequently determined

from the formulae:

k̂i � �2ÿ 2Ri ÿQ 0i �ÿ1 � �2ÿ 2Ri �Q 0i �ÿ1; and �27�
b̂i � 1

2
f�2ÿ 2Ri ÿQ 0i �ÿ1 ÿ �2ÿ 2Ri �Q 0i �ÿ1g: �28�

The elliptical distance metric (Eq. (23)), founded on the Kent distribution, can be
incorporated into the fuzzy K-means algorithm of Hammah and Curran (1998a)
in a straightforward manner. From the ¯ow chart of the algorithm in Fig. 2, it
can be seen that the only time distances are computed before the calculation of
cluster centroids is at the beginning of the algorithm. Thereafter, they are always
calculated after new centroids for clusters have been computed. Because the
eigenanalysis used in determining new cluster prototypes yields the principal
directions of the local Kent distributions for clusters, it is not necessary to repeat it
during the subsequent computation of distances.

After starting the fuzzy K-means algorithm with the generation of random
cluster centroids, distances are ®rst calculated using the sine-squared measure,
since at this stage no eigenvalues and eigenvectors exist for the computation of
parameters for the elliptical metric (Fig. 2). All other calculations for distance use
the results of the eigenanalysis of the orientation matrix, and the above-outlined
steps for estimating the parameters of the Kent distribution of a cluster in the
elliptical metric.

It is important to note at this point that the algorithm does not require any
prior information on the parameters of the Kent distributions for the clusters in a
data set. As can be deduced from the discussions above on the inclusion of the
elliptical metric into the fuzzy K-means algorithm, this new variation of the
method estimates all the necessary distance parameters entirely by itself in the
course of iterations.

The fuzzy K-means cluster algorithm for discontinuity data, in addition to the
orientations of discontinuities, can include discontinuity properties such as spacing
in the delineation of joint sets. This is accomplished by computing distances be-
tween observations and cluster prototypes as sums of two components ± a spheri-
cal component (contribution of orientation to distance) calculated from either Eq.
(18) or (23), and a Euclidean component (contribution of additional variables)
determined from equations such as (8). An example of the analysis of a data set
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involving orientations and an additional discontinuity characteristic can be found
in (Hammah and Curran, 1998a). In the current paper, however, because the pri-
mary focus is on gaining an understanding of the general importance of distance
metrics to cluster results, the speci®cs as related to spherical data, and the deriva-
tion of an elliptical metric for spherical data, such examples will not be discussed.

7. Examples

Example 1: The sample data set analyzed previously with the sine-squared distance
measure was reanalyzed in this example, but this time using the elliptical distance
metric (Eq. (36)) instead. The algorithm was initialized with two unit vectors,
chosen randomly from space of a unit sphere. No information, whatsoever, on the
principal axes of the ellipses of the clusters was provided to the algorithm.

With the new distance metric, only six points belonging to cluster 2 were
misclassi®ed by the fuzzy K-means algorithm as coming from cluster 1. Figure 7
shows stereographic plots of these results. The circular bulge to the left of the
resulting cluster 1 that was visible (see Fig. 5a), when the sine-squared distance
measure was used, no longer exists on the plot of the new cluster 1 (Fig. 7a). For
this particular example, the six errors in classi®cation are not principally the
shortcoming of the algorithm, but can be attributed to the fact that in the gener-
ation of the two clusters, a slight overlap of the clusters resulted. The wrong as-
signment of the points in the overlap region would have been avoided only if ad-
ditional information had been supplied as to how the clusters di¨ered in that
region.

The values of the local parameters determined at the end of the run corre-
sponded to the expected answers. The principal directions for both clusters were
correctly computed.

a b

Fig. 7a,b. Results of fuzzy K-means clustering with the elliptical distance measure for spherical data.
a Contour plot of poles assigned to cluster 1. b Contour plot of poles assigned to cluster 2
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Example 2: The e¨ect of the incorporating the elliptical distance measure (36)
into the fuzzy K-means algorithm was studied on a second simulated data set of
400 poles the stereographic plot of which is shown in Fig. 8. The centers of the
two elliptical clusters, at right angles to each other, are exactly the same. This
con®guration of the two clusters implies that for the algorithm to correctly identify
the clusters it must use shape information to discriminate between the two.

First the algorithm was run on the data set using the sine-squared distance
measure. Predictably, it was unable to correctly recover the structure of the data
set converging instead on the solution shown in Fig. 9 (note that the algorithm,

Fig. 8a,b. Plot on stereogram of 400 joints in a simulated data set (data set 2) of two approximately
elliptical clusters with same centroid, but perpendicular principal axes. a Pole plot of the data.

b Contour plot of the data

a b

a b

Fig. 9a,b. Structure of data set 2 recovered by fuzzy K-means algorithm with sine square metric as
distance norm. a Contour plot of poles in cluster 1. b Contour plot of poles in cluster 2
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based on the initial seed points, could have arrived at a partition symmetric to the
one shown in the ®gure). The resulting clustering is incorrect, because the distance
metric was fundamentally wrong due to its inability to account for cluster shape,
or estimate distances in a probabilistic sense. (It must be noted from the discus-
sions on the Mahalanobis distance metric and the elliptical metric for spherical
data that the shape parameters in distance metrics allow them to compute dis-
tances as probabilistic measures.)

The second run of the algorithm had the elliptical distance in lieu of the sine-
squared distance measure. This time the basic form of the resulting assignments of
the poles to the clusters is correct (Fig. 10). Note that in the region where the two
clusters overlap, the assignment of the poles does not conform to the original
clusters. This occurred only because a simple rule, that a point belonged to a
cluster if its membership value exceeded 50%, was used in assigning the observa-
tions to the clusters. With this simple rule, unambiguous assignment of the points
in the overlap region would have been possible only if additional information (an
additional variable) had been provided that helped distinguish the points in that
region. It is possible to devise more sophisticated assignment rules that would
allow points in a region of overlap to belong to more than one cluster.

All this, however, does not detract from the fact that shape information has
enabled the algorithm to perform very well. The inclusion of the elliptical distance
measure enabled the algorithm to use shapes to distinguish between the two
clusters. The direction cosines for the major and minor principal directions for the
clusters at the end of the run were:

~x21 � �ÿ0:0123782;ÿ0:999918; 0:0006185�
~x11 � �ÿ0:999918;ÿ0:0123782; 0:0008104� with k � 72:48 and

b � 30:85 for cluster 1;

and

~x22 � �ÿ0:999792;ÿ0:0202372; 0:0008707�
~x12 � �ÿ0:0203754;ÿ0:999792; 0:0010402� with k � 74:44 and

b � 31:75 for cluster 2:

The corresponding principal directions are perpendicular to each other, as should
be the cases.

The recovered structure of the data set is shown on the stereographic plots is
Fig. 10. These results indicate that the new elliptical distance metric for spherical
data being proposed can enhance the clustering of data of this kind.

8. Conclusion

The fuzzy K-means algorithm adapted to be able to incorporate both the spherical
data component and Euclidean component of joint information o¨ers a consider-
able advantage for the automatic identi®cation of joint sets in survey data. How-
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ever, the ability of the algorithm to recover the true structure of data sets is highly
dependent on the distance metric at the basis of the algorithm. Distance measures
are needed by clustering algorighms to establish the extent of the associations be-
tween observations in a data set and the centroids of the clusters believed to exist
in the data. The fuzzy K-means algorithm computes membership degrees of pat-
tern vectors to clusters based on the distances of the pattern vectors from the
cluster prototypes.

Distance norms are to be chosen for an analysis ®rst and foremost as a result
of careful consideration of the space in which the sought for clusters are believed
to be embedded. Homogeneous spaces are pattern spaces in which all variables
have the same nature. In heterogeneous pattern spaces the variables describing
observations belong to two or more homogeneous sub-spaces. Distances in pattern
spaces (sub-spaces) fundamentally depend on the characteristics of the variables of
the space. Norms, which may be useful in one space (sub-spaces), may be com-
pletely inappropriate in another.

Distance metrics play a key role in de®ning a clustering technique's perfor-
mance. They impose subtle geometric constraints on the structure recovered by the
algorithm. Each distance measure de®nes a ``unit ball'' (Bezdek and Pal, 1992) of
a particular shape in the pattern space and this controls the shape of clusters
an algorithm can extract from a data set. The shapes de®ned by distance norms
depend on whether or not they take into consideration correlation among variables.
They also depend on the variances of the di¨erent variables.

The sine-squared distance measure originally proposed for the fuzzy K-means
algorithm for joint data measures only isotropic distances on the unit sphere (cir-
cular probability contours). When the coordinates or the points belonging to a
cluster are correlated so that the contours of constant probability of the cluster are
non-circular, it experiences problems delineating clusters correctly. As a result the
authors have proposed a new distance measure based on the Kent probability

a b

Fig. 10a,b. Structure of data set 2 recovered by fuzzy K-means algorithm using elliptical distance
measure a Contour plot of poles assigned to cluster 1. b Contour plot of poles assigned to cluster 2
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distribution. This new measure is able to account for di¨erences in the local shapes
(directions of principal axes and shape parameters) of clusters. E¨ectively, it
accounts for cluster shape di¨erences by adjusting the distance norm for individual
clusters so that measured distances from cluster centroids re¯ect the local shapes of
the clusters in a data set. The analysis of a sample data set, in which two elliptical
clusters di¨ered only in the directions of their principal axes, con®rmed the
enhancements the new measure brings to the automatic identi®cation of joint sets
using the fuzzy K-means algorithm.

Appendix

Parameter Estimation for the Unimodal Kent Distribution

Kent (1982) outlines a moment estimation method for estimating the parameters
of the Kent distribution when the ratio k=b > 2. The algorithm for estimating
these parameters given the direction cosines �x1; y1; z1�; . . . ; �xN ; yN ; zN� of N

vectors from a Kent distribution is as follows:

i) compute the orientation matrix S:

S � 1

N

XN

j�1
xjxj

XN

j�1
xj yj

XN

j�1
xjzj

XN

j�1
xj yj

XN

j�1
yj yj

XN

j�1
yjzj

XN

j�1
xjzj

XN

j�1
yjzj

XN

j�1
zjzj

2666666666664

3777777777775
�A1�

and the mean of the data �x̂; ŷ; ẑ� from the formula:

�x̂; ŷ; ẑ� � �Rx=R;Ry=R;Rz=R�; �A2�
where

Rx �
XN

i�1
xi; Ry �

XN

i�1
yi; Rz �

XN

i�1
zi: �A3�

Also calculate the mean resultant length of the N vectors using the formula:

R � �
�����������������������������
R2

x � R2
y � R2

z

q
�=N �A4�

ii) compute the orthogonal matrix H

H �
sin ŷ0 cos f̂0 ÿsin f̂0 cos ŷ0 cos f̂0

sin ŷ0 sin f̂0 cos f̂0 cos ŷ0 sin f̂0

ÿcos ŷ0 0 sin ŷ0

264
375; �A5�

where ŷ0 and f̂0 are the plunge and trend of the mean �x̂; ŷ; ẑ�.
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Calculate a new matrix B, which is de®ned as the matrix product

B � H T SH �A6�
with elements

b11 b12 b13

b21 b22 b23

b31 b32 b33

264
375

and de®ne an angle ĉ such that

ĉ � 1

2
arc tan

2b12

b11 ÿ b22

� �
: �A7�

iii) Compute the rotation matrix

K �
cos ĉ ÿsin ĉ 0

sin ĉ cos ĉ 0

0 0 1

264
375; �A8�

and then the matrix

Ĝ � HK � �x̂1; x̂2; x̂3�: �A9�
Finally, compute the matrix

V � ĜT S Ĝ; �A10�
with elements

n11 n12 n13

n21 n22 n23

n31 n32 n33

264
375

and compute the value Q de®ned as

Q � jn11 ÿ n22j: �A11�
iv) For large values of k, the parameters k and b can be determined approxi-

mately as

k̂ � �2ÿ 2RÿQ�ÿ1 � �2ÿ 2R�Q�ÿ1 �A12�
b̂ � 1

2
f�2ÿ 2RÿQ�ÿ1 ÿ �2ÿ 2R�Q�ÿ1g: �A13�
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