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Abstract
Rockburst is a mine dynamic disaster caused by the rapid release of elastic strain energy of surrounding rock. As the depth of 
engineering project operations increases, accurate classification of rockburst intensity cannot be achieved based on conventional 
criteria due to high uncertainty and unpredictability of rockburst. In this regard, an AOA-Voting-Soft ensemble machine learning 
was proposed in this study by combining seven individual classifiers, i.e., eXtreme gradient boosting, support vector machines, 
multilayer perceptron, k-nearest neighbor, random forest, naive Bayesian, and gradient boosting decision Tree. In addition, outli-
ers were eliminated by means of density-based spatial clustering of applications with noise, and CURE-MeanradiusSMOTE was 
adopted to obtain a balanced data structure. Furthermore, the optimal combination of classifiers in Voting was determined by the 
game theory and the exhaustive search method. Weights of individual learners in Voting were determined through the arithmetic 
optimization algorithm and fivefold cross-validation. The results show that the prediction accuracy of the ensemble algorithm 
proposed in this study is 4.4% higher than that of the individual classifier with optimal performance. The importance analysis 
indicates that the elastic energy index is the most important variable that affects rockburst intensity grades. Moreover, this 
rockburst ensemble method can be applied further to solve other classification problems in underground engineering projects.

Highlights

1.	 This study improves the data preprocessing method, outliers were eliminated by means of density-based spatial cluster-
ing of applications with noise, and CURE-MeanradiusSMOTE was proposed to obtain a balanced data structure.

2.	 This study presents a hybrid ensemble model for Rockburst intensity grade prediction, combining a new metaheuristic 
method with the Voting-Soft model.

3.	 This study combines game theory and method of exhaustion to determine the best classifier combination in voting.
4.	 The weights of individual learners in Voting were determined through arithmetic optimization algorithm and fivefold 

cross-validation.
5.	 Sensitivity study was conducted on input variables with RBD-FAST, and the results suggest that W

et
 is the most important 

input variable.
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1  Introduction

Rockburst is a sudden geological disaster induced by the 
rapid release of accumulated elastic strain energy, and it 
leads to brittle failure such as rock throwing, ejection, and 
spalling in mines, tunnels and other geotechnical engineer-
ing (Askaripour et al. 2022; Zhao and Chen 2020). The 
U.S. witnessed a total of 172 rockburst cases in the period 
1936–1993 (Mark 2016), and countries such as Canada, 
India, Sweden, and China have also undergone rockburst for 
many times (Leveille et al. 2017; Sepehri et al. 2020; Simser 
2019; Sun et al. 2021), yet this is not an exhaustive list. As 
the depth of mining and the locations of excavation activi-
ties pose greater challenges (Xu et al. 2022), more cases 
of rockburst have occurred. For the purpose of predicting 
intensity grades of rockburst accurately and finding targeted 
preventive measures, scholars worldwide proposed a large 
number of methods, including empirical criteria(Gong et al. 
2020, 2019; Xue et al. 2020a), numerical simulation (Lu 
et al. 2021; Yang et al. 2022; Yu et al. 2023), and on-site 
monitoring (Hu et al. 2023a; Xue et al. 2021; Zhang et al. 
2018). The empirical criteria method is an empirical method 
in which the parameters can be obtained through experi-
ments, but it fails to be transferred effectively between dif-
ferent engineering scenarios. The results generated by the 
numerical simulation method always deviate from actual 

on-site situations, being far from satisfactory. Although rel-
evant parameters can be obtained in real time by means of 
on-site monitoring, it is still difficult to determine the rock-
burst threshold. Machine learning (ML), as a branch of arti-
ficial intelligence, can better explore the nonlinear relation-
ships between various indices and samples (Kadkhodaei and 
Ghasemi 2022a; Shukla et al. 2021), and its prediction will 
become increasingly accurate over time. Therefore, studying 
the prediction of rockburst intensity grades based on ML is 
of great significance (Sun et al. 2021).

Research on ML-based rockburst intensity grade pre-
diction mainly focuses on the rockburst data structure and 
the algorithms for rockburst intensity grade prediction. 
In terms of data structure, the dataset may encounter data 
anomalies or data imbalance (Fig. 1). Considering this 
problem, scholars proposed various methods to eliminate 
outliers (Hu et al. 2023b; Li et al. 2018; Zeng et al. 2022). 
Tan et al. (2021) and Asniar et al. (2022) detected and 
eliminated data outliers with the aid of the local outlier 
factor (LOF). Nnamoko and Korkontzelos (2020) and Xue 
et al. (2020b) identified outliers through interquartile range 
(IQR). It is generally believed that oversampling is one of 
the most effective methods to resolve data imbalance (Yi 
et al. 2022; Zhang et al. 2022a, 2022b). Wang et al. (2023) 
adopted the random oversampling method, but this method 
tends to cause overfitting. Li et al. (2023) and Feng et al. 
(2021) addressed data imbalance by the synthetic minority 

Fig. 1   ML methods for classification and prediction of rockburst intensity grades
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oversampling technique (SMOTE). On the other hand, in 
terms of algorithms, single models were applied predict 
rockburst intensity grade prediction first (Fig. 1). Kadk-
hodaei et al. (2022b) using stochastic modeling based on 
Monte Carlo (MC) simulation predict rockburst potential, 
the results reveal that stochastic modeling can effectively 
predict rockburst potential. Ullah et al. (2022) predicted 
rockburst intensity grades with extreme gradient boosting 
(XGBoost). Yang et al. (2021) established a prediction 
model based on the self-organizing feature map (SOFM) 
neural network. However, since many network parameters 
in the model need to be set from experience, its perfor-
mance remains to be improved. Lin et al. (2018) estab-
lished a cloud model evaluation system based on common 
influencing factors of rockburst. Ghasemi et al. (2020) 
for the first time applied C5.0 decision tree algorithm to 
rockburst prediction; this model can show the relationship 
between the input and output. Subsequently, it is proved 
that combination algorithms perform better in prediction 
than single algorithms, and the optimal parameters of the 
models can be determined by optimization algorithms. Li 
et al. (2017) and Xue et al. (2020b) used GA algorithm 
and PSO algorithm to determine the hyper-parameters in 
extreme learning machine (ELM) respectively. Ji et al. 
(2020) determined hyper-parameters in support vector 
machine (SVM) through genetic algorithm (GA) and 
built a GA-SVM rockburst prediction model. Liu and Hu 
(2019) used PSO algorithm to optimize back propagation 
neural network (BP), probabilistic neural network (PNN), 
and support vector machine (SVM); the results show that 
the prediction performance of PSO–PNN model is the 
best. In recent years, ensemble algorithms have found 
wide application in predicting rockburst intensity grades. 
Ensemble algorithms mainly comprise Bagging, Boosting, 
and Stacking (Fig. 1). Taking six classifiers as individual 
learners, Liang et al. (2021) created ensemble classifiers 
with different weightings based on different weighting 
rules. Voting, an ensemble learning model that follows 
the majority rule, can integrate performances of individ-
ual classifiers better than other ensemble algorithms. Li 
et al. (2022a) and Tan et al. (2022) built various models 
of Voting, Bagging, and AdaBoost, and the comparison 
reveals that Voting-Soft performs the best. However, all 
the Voting models calculate the voting weights of classi-
fiers according to accuracy, recall, and F1-score, and thus 
have limitations to some extent. Some scholars determined 
the weights of classifiers in Voting-Soft by means of opti-
mization algorithms. Zhang et al. (2020) optimized the 
Voting-Soft model with the beetle antennae search (BAS) 
algorithm which has a low convergence rate and takes a 
long time to train the model.

Though ensemble algorithms, especially Voting, are 
usually superior to single algorithms with respect to 

prediction, the determination of the type and number 
of individual learners in Voting is unfounded, and the 
determination of voting weights of individual learners has 
a significant impact on model performance. Moreover, 
the datasets used to train models are likely to be beset 
by data imbalance or data anomalies. SMOTE can make 
data structures balanced, but it fails to eliminate class 
differences between data of different types. Therefore, the 
following work was done in this study to address problems 
in existing researches: (1) The method for rockburst data 
preprocessing was improved. Outliers were eliminated by 
means of density-based spatial clustering of applications 
with noise (DBSCAN), and CURE-MeanradiusSMOTE was 
proposed to obtain a balanced data structure. (2) The AOA-
Voting-Soft model was established to predict the rockburst 
intensity grades. (3) The best classifier combination in 
Voting was determined by the game theory and method of 
exhaustion. (4) The weights of individual learners in Voting 
were determined through arithmetic optimization algorithm 
(AOA) and fivefold cross-validation (CV).

In this study, a data preprocessing method and an 
ensemble algorithm prediction model were proposed 
and applied to rockburst intensity grade prediction. The 
manuscript is organized as follows. First, rockburst data were 
preprocessed. Next, the AOA-Voting-Soft ensemble learning 
model was established. Furthermore, the effect of data 
preprocessing was verified, and the predictive performance 
of the proposed model was compared with those of single 
models and other ensemble models. Finally, the model was 
applied to rockburst intensity grade prediction of projects 
like the Dochu La Tunnel, and its generalization ability was 
verified.

2 � Dataset Preparation

2.1 � Data Collection

All data in this paper are from worldwide rockburst cases 
that have been extensively cited and employed. The dataset 
consists of data of 319 rockburst cases, of which 213 
rockburst cases are from Zhou et al. (2016), 21 from Wang 
et al. (2013), 19 from Zhou et al. (2013), 46 from Dong 
et al. (2013), and 20 from Xue et al. (2019). These data 
involve different underground projects such as mines, traffic 
tunnels, diversion tunnels, and underground chambers. 
Their diversity ensures that the established ML model has 
excellent generalization ability.

The occurrence of rockburst is influenced by many factors. 
When evaluating the intensity grade of rockburst, different 
scholars choose different parameters as evaluation indicators 
of criterion for rockburst. Currently, the mainstream input 
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parameters of criteria for rockburst are the maximum tangen-
tial stress of the surrounding rock ( �� ), the uniaxial compres-
sive strength of the rock ( �c ), the uniaxial tensile strength of 
the rock ( �t ), the rock brittleness coefficient ( �c∕�t ), the rock 
stress coefficient ( ��∕�c ), and the elastic strain energy index 
( Wet ). Specifically, wet �� can reflect the strata stress charac-
teristics of rockburst. �t and �c can effectively characterize 
the lithologic conditions of the surrounding rock in practical 
engineering. �c∕�t considers the influences of joints and the 
block size of the rock mass. ��∕�c , one of the commonly used 
rockburst evaluation indicators, represents the stress concen-
tration of the surrounding rock after excavation. Rockburst is 
also related to the energy stored in the rock mass. Wet reflects 
the ability of rock to store elastic energy. The above six indi-
cators reflect the characteristics of rockburst from different 
aspects (Xu et al. 2022) and are generally acknowledged by 
scholars worldwide to be closely related to rockburst (Li et al. 
2023; Xu et al. 2022; Zhou et al. 2016).

The output indices of the dataset are the rockburst inten-
sity grade. In this study, the database was classified into four 
grades (Zhou et al. 2012) according to the general standard 
for rockburst intensity classification, namely, Grades 0, 1, 2, 
and 3, which represent cases of none rockburst, weak rock-
burst, moderate rockburst, and strong rockburst, respectively 
(Table 1).

2.2 � Data Analysis

The data in the database built in this study are fairly 
unbalanced, with data of Grade 0 accounting for 18.2% (58 
cases), Grade 1 for 27.6% (88 cases), Grade 2 for 36.1% (115 
cases), and Grade 3 for 18.2% (58 cases). The data sizes of 
none rockburst and strong rockburst are the smallest, and 
that of moderate rockburst is the largest. The ratio of data 
sizes of Grades 0–3 is 1:1.5:1.9:1.

The data distribution characteristics and ranges of the four 
grades are exhibited by the maximum, minimum, mean, and 
variable coefficient, and descriptive statistics are presented in 
Table 2. �� characterizes the in situ stress in the rockburst sec-
tor, and it is affected by geometry of the opening. The larger 

the value of �� , the higher the risk and intensity grade of the 
rockburst. The data of �� in Table 2 increase as the intensity 
grade rises. For instance, the mean value of �� increases from 
25.8 MPa to 115.8 MPa, by 348.4%. �c is a base rock mechan-
ics index that shows the hardness of rock. The higher �c is, 
the greater the elastic strain energy is, and the higher the risk 
and intensity grade of rockburst are. Likewise, the data of �c 
in Table 2 increase as the intensity grade rises. For example, 
the mean value of �c increases from 107.9 to 135.7 MPa, an 
increase of 25.8%. The initiation and propagation of cracks 
during rockburst are closely related to the uniaxial tensile 
strength of rock mass �t . The data in Table 2 indicate that 
�t increases with the increase of rockburst intensity grade. 
It is worth noting that since brittle crack failure occurs in 
rock mass during rockburst, the brittle coefficient �c∕�t can 
be deemed a characteristic index of rockburst intensity. In 
addition, Tang and Wang (2002) proposed a new empirical 
criterion based on �c∕�t . The values of �c∕�t in Table 2 are 
barely correlated with the rockburst intensity grade, and the 
data are highly discrete, which may result from the large 
number of outliers in the database. The gob-side rock mass 
with a larger stress coefficient ��∕�c has poorer stability of 
equilibrium and thereby is more prone to rockburst. Russenes 
(1974) proposed a rockburst criterion based on ��∕�c.This 
can be verified by the positive correlation between ��∕�c and 
the rockburst intensity grade (Table 2). Wet represents the 
ratio of the accumulated energy from elastic deformation of 
the surrounding rock to the released energy from its plastic 
deformation. Kidybinski (1981) proposed a classic rockburst 
classification criterion by testing the energy storage char-
acteristics of rocks. Clearly, if more energy is accumulated 
while less energy is released, the risk and intensity grade of 
rockburst would be higher. The mean value of Wet in Table 2 
rises from 2.9 of Grade 0 to 8.8 of Grade 3, by 206.2%. More-
over, some of the data in Table 2 have a large coefficient of 
variation. For example, the coefficient of variation of ��∕�c 
in data of Grade 0 is 0.8, and that of ��∕�c in data of Grade 
3 is 1. This demonstrates outliers in the database affect the 
predictive performance of the ML model.

Table 1   Standard for rockburst intensity classification

Rockburst 
grate

Meaning Failure characteristics

0 None rockburst There is no sound of rock burst or rockburst activities
1 Weak rockburst The surrounding rock is spalled, cracked or stripped, and there is a weak sound but no ejection phenomenon
2 Moderate rockburst The surrounding rock is more severely deformed and fractured with a considerable amount of rock chip 

ejecting, loose and sudden destruction, accompanied by a crunchy squeak which often appears in local 
cavern in the surrounding rock

3 Strong rockburst The surrounding rock is severely bursted and suddenly thrown or shot into the tunnel, accompanied by 
strong bursts and roaring sounds, air jets, the continuity of storm phenomena, and the rapid expansion into 
deep surrounding rock
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Pairs plots of the database built in this study are depicted in 
Fig. 2, where different colors of scattered points denote data 
of different rockburst grades. Kernel density maps of variables 
are on the diagonal lines of pairs plots, and the scatter diagrams 
of correlation between the two variables are in the non-diag-
onal areas. Besides, the Pearson correlation coefficient of the 
two variables is presented. Discrete points can be observed in 
all these correlation scatter diagrams. Meanwhile, data points 
of different rockburst grades overlap each other significantly 
in correlation scatter diagrams, which influences the predic-
tive performance of ML models. In Kernel density maps in 
Fig. 2, data of �� are concentrated in the range of 30–70 MPa 
(accounting for 66.7% of the total data), �c in 90–130 MPa 
(48.6%), �t in 3–7 MPa (55.2%), and Wet in 3–7 MPa (80.3%). 
The maximum Pearson correlation coefficient is 0.49, which 
means variables are mutually independent .

2.3 � Data Preprocessing

2.3.1 � Eliminating Outliers by DBSCAN

According to the analysis in Sect. 2.2, outlier points in the 
original data have a considerable impact on the predictive 
performance of the ML model. Therefore, abnormal data 
in the dataset were detected and eliminated by means of 
DBSCAN. DBSCAN, one of the density-based clustering 
algorithms, is used to determine the clusters of any shape 

that may exist in a given dataset (Ester et al. 1996). As this 
algorithm does not require human efforts to determine the 
number of clusters in advance, it can tackle with errors 
resulting from unreasonable setting of the cluster number.

DBSCAN only requires two parameters to create a new 
cluster, namely the radius of the cluster (eps) and the minimum 
number of points (MinPts) within a circle of radius eps (Hao 
et al. 2015). And it classifies all points into three types: core 
points, border points, and noise points. In Fig. 3a, A is the core 
point because the number of points within its cluster radius eps 
is more than or equal to MinPts; B is the border point because 
it is not a core point but it is within the cluster of a core point; 
a point that belongs to neither the type of Point A nor the type 
of Point B is a noise point, e.g., Point C in Fig. 3a.

DBSCAN is quite sensitive to the eps value. Spe-
cifically, an excessively small eps value may lead to an 
expanded range of noise points, whereas an excessively 
large eps value may result in a poor detection effect of out-
liers. The K-distance graph technique is used to determine 
the eps (Starczewski et al. 2020). As illustrated in Fig. 3b, 
with the number of nearest neighbors of each point in the 
rockburst database K regarded as the abscissa, K-distance 
was calculated and taken as the ordinate. Subsequently, 
kdist graph was plotted in ascending order, and the ordinate 
of its maximum curvature point is the best eps. The value 
of MinPts was determined based on Eq. (1) (Arafa et al. 
2022).

Fig. 2   Matrix scatter plot
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where N is the number of samples in the rockburst database.
The results indicate that the values of MinPts and eps 

are 6 and 1.014, respectively. Moreover, two samples of 
moderate rockburst and fifteen samples of strong rockburst 
are removed from the original database by means of 
DBSCAN.

2.3.2 � Eliminating Dataset Imbalance Through 
Cure‑MeanradiusSMOTE

According to the analysis in Sect. 2.2, the initial rockburst 
dataset is imbalanced. Consequently, ML models may mistake 
minority-class samples as majority-class ones, thereby weak-
ening the predictive performance of ML models. Hence, the 

(1)MinPts = lnN,
rockburst database needs to be oversampled. It is noteworthy 
that oversampling should be performed on rockburst datasets 
where the outliers have been omitted so as to prevent the gen-
eration of new outliers during the oversampling process. The 
CURE-MeanradiusSMOTE method proposed in this study is 
based on Kmeans-SMOTE, a common oversampling method.

CURE-MeanradiusSMOTE includes three stages, i.e., 
clustering, filtering, and oversampling. In the clustering stage, 
clustering is conducted on rockburst data by the clustering 
using representatives (CURE) algorithm. In the oversampling 
stage, the radius and geometric center are considered when 
new data are generated. Compared with the Kmeans-SMOTE, 
the proposed algorithm is more efficient for datasets of any 
shape, and can generate new data that are more likely to be 
distributed around the average radius of minority-class sam-
ples. In this way, it enhances ML models’ ability to recognize 
decision boundaries.

Table 2   Statistical parameters 
of different rockburst grades

Rockburst 
grade

Rockburst feature

Statistical parameter �� MPa �
c
 MPa �

t
 MPa �

c
∕�

t
��∕�c W

et

0 Maximum 77.69 241.00 17.66 47.90 1.05 0.81
Minimum 2.60 20.00 1.30 5.38 0.05 7.80
Mean 25.83 107.86 6.20 21.13 0.29 2.89
Coefficient 0.61 0.48 0.59 0.56 0.83 0.65

1 Maximum 126.70 263.00 22.60 69.60 0.90 9.30
Minimum 13.50 30.00 1.90 2.52 0.12 1.80
Mean 50.19 117.91 7.19 20.36 0.46 3.98
Coefficient 0.44 0.39 0.58 0.51 0.41 0.42

2 Maximum 118.77 304.00 19.17 80.00 1.27 21.00
Minimum 16.30 30.00 1.30 5.53 0.11 2.03
Mean 58.32 130.74 7.12 25.90 0.48 5.55
Coefficient 0.38 0.37 0.61 0.71 0.40 0.48

3 Maximum 297.80 306.58 22.60 32.20 4.87 30.00
Minimum 16.43 30.00 2.50 5.53 0.11 1.90
Mean 115.81 135.69 10.93 13.91 1.10 8.84
Coefficient 0.65 0.44 0.45 0.42 1.01 0.67

Fig. 3   DBSCAN. a DBSCAN 
clustering; b K-distance graph
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The CURE-MeanradiusSMOTE schematic is shown in 
Fig. 4, CURE-MeanradiusSMOTE schematic is shown, the 
specific procedure of CURE-MeanradiusSMOTE is intro-
duced as follows:

1.	  Clustering is conducted on rockburst data by the 
CURE algorithm, and clusters with a high proportion 
of minority-class samples are retained. The center of 
these clusters is calculated and denoted by xc.

2.	 The weights of rockburst characteristic indices are 
calculated by principal component analysis.

3.	  The weighted Euclidean distances between points in 
retained clusters in Step 1 and the cluster center are 
calculated, and then their average is calculated and 
represented by dm.

4.	 k minority-class samples are randomly selected from 
clusters retained in Step 1, and then k vectors vi from the 
sample center to samples are calculated. Resultant vector 
k
∑

i=0

vi of k vectors is calculated.

5.	 The distance between the new sample and the cluster 
center xc is determined based on the average distance 
dm and the parameter � . The new sample is created 
according to Eq. (2):

6.	  Steps 3–5 are repeated until the number of majority-
class and minority-class samples becomes balanced.

After data were made balanced, 55 data of none rockburst, 
26 data of weak rockburst, and 71 data of strong rockburst 
were generated. The new rockburst database has a total of 
452 rockburst data, the ratio of data of Grades 0–3 being 
1:1:1:1 .

(2)xnew = xc + r ∗
k
∑

i=0

�i r ∼ (
dm

�
, dm).

3 � ML Modeling

3.1 � Fundamental Theory of AOA and Voting

3.1.1 � Voting‑Soft Algorithm

Ensemble learning, also known as a multi-classifier system 
or committee-based learning, is an algorithm that creates 
and combines multiple learners to complete learning tasks 
(Wang et al. 2020). Voting is a kind of ensemble learning 
that consists of multiple heterologous individual classifiers 
(Rojarath and Songpan 2021). The schematic diagram of 
Voting is depicted in Fig. 5. Voting is carried out in two 
ways: Voting-Hard and Voting-Soft. For Voting-Hard, the 
final result is determined in line with the majority rule. As 
presented in Fig. 5, three out of five classifiers choose Type 
B, so the prediction result is B. For Voting-Soft, the aver-
age of probability that all model prediction samples are of 
a certain type is regarded as the standard, and then the type 
with the highest probability is the final prediction result. 
As can be seen from Fig. 5, since the average of probability 
that five classifiers choose Type A is 0.6 and that for Type 
B is 0.3, the prediction result is A. It should be noted that 
the voting weights of C1–C5 in Fig. 5 are all set to 1. Unlike 
Voting-Hard, Voting-Soft requires each individual learner 
to calculate the probability of each type. It can give higher 
weights to individual learners with excellent predictive per-
formance, so it typically outperforms Voting-Hard in terms 
of prediction.

3.1.2 � AOA

AOA is a population-based metaheuristic algorithm pro-
posed by Abualigah et al. in (2021). The inspiration for 
AOA comes from the application of arithmetic operators 
(addition, subtraction, multiplication, and division) in 
solving arithmetic problems. The algorithm can deal with 
optimization without calculating derivatives. It is simple, 
and boasts few control parameters and excellent output 
performance. AOA consists of three stages, i.e., initiali-
zation, exploration, and exploitation, and its schematic 
diagram is shown in Fig. 6.

Step 1 Initialization. Optimization strategies are selected 
with the aid of math optimizer accelerated (MOA).

AOA performs global search when r1 is greater than 
MOA, while it conducts local search when r1 is smaller than 
MOA. MOA is calculated based on Eq. (3):

where MOA(CIter) is the function value at the tth iteration; 
CIter is the present iteration whose value lies between 1 and 

(3)MOA
(

CIter

)

= Min + CIter ×

(

Max −Min

MIter

)

,

Fig. 4   Schematic diagram of CURE-MeanradiusSMOTE
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MIter ; Max and Min are the maximum and minimum values 
of the acceleration function, respectively.

Step 2 Exploration.

AOA carries out diversified global search by means of multi-
plication or division in the exploration stage. It performs division 
when r2 is smaller than 0.5, while it conducts multiplication 
when r2 is greater than or equal to 0.5. r2 is a random number, 
and r2 ∈ [0,1]. The location update strategy is:

(4)xi,j(CIter + 1) =

{

best(xj) ÷ (E + 𝜀) ×
[(

UBj − LBj

)

× 𝜇 + LBj

]

r2 < 0.5

best(xj) ×MOP ×
[(

UBj − LBj

)

× 𝜇 + LBj

]

otherwise,

Fig. 5   Schematic diagram of 
Voting

Fig. 6   Flowchart of AOA
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where xi,j(CIter + 1) is the ith solution in the next iteration; 
xi,j(CIter) is the jth position of the ith solution in the pre-
sent iteration; best(xj) is the jth position of the best solution 
obtained so far; � is a decimal number; UBj and LBj are the 
upper and lower limits of the jth position, respectively;  � 
is the control parameter that adjusts the searching process. 
Multi-objective optimization problem (MOP), which is the 
coefficient of mathematical optimization rate, is calculated 
according to Eq. (5):

where MOP(CIter) is the function value at the tth iteration; 
MIter is the maximum number of iterations; a is the sensi-
tive parameter, which defines the development accuracy of 
iteration.

Step 3 Exploitation.
AOA searches for the optimal solution in many dense 

regions in the exploration stage through the strategy of 
search by subtraction or addition. r3 is a random number, 
and r3 ∈ [0,1]. When r3 is smaller than 0.5, the strategy of 
search by subtraction is taken; when r3 is greater than 0.5, 
the strategy of search by addition is adopted. The location 
update strategy is:

(5)MOP(CIter) = 1 −
C
1∕a

Iter

M
1∕a

Iter

,

Fig. 7   Fivefold CV

(Motsinger and Ritchie 2006). In addition, the training 
set was randomly and evenly divided into five subsets, 
of which four were used for training models and deter-
mining their hyper-parameters, and one was for verifying 
these models’ generalization ability. The above process 
was repeated five times to obtain five different hyper-
parameters, whose average was considered the final hyper-
parameter (Fig. 7).

3.3 � Modeling and Hyper‑parameter Tuning

3.3.1 � Game Theory‑Based Model Combination

According to Sect. 3.1.1, though Voting-Soft has some 
advantages over Voting-Hard, it requires each individual 
learner to have remarkable predictive performance and 
obtain diversified predictive results, which is extremely 
difficult to achieve. Hence, individual learners in Voting-
Soft are required to take into consideration both accuracy 
and diversity. The accuracy of models shows their predic-
tive performance, and their diversity can be seen from the 
correlation between their predictive results. In this study, 
the conflict between diversity and accuracy of models was 
mitigated by using the combination weighting method of 

game theory (Feng et al. 2019). Besides, the best classi-
fier combination in Voting-Soft was determined through 
the exhaustive search method. The flow chart is shown in 
Fig. 8, the steps of calculation are as follows:

1.	 Prediction is performed by N ML models to obtain their 
prediction results and accuracy.

(6)
xi,j(CIter + 1) =

{

best(xj) −MOP ×
[(

UBj − LBj

)

× 𝜇 + LBj

]

r3 < 0.5

best(xj) +MOP ×
[(

UBj − LBj

)

× 𝜇 + LBj

]

otherwise.

3.2 � CV

CV is a common method for evaluating the generalization 
ability of ML models. In CV, the dataset is divided many 
times, and several models need to be trained. K-fold CV 
is the most common CV method (Wong and Yeh 2020). 
In this study, k was set to 5 according to previous studies 
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2.	 The diversity and accuracy weights of each individual 
learner are calculated.

	   First, the Kendall correlation coefficients (Kendall) 
of prediction results of N models are calculated. The 
sum of correlation coefficients between an individual 
learner and others is averaged to obtain the correlation 
between this individual learner and others. The smaller 
the correlation is, the greater the difference between this 
individual learner and others. The diversity weight of the 
model is calculated through Eqs. (7) and (8):

where b is the correlation between a model and others; 
n is the number of models;�∗

i
 is the diversity coefficient 

of the model; �i is the diversity weight of the model 
(Fig. 8).

	   The greater the accuracy of a model is, the better 
its performance is. The accuracy weight of a model is 
calculated by Eq. (9):

(7)�∗
i
=

n−1
∑

i=1

bi

�

n − 1

n
∑

i=1

(
n−1
∑

i=1

bi

�

n − 1)

,

(8)
�i =

1∕�∗
i

n
∑

i=1

1∕�∗
i

,

where a is the accuracy of the model; and wi is the 
accuracy weight of the model.

3.	  The comprehensive weight of each individual learner 
is calculated by the combination weighting method of 
game theory according to Eq. (10):

where � is the diversity weight matrix; a is the accuracy 
weight matrix; b1 and b2 are the linear combination 
coefficients to be solved; and W  is the combination 
weight matrix. b∗

1
 and b∗

2
 are calculated through Eqs. 

(12) and (13):

4.	 N models are placed into Voting for training and 
prediction, and models with small weights are eliminated 
in sequence to select the optimal model combination for 
rockburst intensity grade prediction in Voting.

(9)wi = ai

/

n
∑

i=1

ai,

(10)
(

�1�
T
1
�1a

T

a�T
1

aaT

)[

b1
b2

]

=

[

�1�
T
1

aaT

]

,

(11)W = b∗
1
�T
1
+ b∗

2
�T
2
,

(12)b∗
1
=

b1

b1 + b2
,

(13)b∗
2
=

b2

b1 + b2
.

Fig. 8   Schematic diagram of 
weight calculation by the game 
theory
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3.3.2 � Modeling

The dataset, consisting of 419 data, is split into the training 
and test sets. ML models are trained on the training set, 
and their generalization ability is tested on the test set. 
Because the type, number, voting weight, and predictive 
capability of individual learners in Voting-Soft models 
influence their predictive performance, in this study, the 
optimal combination of individual learners was determined 
based on the game theory, and the hyper-parameter and 
voting weight of each individual learner were determined by 
means of AOA and fivefold CV. Furthermore, the maximum 
number of iterations was set to 100, with ten individuals 
in each iteration. The sensitive parameter was 5, and the 
control parameter was 0.499. All parameters of AOA were 
determined through experimental testing. The modeling 
process is displayed in Fig. 9, and its steps are as follows:

1.	 Data are collected and analyzed.
2.	 Outliers are detected and eliminated by DBSCAN, and 

the data structure is made balanced by MeanRadius-
SMOTE.

3.	 The preprocessed rockburst database is split into the 
training and test sets at a ratio of 7:3.

4.	 Hyper-parameters of base classifiers are determined by 
means of AOA and fivefold CV.

5.	 The combination weight of each individual learner is 
calculated through the combination weighting method 
of game theory.

6.	 The Voting-Soft model is built, and voting weights of 
base classifiers in Voting-Soft are determined through 
AOA and fivefold CV.

7.	 Individual learners with low weights are removed in 
sequence.

8.	 Whether the termination condition is met is determined. 
If it is, the Voting-Soft-AOA model is established based 
on the optimal combination of individual learners and 
voting weight; otherwise, Step 6 is performed.

9.	 The generalization ability is tested, and importance 
analysis is conducted on characteristic variables.

3.4 � Model Evaluation

Accuracy and recall, which are common indicators to 
evaluate predictive ability of classification models, are 
calculated with the confusion matrix (Fig. 10). The confu-
sion matrix is widely adopted for evaluating the predictive 
accuracy of classification models in binary classification. 
In the confusion matrix for multi-class classification, each 
class is deemed positive in turn, and others negative. In 
this way, multi-class classification is converted into binary 

Fig. 9   Flowchart of modeling
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classification (Trajdos and Kurzynski 2018). The schematic 
diagram is exhibited in Fig. 10.

In addition to the above metrics, the receiver operating 
characteristic (ROC) and a larger area under the curve 
(AUC) evaluation metrics were applied in this study. False-
positive rate and true-positive rate at different thresholds 
need to be calculated to draw a ROC curve whose abscissa 
and ordinate are the false-positive rate and the true-positive 
rate, respectively. AUC usually means higher classification 
accuracy. ROC and AUC can demonstrate the false-positive 
rate and the true-positive rate comprehensively. It is 
noteworthy that AUC and ROC can only be used for binary 
classification. Curves of each class are plotted for rockburst 
intensity grade prediction by binary decomposition. Four 
ROC curves were drawn, and four AUC values were 
calculated. Subsequently, these four ROC curves were 
averaged to obtain the curve of multi-class classification, and 
the four AUC values were also averaged to obtain the value 
of multi-class classification. Generally, a higher AUC value 
is indicative of better predictive performance of a model 
(Chen et al. 2022).

4 � Results and Discussion

4.1 � Verification of Data Preprocessing Effect

Voting in this study contains seven heterogenous individual 
classifiers, including three ensemble learning algorithms 
(XGBoost, GBDT, and RF), one neural network algorithm 
(MLP), and three single classical ML algorithms (KNN, 
SVM, and Bayesian). For the purpose of verifying the 
effect of the data preprocessing method (DBSCAN and 
Cure-MeanradiusSMOTE) used in this study, the prediction 
effects of these seven individual learners in the original rock-
burst database and the preprocessed rockburst database were 
compared by regarding model accuracy as the evaluation 
indicator. As presented in Table 3, the prediction accuracy 
of GBDT in the original rockburst data is 0.677. After being 
processed by SMOTE (Chawla et al. 2002; Fernandez et al. 
2018), Kmeans-SMOTE (Douzas et al. 2018)and the data 
preprocessing method presented in this study, the model’s 
prediction accuracy is raised by 5.8%, 7.5%, and 11.7%, 
respectively. Obviously, the algorithm accuracy of seven 
individual learners is improved to varying degrees after data 
are preprocessed by the method presented in this study.

For the purpose of better demonstrating the preprocess-
ing effect of rockburst data, dimensionality reduction and 

Fig. 10   Schematic diagram of 
confusion matrix

Table 3   Prediction accuracy 
of individual learners with 
different data preprocessing 
methods

Model Original database Database 
processed by 
Smote

Database processed 
by Kmeans-SMOTE

Database processed by the 
method presented in this 
study

GBDT 0.677 0.735 0.752 0.794
XGBoost 0.635 0.757 0.752 0.765
SVM 0.531 0.735 0.659 0.794
MLP 0.542 0.706 0.667 0.772
KNN 0.531 0.721 0.674 0.721
RF 0.688 0.743 0.723 0.750
Bayesian 0.646 0.676 0.617 0.728
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visualization were conducted on rockburst data by t-dis-
tributed stochastic neighbor embedding (TSNE). TSNE is 
a visualization tool that can maintain data separability of 
low-dimensional spaces in high-dimensional ones (Zhu et al. 
2019). The distribution of the rockburst dataset before and 
after preprocessing is depicted in Fig. 11. It can be found 
from Fig. 11 that many outliers exist in the original rockburst 
data, and data of all intensity grades are mixed together. 
SMOTE creates new classes in the area of majority-class 
samples, and the new samples generated may be outliers. 
Samples created by KMeans-SMOTE seriously overlap, 
which may lead to overfitting. As presented in Fig. 11d, new 
samples generated by the method in this study are distributed 
uniformly in the space of minority class, and rockburst data 
of an intensity grade cluster together without outliers.

Fig. 11   3D spatial distribution map of rockburst data. a Original data; b Data preprocessed by SMOTE; c Data preprocessed by KMeans-
SMOTE; d Data processed by the method presented in this study

Table 4   Hyper-parameters of individual learners

Model Hyper-parameter Value

RF Number of DTS 96
DTS maximum depth 100

MLP Alpha 0.618
Learning rate 0.004

XGBoost Number of boosting rounds 17
Learning rate 0.01

GBDT Maximum depth 3
Number of boosting iterations 88
Learning rate 0.133

KNN Nearest neighbor number 11
SVM Penalty coefficient 1.013

Kernel function RBF
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4.2 � Hyper‑parameter Tuning for Base Classifiers

Hyper-parameters of seven individual learners in Voting 
were optimized by means of AOA and fivefold CV. Bayesian 
does not need optimization owing to its particularity. 
Accuracy was set as the objective function of AOA to find 
optimal hyper-parameters for other individual classifiers. 
Hyper-parameters and optimal values of classifiers are 
displayed in Table 4.

Figure 12 shows the iteration process in which AOA 
finds the maximum accuracy. Due to randomness of initial 
points in AOA, objective functions of different models 

Fig. 12   Hyper-parameter tuning 
for individual learners

Table 5   Comprehensive weights of individual learners

Model Diversity weight Accuracy weight Combination 
weight

GBDT 0.144 0.152 0.150
XGB 0.146 0.146 0.146
SVM 0.138 0.145 0.143
MLP 0.139 0.144 0.143
KNN 0.144 0.140 0.141
RF 0.144 0.139 0.140
Bayesian 0.146 0.133 0.136
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have different values in the initial state. For instance, in 
SVM, the accuracy of objective functions increases gradu-
ally as the iteration is performed, which means AOA is 
effective in tuning SVM architecture. The highest accu-
racy is 0.62 at the 1st iteration, while it increases to 0.79 
at the 50th iteration. At this time, the penalty coefficient 
is 1.012567, and the Kernel function is the radial basis 
function (RBF).

4.3 � Optimal Combination of Base Classifiers

To calculate the combination weight of each individual 
classifier, the diversity weight, accuracy weight, and com-
bination weight of each individual classifier were calcu-
lated with the method introduced in Sect. 3.3.1 based on 
the prediction results of optimized individual classifiers. 
The calculation results in Table 5 indicate that Bayesian 
has the lowest combination weight, 0.136, while GBDT 
has the highest combination weight, 0.150.

Voting-Soft-AOA models were built based on seven 
classifiers, and then those with low weights were elimi-
nated sequentially by the exhaustive search method. 
According to the results in Fig.  13, the Voting-Soft-
AOA model built with seven base classifiers has the best 
performance, with an overall accuracy of 0.875. As the 
number of base classifiers reduces, the performance of 
Voting-Soft-AOA models becomes progressively worse. 
The Voting-Soft-AOA model built with three base classi-
fiers has the lowest overall accuracy, 0.80147. Hence, the 
Voting-Soft-AOA model build with seven base classifiers 
was ultimately chosen in this study.

4.4 � Voting Weight Tuning for Base Classifiers

Figure 14 displays the iterative process in which AOA finds 
the maximum accuracy. It can be seen from Fig. 14 that the 
accuracy increases gradually as AOA iterates, which means 
AOA is effective in optimizing weights of base classifiers. 
The first iteration witnesses the lowest accuracy of 0.8459, 
and it rises to 0.875 in the 27th iteration. Hyper-parameters 
of Voting-Soft are listed in Table 6.

4.5 � Prediction Performance

4.5.1 � Performance Comparison Between Ensemble 
and Individual Classifiers

Table 7 reveals F1-score, recall, and accuracy of the ensem-
ble classifier (Voting-Soft-AOA), and individual classifiers 
at three rockburst intensity grades (grades 0–3). In predic-
tion of none rockburst, Voting-Soft-AOA has the highest 
F1-score, recall, and accuracy of 0.96, 0.91, and 1, respec-
tively. In prediction of weak rockburst, Voting-Soft-AOA 
has the highest F1-score, recall, and accuracy of 0.79, 0.88, 
and 0.72, respectively. In prediction of moderate rockburst, 

Fig. 13   Accuracy of Voting-Soft-AOA models with different classi-
fier combinations in the test set

Fig. 14   Schematic diagram of Voting-Soft-AOA iteration

Table 6   Voting weights of base 
classifiers

Base classifier Weight

XGBoost 0.199
RF 0.199
GBDT 0.164
Bayesian 0.011
KNN 0.199
SVM 0.199
MLP 0.029
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GBDT and XGBoost have the highest recall of 0.75, while 
Voting-Soft-AOA has the highest F1-score and accuracy of 
0.77 and 0.82, respectively. In prediction of strong rockburst, 

XGBoost has the highest accuracy of 0.87, while Voting-
Soft-AOA has the highest F1-score and recall of 0.91 and 
0.86, respectively. Overall, Voting-Soft-AOA shows the best 
predictive performance at all the three rockburst intensity 
grades.

Table 7   Performance 
comparison of Voting-Soft-
AOA and other ML models

Model Metrics 0 (None) 1 (Weak) 2 (Moderate) 3 (Strong)

Voting-Soft-AOA F1 0.96 0.79 0.77 0.88
Recall 0.91 0.88 0.72 0.91
Accuracy 1 0.72 0.82 0.86

GBDT F1 0.9 0.77 0.76 0.87
Recall 0.82 0.88 0.75 0.88
Accuracy 1 0.68 0.77 0.85

XGBoost F1 0.89 0.72 0.71 0.84
Recall 0.8 0.81 0.75 0.82
Accuracy 1 0.64 0.67 0.87

SVM F1 0.92 0.72 0.62 0.85
Recall 0.91 0.77 0.59 0.85
Accuracy 0.93 0.67 0.66 0.85

MLP F1 0.94 0.71 0.51 0.87
Recall 0.91 0.88 0.41 0.91
Accuracy 0.98 0.59 0.68 0.83

KNN F1 0.86 0.7 0.61 0.83
Recall 0.8 0.81 0.53 0.91
Accuracy 0.92 0.62 0.71 0.77

RF F1 0.89 0.64 0.62 0.791
Recall 0.89 0.69 0.62 0.76
Accuracy 0.91 0.6 0.62 0.83

Bayesian F1 0.85 0.57 0.51 0.83
Recall 0.91 0.58 0.41 0.91
Accuracy 0.8 0.56 0.68 0.77

Fig. 15   Accuracy of Voting-Soft-AOA and other ML models

Fig. 16   ROC curves and AUC values of seven individual classifiers 
and Voting-Soft-AOA on the test set
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Figure 15 exhibits the overall accuracy of seven individ-
ual classifiers and Voting-Soft-AOA. Among the seven indi-
vidual classifiers, GBDT has the highest accuracy of 83.1%, 
followed by XGBoost, SVM, MLP, KNN, RF, and Bayesian 
in turn. The Voting-Soft-AOA model has the highest overall 
accuracy of 87.5%, 4.4% higher than that of the ensemble 
learning algorithm GBDT. It suggests that Voting-Soft-AOA 
is superior in rockburst intensity grade prediction.

Figure 16 presents ROC curves and AUC values of seven 
individual classifiers and Voting-Soft-AOA. ROC curves of 
all the prediction models are on the upper left. In general, 
the ROC curve of Voting-Soft-AOA is the closest to the 
upper left corner, which proves the best predictive perfor-
mance of Voting-Soft-AOA. Among the seven individual 
learners, GBDT has the highest AUC value of 0.948, while 
KNN has the lowest AUC value of 0.891. Voting-Soft-AOA 
has the highest AUC value of 0.952, 0.004 higher than that 
of GBDT. The results demonstrate that Voting-Soft-AOA 
achieves the best performance in predicting rockburst inten-
sity grades.

4.5.2 � Performance Comparison Between Voting‑Soft‑AOA 
and Other Ensemble Algorithms

To compare the predictive performance of Voting-Soft-AOA 
with other ensemble algorithms, Voting-Hard, Voting-Soft, 
Stacking, Bagging SVM (BagSVM), and Bagging KNN 
(BagKNN) were selected as comparative models. Figure 17 
displays the overall accuracy of different ensemble algo-
rithms on the test set. Voting-Soft-AOA has the highest 
overall accuracy, followed by Stacking, and BagKNN per-
forms the worst. In addition, Voting-Soft performs better 
than Voting-Hard, which demonstrates that giving different 

weights to different individual learners can improve the pre-
dictive performance of Voting. After hyper-parameter tuning 
for Voting-Soft with the aid of AOA, the accuracy of Vot-
ing-Soft model is 0.875, better than that of other ensemble 
learning models.

In the hope of further testing the predictive performance 
of different ensemble algorithms, F1-score was regarded as 
an evaluation index here. The F1-score values of different 
ensemble algorithms on the test set are illustrated in Fig. 18. 
Voting-Soft-AOA is superior to other ensemble models, 
while BagKNN is inferior to other ensemble models in terms 
of predictive capability at all the rockburst intensity grades.

4.6 � Variable Importance

To calculate the relative importance of rockburst 
characteristic variables, Voting-Soft-AOA was taken as the 
objective function, and sensitivity analysis was performed 
on characteristic variables by the random balance design 
Fourier amplitude sensitivity test (RBD-FAST). RBD-
FAST is a method that achieves the latest development in 
FAST by RBD, so as to reduce computational costs (Mara 
2009). All parameters are set to the same frequency, and 
they are randomly recombined after sampling. Then, Fourier 
decomposition is performed with fast Fourier transform 
(FFT) on the model output based on the order of the previous 
recombination to obtain the first-order sensitivity analysis 
results of parameters (Gao et al. 2020).

In RBD-FAST, changes in the results are decomposed 
into:

(14)Si =
Vxi

/

V(Y),

Fig. 17   Accuracy of different ensemble algorithms on the test set
Fig. 18   F1-scores of different ensemble algorithms on the test set
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where Vxi
 is the variance-based first-order influence of 

input factor xi ; and V(Y) is the total variance output by 
Voting-Soft-AOA.

The relative importance of each input variable was cal-
culated (Fig. 19). It can be seen from Fig. 19 that Wet is the 
most important input variable with a relative importance 
score of 0.45, followed by �� (0.31), ��

/

�c (0.15), �t (0.04), 
�c∕�t (0.03), and �c (0.02) in turn.

The calculation results show that Wet is the most impor-
tant factor affecting the intensity grade of rockburst. As one 
of the most commonly used evaluation indicators for the 
intensity grade of rockburst, Wet is often used in research on 
rockburst empirical criteria. The larger its value is, the more 
energy is released during rockburst. Thus, it can effectively 
reflect the occurrence and intensity of rockburst. In addi-
tion, the calculation results in this study are consistent with 
the research results of many scholars (Sun et al. 2021; Xue 
et al. 2022; Zhang et al. 2020). It is noteworthy that although 
the calculation results show that �c has the lowest relative 
importance, it does not mean that �c is unimportant, because 
the results were observed by comparing all the influencing 
factors together. Meanwhile, the calculation results in this 
study are also different from those of some other scholars 

(Guo et al. 2022; Li et al. 2022b), mainly for the follow-
ing reasons: (1) Different datasets can result in different 
degrees of variation, extremum values, input parameters, 
and rockburst grades of each variable, all of which can lead 
to different final calculation results. Besides, different data 
preprocessing methods may also yield different calculation 
results. (2) Different prediction models may lead to different 
nonlinear relationships between input and output variables, 
thereby producing different calculation results. Therefore, 
in future work, the authors will collect more samples, con-
struct larger databases, and establish models with stronger 
generalization ability to make the calculation results more 
accurate.

A larger Wet means that more energy is stored in the 
surrounding rock, and thus the risk of rockburst is higher. 
Scholars have put forward various measures (He et  al. 
2020; Zhang et al. 2023, 2019; Zhao et al. 2016) to reduce 
the impact of Wet on rockburst intensity grades: (1) Roof 
pressure relief technology. It destroys those rock strata with 
large energy storage ahead of time by virtue of technologies 
including blasting, hydraulic fracturing, and surface 
fracturing, thus making rock strata less intact and releasing 
the stored energy. In this way, the value of Wet can be 
decreased to make engineering less prone to rockburst. (2) 
Floor pressure relief technology. It damages floor structures, 
and thus releases stored elastic energy in a timely manner by 
methods including deep hole floor-break blasting and floor 
grooving.

5 � Case Application

For the purpose of testing the predictive performance of 
Voting-Soft-AOA in practical engineering, on-site data were 
collected from five different tunnels and mining projects, 
and six parameters obtained on-site were taken as input into 
this model to predict the on-site rockburst intensity grade. 
Besides, the prediction results were compared with those 
of the empirical prediction method based on the Russenes 
criterion (Russenes 1974). The prediction results revealed in 
Table 8 show that predictions of Voting-Soft-AOA are in line 
with actual situations of all these projects. Meanwhile, the 

Fig. 19   Relative importance of characteristic variables

Table 8   Engineering application of the proposed Voting-Soft-AOA model

Group ��/MPa �
c
/MPa �

t
/MPa �

c
∕�

t
��∕�c W

et
Actual Voting-Soft-

AOA predicted
Russenes 
criterion 
predicted

1 (Zhang et al. 2019) 35 133.4 9.3 14.34 0.26 2.89 1 1 0
2 (Tang and Xu 2020) 87.31 137.7 9.62 14.31 0.63 7.14 3 3 3
3 (Tang and Xu 2020) 87.31 94.4 9.16 10.31 0.92 3.57 1 1 3
4 (Wang et al. 2013) 121 87.5 8.73 13.9 0.72 9.05 3 3 3
5 (Wang et al. 2013) 79.1 124 8.64 14.4 0.64 7.74 3 3 3
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overall prediction accuracy of Voting-Soft-AOA is superior 
to that of the Russell criterion. This proves that the model 
has great generalization ability and thereby can be applied 
in practical engineering. Moreover, these new rockburst data 
can enrich the rockburst database to improve the predictive 
ability of models.

6 � Conclusions

A Voting-Soft-AOA ML model for rockburst data 
preprocessing and rockburst intensity grade prediction was 
proposed in this study. Besides, multiple data preprocessing 
methods were compared to verify the superiority of 
DBSCAN and Meancure-SMOTE in data prediction, as well 
as the accuracy of Voting-Soft-AOA in rockburst intensity 
grade prediction. Conclusions are summarized as follows:

1.	 The data were preprocessed by eliminating Outliers in 
the rockburst database through DBSCAN and then mak-
ing the dataset balanced through Meancure-SMOTE. 
The predictive abilities of seven prediction models on 
different datasets were compared, and the distribution of 
these datasets in three-dimensional space was observed. 
It is drawn from the results that methods proposed in this 
study show better predictive performance than Kmeans-
SMOTE, and SMOTE.

2.	 Hyper-parameters and voting weights for base classifiers 
in Voting were determined by means of AOA and 
fivefold CV. In addition, the optimal combination of 
base classifiers in Voting-Soft-AOA was determined by 
the combination weighting method of game theory and 
the exhaustive search method.

3.	 Voting-Soft-AOA outperforms individual learners and 
other ensemble models in terms of prediction at all the 
four rockburst intensity grade and overall prediction.

4.	 Sensitivity study was conducted on input variables with 
RBD-FAST, and the results suggest that Wet is the most 
important input variable, with a relative importance 
score of 44.94%. Hence, emphasis should be placed 
on Wet in practical underground engineering to prevent 
rockburst.

5.	 The application of Voting-Soft-AOA to practical 
engineering proves that it can provide reference for 
rockburst warning in actual underground engineering.
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