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Abstract
This study investigated borehole breakout and spalling phenomena through true-triaxial experiments conducted on cubic 
Gosford sandstone and yellow mudstone specimens. The experiments were carried out based on the custom-developed 
borehole breakout testing system, which could enable the pre-stressed (PS) tests (applying stresses onto intact specimens 
and then drilling). In comparison to the pre-drilled (PD) tests (applying stresses onto specimens with pre-drilled boreholes), 
the PS tests consistently resulted in wider and deeper breakouts under the same far-field stresses in both rock types, which 
are attributed to the impacts of excavation-unloading and removal of rock debris. The results from 36 PS tests indicated 
that the breakout and spalling extent are affected by all three principal stresses, and the impact of each stress was also quan-
titively assessed and compared. Moreover, analysis of experimental data from this study and the literature revealed that a 
unique correlation between breakout angle and normalised breakout depth could not be obtained, suggesting deriving two 
principal stress components from two breakout geometries should be viable. Furthermore, empirical correlations based on 
the maximum tangential stress (σmax) and out-of-plane stress were developed to characterise the breakout geometries, which 
outperformed those previous relations based solely on σmax across all datasets. This suggests that while the breakout and 
spalling phenomena are primarily controlled by σmax, a more accurate representation of failure extent can be achieved by 
considering the out-of-plane stress.

 Highlights

• Borehole breakout experiments were conducted on sandstone and mudstone through a custom-designed true-triaxial 
testing system.

• The impacts of testing methodologies and the magnitude of each principal stress on breakout geometries were analysed 
in both rock types.

• The correlation between breakout angle and normalised breakout depth was investigated based on six pre-stressed datasets.
• Empirical equations based on the maximum tangential stress and out-of-plane stress were developed to characterise the 

breakout geometries.
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1 Introduction

Breakout and spalling are localised failures occuring in 
the vicinity of underground openings as a result of drilling 
and excavation under high far-field stress conditions. Fig-
ure 1 illustrates a schematic diagram of the typical borehole 
breakout around vertical boreholes. The failures manifest as 
V-shaped zones along the minimum horizontal stress direc-
tion, which can be characterised by two geometrical param-
eters, breakout angle (θb) and normalised breakout depth 
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(L/R). The phenomenon was first observed by Cox (1972) 
through a borehole dipmeter as elongations on both sides of 
the borehole. As the excavation continues to proceed toward 
greater depths, breakout and spalling phenomena have been 
widely observed in openings of various sizes across civil, 
petroleum and mining operations (Zoback et  al. 1985; 
Emmermann and Lauterjung 1997; Martin 1997; Hoek and 
Martin 2014; Feng et al. 2018).

Extensive studies have been carried out aiming to under-
stand the breakout and spalling mechanisms, among which, 
in-situ tests can provide the most realistic representation 
of failure formation. The Mine—by experiment in Canada 
thoroughly described the progressive failure formation and 
investigated the impact of stress path on the rock strength 
(Martin 1997; Martin et al. 1997; Read 2004). Subsequently, 
the Äspö pillar stability test was conducted to further investi-
gate the impact of excavation—and thermal-induced stresses 
on the spalling behaviour to quantify the rock spalling 
strength (Andersson et al. 2009; Andersson and Martin 
2009). Based on in-situ observations, an empirical correla-
tion was proposed to estimate the spalling depth for tunnel 
stability analysis and excavation support design based on the 
ratio of maximum stress on the tunnel wall and rock strength 
(Martin et al. 1999, 2001; Martin and Christiansson 2009). 
Given the difficulties of in-situ testing, laboratory experi-
ments have also been conducted on cubic samples under 
polyaxial loading conditions primarily using two testing 
methodologies: the pre-drilled (PD) method (drilling prior 
to loading) (Lee and Haimson 1993; Cheon et al. 2011; Hu 
et al. 2019; Ling et al. 2023) and pre-stressed (PS) method 
(loading prior to drilling) (Haimson 2007; Si et al. 2022; 

Xiang et al. 2023d). Although the former allows more com-
prehensive monitoring of the breakout formation process, 
Xiang et al. (2023d) demonstrated that the latter would 
yield greater θb and L/R due to excavation unloading and 
removal of rock debris by drilling fluid/vibration. Never-
theless, additional experimental investigations are required 
to further verify the differences between the two methods. 
Moreover, while the influences of all three principal stresses 
on the peak rock strength have been well documented (Mogi 
1967; Colmenares and Zoback 2002; You 2009), research on 
borehole breakout is still primarily focused on the in-plane 
stresses (mostly σH). The impact of the out-of-plane stress 
(i.e., σv in Fig. 1) is yet to be fully explored and integrated 
into practice.

Borehole breakout and spalling phenomena have been 
proven to contain critical geotechnical information related 
to far-field stresses. Breakout has been widely employed 
as an indicator for stress orientation since it would align 
with the σh direction in the absence of geological structures 
(Gough and Bell 1981; Barton et al. 1988; Zoback et al. 
2003; Stephansson and Zang 2012). Furthermore, given 
the stress dependence on rock failure dimensions, attempts 
have been carried out to constrain and inverse in-situ stresses 
based on breakout geometries (Zoback et al. 2003; Song 
and Chang 2018; Lin et al. 2020; Han and van der Baan 
2024). However, based on experimental and numerical 
investigations, some researchers suggested that there could 
be a unique correlation between the two breakout geom-
etries (Haimson et al. 1991; Haimson and Lee 2004; Sahara 
et al. 2017). Consequently, under this hypothesis, only one 
in-plane stress component could be estimated from bore-
hole breakout geometries. Nonetheless, these analyses were 
primarily based on limited data from single rock types. To 
comprehensively explore the correlation between θb and L/R, 
further investigation using data from different stress condi-
tions and rock types is required.

In this study, true-triaxial borehole breakout experiments 
were carried out on two rock types, sandstone and mudstone. 
The differences in the failure dimensions between the two 
testing methodologies, PD and PS, were quantified and ana-
lysed. The impact of each principal stress on the breakout 
geometries was systematically assessed through seven sets 
of PS experiments. Based on the experimental results and 
data collected from past studies, the correlation between θb 
and L/R across different datasets was assessed, and empirical 
correlations between the breakout geometries and far-field 
stresses were proposed by considering all principal stresses. 
The results of this study are expected to provide new insights 
into the formation mechanism and stress dependency of 
borehole breakout and spalling.

Fig. 1   A schematic diagram of borehole breakout. (σH: maximum 
horizontal stress, σh: minimum horizontal stress, σv: vertical stress, θb: 
breakout angle, L: breakout depth, R: borehole radius)
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2  Methodology

2.1  Rock Specimens

Two types of rocks were utilised for the borehole break-
out experiments: Gosford sandstone (GSS) from Sydney 
Basin (Fig. 2a) and yellow mudstone (YMS) from Victoria 
(Fig. 2b), Australia. The rock mechanical properties were 
tested and summarised in Table 1, following the ISRM sug-
gested methods (Bieniawski and Hawkes 1978; Bieniawski 
and Bernede 1979; Franklin 1979). Cubic specimens with 
a side dimension of 120 mm were prepared for true-triaxial 
testing. The sample surface was ground to yield flat and 
mutually perpendicular surfaces. The rock specimens could 
be considered isotropic and free of notable bedding charac-
teristics based on visual observations and mechanical tests.

2.2  Experimental Setup and Procedure

The experiments were carried out at the University of New 
South Wales, Sydney, by the custom-developed true-triaxial 
borehole breakout testing system (Fig. 3), consisting of an 
MTS 815 loading frame, a biaxial compression cell and 
a servo-controlled drilling assembly. The major principal 
stress is applied to the sample through the MTS 815 test-
ing frame (up to 1500 kN), and the intermediate and minor 
principal stresses are loaded by the biaxial compression 
cell (up to 550 kN). The servo-controlled drilling assembly, 
which was designed in-house, enables automated drilling 
with adjustable drilling speed. A diamond core bit with a 
22 mm outer diameter was utilised in the drilling process.

Both PD and PS methodologies were adopted in the 
experiments. In the PD tests, true-triaxial stresses were 
loaded onto the specimen with a prefabricated borehole 
(22 mm in diameter), following the common loading paths 
described in Feng et al. (2019). Once the targeted stresses 
were installed, the stress condition was kept for an additional 
30 min period to allow the formation and stabilisation of 
the breakout and spalling. A borehole camera was inserted 
throughout the experiment to record the failure process. On 
the other hand, in the PS test, true-triaxial stresses were 
applied to an intact specimen through the same loading 
procedure as the PD test. Borehole drilling was conducted 
approximately 10 min after the stress installation and equi-
librium, with an advance rate of 0.33 mm/s. During drilling, 
water was circulated (0.017–0.02 L/s) through the drill bit 
and borehole to cool down the drill bit and remove rock 
debris. Upon completion of the drilling, the drill bit was 
carefully retracted, and the sample was then maintained 
under the same stress state for an additional 30 min. Note 
that in all experiments, the drilling direction was assumed 

Fig. 2   Rock specimens for the borehole breakout experiments: a GSS and b YMS

Table 1   Mechanical properties of the tested rocks

Rock properties GSS YMS

Density (kg/m3) 2184.9 ± 27.6 2364.8 ± 5
Uniaxial compressive strength (UCS) 

(MPa)
36.4 ± 2.9 104.1 ± 10.6

Brazilian tensile strength (BTS) (MPa) 2.1 ± 0.6 4.9 ± 0.7
Young’s modulus (GPa) 6.9 ± 0.6 13.9 ± 1.4
Poisson’s ratio 0.20 ± 0.02 0.24 ± 0.01
Porosity (%) 16.9 ± 0.9 10.9 ± 0.9
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to be aligned with the σv direction (Fig. 3), mimicking the 
breakout formation in vertical boreholes.

After completing the experiment, the sample was 
removed from the testing system. For the breakout geom-
etries extraction, the sample was carefully cut along the σH 
direction and subsequently taken for 3D scanning (Fig. 4) 
using the Shining 3D EinScan Pro 2X scanner to obtain 
the breakout profiles (accuracy up to 0.04 mm). The final 
breakout geometries were determined by averaging the val-
ues from both sides of the borehole.

3  Experimental Results and Analysis

3.1  Comparison of PD and PS Experiments

Determining the appropriate experimental method (PD 
or PS) is crucial for investigating borehole breakout and 
spalling phenomena. The disparities between the PD and PS 
experiments on GSS have been systematically discussed in 
Xiang (2023d). This section extends the analysis to include 
six additional experiments (three PD and three PS) per-
formed on YMS, and the differences between the two testing 
methods on the two rock types are analysed.

The borehole recordings for GSS (σH = 70  MPa, 
σh = 25  MPa, σv = 20  MPa) and YMS (σH = 90  MPa, 
σh = 15 MPa, σv = 10 MPa) from PD tests are depicted in 
Fig. 5. Note that the different stress conditions applied to 

Fig. 3   Experimental setup for true-triaxial borehole breakout tests

Fig. 4   3D scanning of the tested specimens
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GSS and YMS are attributed to their different mechani-
cal properties. More specifically, YMS specimens have 
significantly higher strength compared to GSS, which 
would require greater differential stresses to induce break-
out. Overall, the borehole failure in GSS predominantly 
occurred in the forms of buckling deformation and grain 
ejection associated with a small number of rock slabs 
peeling off from the failure zones. On the other hand, the 
breakout formation process in YMS differed slightly. The 
failure initiated at around σH = 75 MPa, with slight bulging 
observed on the right borehole wall. Damage occurred on 
the left sidewall when σH reached 78 MPa, and rock grains 
began to be ejected from the failure area as the stress con-
tinued to increase. At σH = 86.4 MPa, rock slabs started 
to form and subsequently ejected and detached from the 
sidewalls. The intensity of the breakout development 

continuously grew until 4–5 min after σH reached its tar-
get value (90 MPa). Afterwards, the rock slabbing and 
ejection gradually ceased, and the rock fragments slowly 
peeled off under gravity instead of being ejected in the 
rest of the experiment. In contrast to the sandstone, side-
wall failure in YMS manifested more in the form of slab 
ejection with a higher ejecting velocity (Fig. 6), resulting 
in less debris remaining at the breakout locations. Fur-
thermore, spalled rock fragments in YMS were generally 
larger. Consequently, toward the end of the experiment, 
a V-shaped failure zone could be observed on the right 
side of the borehole (Fig. 5h) as opposed to the protrud-
ing rock debris observed in GSS (Fig. 5d). Furthermore, 
the failure surface in YMS appeared smoother than that 
of GSS, indicating the potential presence of more tensile 
cracks in YMS breakout.

Fig. 5   Breakout evolution process of PD experiments in a–d GSS (σh = 25 MPa, σv = 20 MPa) and e–h YMS (σh = 15 MPa, σv = 10 MPa)

Fig. 6   Rock slab ejection in YMS
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The boreholes in the PS tests exhibited notably different 
breakout patterns compared to those under the PD condi-
tions, despite the same far-field stresses. Examples of the 
breakout images obtained from both testing methodologies 
are given in Fig. 7. In the PS experiments, symmetrical 
V-shaped failure zones can be observed on both sides of the 
borehole walls, which are considerably wider and deeper in 
contrast to the PD breakouts. Additionally, no visible rock 
fragments are observed at the failure area in the PS condi-
tions, which is consistent with the field observations through 
borehole logs (Borm et al. 1997; Tingay et al. 2008). Fur-
thermore, core discing phenomena are also observed in PS 
tests under relatively high σH (Fig. 8).

Post-experiment, debris at the breakout locations of the 
PD samples was carefully removed, and the breakout geom-
etries of the PD and PS samples were obtained. As indi-
cated in Fig. 9, both breakout geometries from the PS tests 
are consistently greater than those of the PD tests, and the 

discrepancies are evident in both rock types. The average 
variations in θb for YMS and GSS are similar at approxi-
mately 10.2 and 12.5°, respectively. As for L/R, the differ-
ence in GSS increases significantly with the magnitudes of 
σH, whereas the values remain relatively constant for YMS 
at around 0.11.

The discrepancies in the failure extent between the 
two testing conditions are believed to be attributed to the 
stress path difference caused by the excavation unloading 
and removal of rock debris by circulating fluid and drill-
ing vibration. In the PS tests, the rock in the vicinity of 
the borehole undergoes continuous stress adjustments and 
potential principal stress rotation (Martin 1997; Eberhardt 
2001), in contrast to the monotonically increasing stresses 
in the PD conditions. As a result, additional microcracks are 
induced in the PS condition due to excavation unloading, 
which would lead to rock strength degradation (Read et al. 
1998; Diederichs et al. 2004; Gu et al. 2023). Moreover, the 

(a) PS test (b) PD test

(c) PS test (d) PD test

Fig. 7   a and b borehole breakout images in GSS under σH = 70 MPa, σh = 25 MPa, σv = 20 MPa; c and d borehole breakout images in YMS 
under σH = 90 MPa, σh = 15 MPa, σv = 10 MPa
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rock debris remaining within the failure zones (Figs. 7b, d) 
could restrain the breakout development under the PD con-
ditions by elevating the minimum stress while reducing the 
maximum stress acting on the rock surrounding the breakout 
(Cheatham 1993; Xiang et al. 2023a). In contrast, the cohe-
sionless debris was removed by drilling fluid and vibration 
in the PS experiments, which facilitates the breakout propa-
gation. Given that the amount of rock debris ejected from 
the failure area in YMS was generally greater than that in 
GSS, drilling fluid/vibration would remove less debris in 
the mudstone. Consequently, the impact of debris removal 
is more pronounced in GSS than in YMS, as evidenced by 

the relatively constant L/R differences in the mudstone as 
opposed to the increasing L/R differences in the sandstone 
at high stress (Fig. 9).

The above results suggest that different testing meth-
ods could lead to varied stress paths and consequently dis-
tinct failure geometries. Compared to the PD experiment, 
the PS breakout profiles are more consistent with the field 
observations, and the experimental procedure more closely 
resembles the in-situ drilling practices. Therefore, the PS 
method is employed for the following parametric analyses 
on the correlation between breakout geometries and far-field 
stresses.

Fig. 8   Core discing observed in a GSS and b YMS PS tests

Fig. 9   Comparison of breakout geometries between the PD and PS tests under varying σH
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3.2  Impacts of Each Principal Stress on Breakout 
Geometries

The correlation between σH and the extent of breakout and 
spalling has been well-documented in past studies (Haim-
son and Lee 2004; Lee 2005; Lee et al. 2016). However, 
the impacts of σh and, particularly, the out-of-plane prin-
cipal stress (σv), were not thoroughly assessed. In this sec-
tion, the relationships between the breakout geometries 
and each principal stress were systematically evaluated 
based on 36 PS test results in GSS and YMS. The tested 
stress conditions are listed in Table 2. Given the Aus-
tralian stress regime (Hillis et al. 1999; Heidbach et al. 
2018), most tests were carried out under a reverse faulting 
regime (σH > σh > σv) with a few tests in a strike-slip fault-
ing stress regime (σH > σv > σh). The stress conditions were 
selected so that the impact of each principal stress could 
be assessed individually by varying one principal stress 
at least three times while keeping the other two stresses 
constant. The borehole radius and drilling-related vari-
ables remained consistent for all tests.

Figure  10 exhibits the extracted breakout geometric 
parameters for all the stress conditions listed in Table 2. 
The correlation between each principal stress and breakout 
geometries is characterised by seven sets of data (six sets 
in GSS and one set in YMS). In general, all three principal 
stresses have various degrees of impact on the extent of the 
breakout in both rock types. σH exhibits strong positive cor-
relations with both θb and L/R, and the correlations closely 
approximate linear relationships. The growth rate of L/R 
tends to increase with the confining stresses. Furthermore, 
the slopes of YMS for both geometries are smaller compared 
to those in GSS under the same confinement (σh = 15 MPa, 
σv = 10 MPa). On the other hand, increases in either σh or σv 
restrained the breakout extent in both rock types (Figs. 10b, 
c), meaning both the in-plane minimum principal stress and 
out-of-plane stress could affect the borehole failure and 
spalling.

Among the three principal stresses, σH has the most pre-
dominant effect on the extent of the breakout. In GSS, vari-
ations of 10 MPa in σH would lead to average changes of 
9°–15° and 0.16–0.24 in θb and L/R, respectively. Whereas 
the values are slightly smaller in YMS, ranging from 8.5° 
to 10.5° in θb and 0.02 to 0.1 in L/R. The magnitudes of the 
effects of σh and σv are very similar, both of which are less 
significant than that of σH. 10 MPa changes in either σh or σv 
would result in average variations of 1.5° to 6° and 0.06 to 
0.09 in θb and L/R in GSS, respectively. For YMS, the corre-
sponding values are 2° to 9.5° for θb and 0.004–0.06 for L/R. 
It is important to note that the elevated σv could promote 
breakout and spalling development, which will be discussed 
in Sect. 4.2. However, due to the relatively small magnitudes 
of σv compared to σH, as constrained by the loading capacity 

of the testing system, this effect was not observed in the 
experiments.

4  Discussion

4.1  Correlation Between θb and L/R

Based on the results from Sect. 3.2, both breakout geom-
etries exhibit similar trends with stress variations, and the 
correlations are mostly linear. As mentioned in Sect. 1, it 

Table 2   Applied far-field stress magnitudes in the PS borehole 
breakout experiments

σH (MPa) σh (MPa) σv (MPa)

GSS 40 15 10
50 15 10
50 15 15
50 20 15
50 27 15
50 15 20
55 25 20
60 15 10
60 15 20
60 15 30
60 25 10
60 25 20
60 25 30
60 35 20
60 35 30
70 15 20
70 25 20
70 35 20
70 25 10
70 25 30
70 35 30
70 35 35
70 15 30
80 15 20
80 25 20
80 35 20
80 25 30
80 25 36
80 35 30

YMS 80 15 10
90 15 10
90 15 20
90 15 30
90 25 20
90 35 20
100 15 10
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Fig. 10   Variation of breakout geometries as a function of a σH, b σh, and c σv
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has been suggested by previous studies that there could be 
a unique relation between θb and L/R, which is insensitive 
to the applied stress magnitudes. If such an exclusive rela-
tionship exists, only one principal stress component could 
be theoretically estimated from breakout geometries. This 
section evaluates the correlation between θb and L/R based 
on the experimental results from Sect. 3.2 and four addi-
tional PS datasets (109 data) collected from the literature on 
Alabama limestone (Herrick and Haimson 1994), Tablerock 
sandstone (Haimson and Lee 2004), Tenino sandstone (Lee 
et al. 2016), and Westerly granite (Song 1998). Note that five 
data in Tablerock sandstone were excluded from the analysis 
as their θb values exceed 90°.

Figure 11 illustrates the relationship between θb and L/R 
and their distributions across the six datasets. In general, a 
positive correlation can be found between θb and L/R, which 
breakout and spalling tend to widen and deepen simulta-
neously. Within each dataset, the correlation could be rea-
sonably approximated through a linear fitting. However, as 
depicted in the figure, the frequency distribution patterns 
for the two geometries exhibited notable differences. The θb 
distribution aligns with a normal distribution pattern, with 

the majority of data exceeding 30° and the peak frequency 
occurring around 40 to 45°. In contrast, the L/R data clus-
ter towards lower values, concentrating mostly between 1.1 
to 1.4. The data distribution follows closely to a positive 
skew pattern. Moreover, the data in different datasets are 
spread out, and the relationships between θb and L/R vary 
depending on the rock properties and stress magnitudes. A 
universal linear correlation, similar to those obtained from 
single rock types, could not be established across all data-
sets. Even within each subset, a single value of one geometry 
could correspond to multiple values of the other geometry 
depending on the applied stresses. For instance, in GSS, 
experiments with sσH = 70 MPa, σh = 25 MPa, σv = 10 MPa 
and σH = 80 MPa, σh = 25 MPa, σv = 30 MPa both yielded 
θb values of 64.5°, whereas L/R differed at 1.34 and 1.55, 
respectively. Similarly, in Tablerock sandstone, L/R for 
experiments under σH = 60 MPa, σh = 20 MPa, σv = 40 MPa 
and σH = 65 MPa, σh = 30 MPa, σv = 40 MPa was consistent 
at 1.3, whereas θb was 63° and 79.5°, respectively.

This could be attributed to the differences in the forma-
tion mechanisms for θb and L/R, as discussed in Xiang et al. 
(2023b). The width of the breakout forms in the initial stage 

Fig. 11   Correlations and fre-
quency distributions of θb and 
L/R across six datasets
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of the breakout development, primarily driven by the exten-
sile failure mechanism (Bažant et al. 1993; Haimson 2007; 
Xiang et al. 2023c), and its value remains relatively constant 
in subsequent breakout propagation (Zoback et al. 1985; 
Zheng et al. 1989; Duan and Kwok 2016). The formation 
and stabilisation mechanism can be adequately simplified 
based on the elastic theory. On the other hand, the failure 
depth development is a progressive progress (Haimson 2007; 
Liu et al. 2017; Xiang et al. 2023a). Its evolution is more 
complicated involving plastic damage and rock residual 
properties (Cheatham 1993; Perras and Diederichs 2016; 
Xiang et al. 2023b). The same stabilisation mechanism that 
applies θb could not effectively be extended to L/R. Conse-
quently, the two geometries could have varied sensitivities 
to the applied stresses.

The above analysis indicates that although both breakout 
parameters show similar correlations with the stress magni-
tudes, these correlations vary across rock types and applied 
stresses. Consequently, the argument that a unique relation-
ship exists between θb and L/R may not be valid. For geo-
technical analysis involving borehole breakout and spalling, 
it is recommended to utilise both geometrical parameters, as 
they can be readily obtained through borehole loggings or 
site surveys. Additionally, in terms of in-situ stress estima-
tion, it should be viable to derive two principal stress com-
ponents when both θb and L/R are employed.

4.2  Correlation Between Far‑Field Stresses 
and Breakout Dimensions

Understanding the correlation between the in-situ stresses 
and the extent of borehole breakout and spalling is critical 
in various engineering applications. The σ1 magnitude and 
its ratio to rock strength have been widely applied for the 

evaluation and prediction of the spalling and strain bursting 
phenomenon (Barton et al. 1974; Zhou et al. 2018; He et al. 
2023; Gong et al. 2023). Furthermore, the depth of spalling 
was found to be closely related to the maximum tangential 
stress (σmax) around the excavation (Martin et al. 1999). A 
simple empirical relation (Eq. (1) was proposed to estimate 
the spalling depth based on the ratio of σmax to the rock criti-
cal/spalling strength (σc), which has been broadly adopted in 
excavation stability assessment and support design (Martin 
et al. 1999; Martin and Christiansson 2009). However, while 
these criteria can reasonably approximate the potential and 
extent of breakout and spalling, they only consider the in-
plane stress components. Whereas the failure around open-
ings is affected by all three principal stresses based on the 
analysis in Sect. 3.2. Take the experimental results in GSS 
for example, relatively good correlations can be observed 
between σmax and the breakout geometries (Fig. 12). None-
theless, multiple breakout values could be associated with 
the same σmax (e.g., 135 MPa). Therefore, the out-of-plane 
stress should be considered for better characterising the 
breakout and spalling.

where σmax = 3 × σH–σh.
At the direction of σh, the stress state in the vicinity 

of the borehole is close to the biaxial loading states with 
σ1 ≈ σmax, σ2 = out-of-plane stress (σv), σ3 ≈ 0. Extensive 
polyaxial experiments have revealed that σ2 has consider-
able impacts on rock strength (Mogi 1967; Haimson and 
Chang 2000; Colmenares and Zoback 2002). At relatively 
low σ2, the cracks could propagate along the σ1–σ2/σ3 

(1)L∕R = 0.5
�max

�c

+ 0.48 ± 0.1

Fig. 12   Correlations between σmax and the breakout geometries in GSS
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planes due to high differential stresses in these planes. 
Increasing σ2 could constrain the crack propagation and 
coalescence in the σ1–σ3 direction, leading to an increase 
in σc and decreases in breakout geometries. However, as 
σ2 continues increasing, the elevated differential stress 
along the σ2–σ3 plane would increase the extensile strain 
towards the open face, promoting tensile cracks develop-
ment in the σ1–σ2 plane. Consequently, the strengthening 
effect of σ2 on σc is replaced by a weakening effect under 
relatively high σ2. Furthermore, the breakout and spalling 
formation process has been well recognised to be closely 
related to the rock crack initiation (σci) and crack dam-
age (σcd) stresses (Martin et al. 1994; Diederichs 2007; 
Mahmoud 2023), both of which also exhibit increasing and 
then decreasing correlations with σ2 (Kong et al. 2018). 
Therefore, to incorporate the impact of σ2, the following 
quadratic polynomial (Eq. (2) is adopted to empirically 
correlate the stresses with the failure geometries, as sug-
gested by Su et al. (2023), which is then compared to the 
correlations based solely on σmax (Eq. (3) 

where A, B, C, D, A′ and B′ are the fitting parameters.
The experimental results in GSS are used as examples 

and analysed in detail. The fitted equations for the breakout 
geometries based on Eq. (2) and their comparisons with 
those based on Eq. (3) are presented in Fig. 13. Note that 
the θb correlation may yield a small θb value even under 
relatively low stresses when the breakout is not initiated, in 
contrast to the L/R correlation, where a value ≤ 1 indicates 
that the failure is not initiated. This is attributed to the data 
characteristics, wherein L/R starts from 1 while θb begins 
from 0° with most values exceeding 30° (Fig. 11). As a 
result, the correlation for θb cannot be applied to assess 
breakout initiation and should be employed only when the 
estimated L/R > 1. In general, the empirical models incor-
porated σv better represent breakout and spalling dimen-
sions under various stress conditions. The coefficients of 
determination (R2) for L/R and θb are improved from 0.79 
and 0.72 to 0.89 and 0.85, respectively. The root mean 
squared errors (RMSE) for the two geometries also exhibit 
improvement, decreasing from 0.092 and 6.17 to 0.066 
and 4.55, respectively. Furthermore, the issue of multiple 
breakout values corresponding to the same σmax (Fig. 12) 
is effectively addressed by Eq. (2). Note that the strength-
weakening effect of high σ2 was not distinctly observed 
for the dataset, which is attributed to the applied σv being 
relatively small as the applied stresses in most experiments 
were under the reverse faulting regime (Table 2).
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The fitting performance for the remaining datasets utilised 
in Sect. 4.1 is summarised in Table 3. Empirical correlations 
based on σmax can yield satisfactory results in various rock 
types, except for YMS and Westerly granite. Nonetheless, 
consistent improvement can be observed across all datasets 
through Eq. (2). This indicates that although the failure 
around the borehole is dominant by σmax, incorporating the 
out-of-plane stress provides a more accurate representation 
of the failure characteristics.

To further generalise the correlations, the stress values 
in Eq. (3) are normalised by σc. Since all the data analysed 
in this study are obtained from laboratory experiments on 
22 mm boreholes, the following empirical equation from Lin 
et al. (2021) is applied to calculate the borehole wall strength 
(BWS), which is then used as σc.

The generalised empirical correlations for L/R and θb, 
based on Eqs. (2) and (3) are given in Eqs. (5),(6), (7), (8) 
respectively. Notably, Eq. (5) closely resembles the empiri-
cal correlation derived from in-situ spalling data (Eq. (1)). 
Similar to the θb correlation shown in Fig. 13, Eqs. (6) and 
(8) should be used only when the estimated L/R is greater 
than 1. As indicated in Fig. 14, the abovementioned strength-
ening and weakening effects of σ2 (σv) are observed in both 
geometries, meaning the empirical correlations based solely 
on σmax may either underestimate or overestimate the failure 
extent depending on the σ2 magnitudes. In comparison to 
Eqs. (5) ,(6), (7), (8) better correlate the far-field stresses and 
breakout dimensions, with R2 values improved from 0.47 to 
0.62 and 0.59 to 0.68, respectively. Furthermore, the weights 
of σmax and σv in Eq. (7) differ compared to those of Eq. (8) 
which further indicates that the θb and L/R have varied cor-
relations with the stress magnitudes.

However, it is important to note that the data points in 
Fig. 14 are relatively scattered, and the fitting results for 
Eqs. (7) and (8) are generally not as satisfactory as those 
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Fig. 13   a Empirical correlations based on Eq. (2) in GSS, and b their comparisons against fittings based on Eq. (3)

Table 3   Fitting performance comparisons between the Eq. (3)and Eq. (2)

Dataset Equation (3) Equation (2) 

L/R_R2 L/R_RMSE θb_R2 θb_RMSE (°) L/R_R2 L/R_RMSE θb_R2 θb_RMSE (°)

GSS 0.79 0.092 0.72 6.17 0.89 0.066 0.85 4.55
YMS 0.37 0.072 0.56 6.33 0.96 0.017 0.97 1.77
Alabama limestone (Herrick and Haimson 1994) 0.79 0.136 0.78 6.15 0.93 0.080 0.91 3.83
Tablerock sandstone (Haimson and Lee 2004) 0.87 0.096 0.76 5.84 0.88 0.092 0.79 5.49
Tenino sandstone (Lee et al. 2016) 0.73 0.232 0.71 5.66 0.76 0.218 0.91 3.16
Westerly granite (Song 1998) 0.56 0.06 0.39 7.66 0.63 0.055 0.47 7.09
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for individual rock types (Table 3). This suggests that there 
could be additional material properties apart from rock 
strength contributing to the breakout and spalling phenom-
ena. Moreover, the impacts of excavation unloading and 
removal of rock debris on the breakout formation could 
vary across different rock types as demonstrated in Sect. 3.1. 
Further investigations are still required to enhance the gen-
eralisation of the empirical correlations and their practical 
applicability.

5  Conclusions

In this study, the borehole breakout and spalling phenom-
ena in two rock types were investigated through true-tri-
axial experiments. The tests were carried out based on 
two methodologies (PD and PS) on cubic rock specimens 
(120 mm × 120 mm × 120 mm) with Φ22 mm boreholes. The 
main conclusions of this study are summarised below.

1. Borehole recordings revealed that the breakout forma-
tion characteristics are different between GSS and YMS. 
The breakout in the former primarily occurred as the 
buckling deformation with protruding rock debris, while 
the failure of the latter is more intense involving ejec-
tions of rock grains and slabs. Compared with the PD 
experiments, PS experiments consistently yielded wider 
and deeper breakouts, indicating that the effects of exca-

vation-unloading and removal of rock debris are evident 
in both rock types.
2. The impact of each principal stress on the failure 
dimensions was assessed based on 36 PS experiments. 
The results indicate that the extent of borehole breakout 
is affected by all three principal stresses, among which 
σH has the most prominent influence on the failure geom-
etries. In comparison, the impacts of σh and σv are less 
significant. Nonetheless, both of them could still result 
in considerable changes in failure dimensions, and thus, 
it is important to consider all three principal stresses in 
characterising the breakout and spalling.
3. The correlations between θb and L/R and whether 
there exists a unique correlation between the two break-
out geometries were investigated through six PS datasets 
from this study and the literature. While both geometries 
tend to increase/decrease simultaneously, their formation 
mechanisms fundamentally differ. A universal linear cor-
relation, similar to those derived from individual rock 
types, could not be established across various rock types, 
and their data distributions exhibit notably varied pat-
terns. Moreover, a single value of one geometry could be 
associated with several values of the other geometry in 
the same rock type under varied applied stresses. There-
fore, the correlation between θb and L/R does not appear 
to be unique, making it feasible to derive two principal 
stress components from the breakout geometries.
4. Given the impacts of the out-of-plane stress on break-
out and spalling, σv was incorporated into empirical cor-

Fig. 14   Breakout geometries as functions of σmax/σc and σv/σc
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relations with σmax in the forms of quadratic polynomials 
to characterise breakout dimensions. Compared to those 
based solely on σmax, the proposed correlations could 
more accurately evaluate both θb and L/R under various 
stress conditions across all datasets, which would be ben-
eficial for the stability analysis of underground excava-
tions (e.g., tunnel, borehole, and nuclear waste reposi-
tory).
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