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Abstract
Discontinuities largely influence the mechanical properties of rock joints. However, traditional discontinuity recognition 
methods often require manual intervention during processing. This paper proposes a new deep-learning-based method for 
discontinuity recognition using 3D point clouds. A neighborhood PCA-weighted oriented contraction method is proposed to 
extract point cloud skeletons as discontinuity intersection lines. Then an optimal color mapping (OCM) method is proposed 
to establish the optimal mapping relationship between 3D normal vectors and RGB, converting 3D point clouds to 2D OCM 
images for discontinuity segmentation. The convolutional neural network of Mask R-CNN is adopted to segment discontinui-
ties from OCM images. Finally, 3D discontinuities can be generated from discontinuity-segmented OCM images. Forty-two 
rock slope image sequences and a rock slope point cloud are collected and labeled, generating 4632 OCM images including 
430,613 discontinuity planes after data augmentation for training. Three cases of rock slopes and rock tunnel excavation 
faces are adopted for testing. The average recognition time per 3D point cloud model is approximately 12 s due to the high 
recognition efficiency of Mask R-CNN for 2D images. The results show the proposed method can recognize discontinuities 
close to manual judgements with high accuracy, good robustness to point cloud density variations, and good adaptability to 
different rock engineering scenarios.

Highlights

•	 An NPW-OC method is proposed to extract point cloud skeletons.
•	 An OCM method is proposed to assign 3D normal vectors with optimal RGB.
•	 OCM images are generated to assign discontinuities with different and uniform color.
•	 Deep-learning-based method is used for intelligent recognition of discontinuities.
•	 Conversion of discontinuity recognition from 3D point clouds to 2D OCM images.
•	 The results show good efficiency, accuracy, robustness, and adaptability .
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1  Introduction

Discontinuities largely influence the mechanical behaviors 
of rock joints (Barton 1978). The international society for 
rock mechanics (ISRM) proposed ten parameters to quan-
titatively describe the properties of rock discontinuities, 
including orientation, roughness, aperture, wall strength, 
filling, seepage, spacing, persistence, number of sets, and 
block size (Barton 1978). In addition, the geometry of 
discontinuities has been applied to a variety of practices, 
including the hazard identification and monitoring (Her-
rera et al. 2010; Jones and Hobbs 2021), structural geology 
(Cawood et al. 2017), landslides (Jaboyedoff et al. 2012), 
earthquakes (Rathje and Franke 2016), identification of 
fault areas (Chen et al. 2015), mapping ground texture 
(Yan et al. 2015), and geospatial analysis of data (Deibe 
et al. 2020; de Oliveira et al. 2021; Kong 2021; Smith and 
Holden 2021). Therefore, accurate recognition of discon-
tinuities is essential for the analysis of rock engineering.

The traditional method relies on the manual visual 
recognition of discontinuity planes and contact meas-
urements of engineers to collect geometry data, which is 
time-consuming and easily affected by user bias (Priest 
1993; Abellán et al. 2014; Gigli et al. 2022). Alternatively, 
remote sensing methods such as laser scanning and ste-
reophotogrammetry have been adopted to collect high-
resolution 3D point clouds for discontinuity recognition 
(Ferrero et al. 2016; Chen et al. 2017; Giordan et al. 2018; 
Li et al. 2019). Therefore, various methods based on 3D 
point clouds have been proposed for discontinuity recogni-
tion (Daghigh et al. 2022). These methods can be mainly 
divided into two types.

The first type of discontinuity recognition method 
requires carrying out orientation grouping in advance, and 
the discontinuity planes are then extracted based on the opti-
mal orientation grouping results. For instance, Riquelme 
et al. (2014) adopted a kernel density estimation (KDE) to 
recognize the optimal discontinuity sets using two manually 
adjusted parameters of cone filter and max poles filter. Then 
the density-based scan algorithm with noise (DBSCAN) 
method was used to generate independent discontinuities 
with two user-defined parameters of ε and min-pts. Kong 
et al. (2020) adopted the clustering by fast searches an find-
ing density peaks (CFSFDP) (Rodriguez and Laio 2014) 
method to perform the optimal orientation grouping using 
a user-defined parameter of cutoff distance. The disconti-
nuity planes were then recognized using DBSCAN. How-
ever, these are semi-automatic methods requiring manual 
adjustment of parameters when dealing with different rock 
models. In addition, there are automatic methods using 
clustering validity indexes, such as Silhouette index (Rous-
seeuw 1987; Chen et al. 2016; Ruiz Pereira et al. 2021), 

Caliński–Harabasz index (Caliński and Harabasz 1974; 
Esmaeilzadeh and Shahriar 2019; Singh et al. 2022a) and 
Xie–Beny index (Xie and Beni 1991; Hammah and Curran 
2000; Liu et al. 2022; Yan et al. 2022), etc., for extracting 
optimal group number and grouping results. However, the 
discontinuity recognition accuracy is heavily dependent on 
the effects of optimal grouping results which can be incon-
sistent among different validity indexes because of their dif-
ferent calculation emphasis.

The second type of method is designed to directly 
extract discontinuity planes without grouping in advance. 
For example, the region-growing method is used to extract 
the discontinuity planes based on the variation of normals 
or curvatures in local surfaces (Wang et al. 2017; Ge et al. 
2018). However, the growing seed location and growing 
criteria require to be predefined and modified for different 
datasets (Vo et al. 2015). The computational efficiency 
is also limited because of the iterative growing process. 
Random sample consensus (RANSAC) method is also 
used to extract discontinuity planes by iterative estimation 
of plane parameters (Raguram et  al. 2013). However, 
a threshold to judge whether a point is within a plane is 
required to be manually fine-tuned for different datasets. The 
computational cost is still high because of the iterative nature 
and the randomness process (Raguram et al. 2013; Liu et al. 
2019). In addition, the amplitude and phase decomposition 
(APD) approach is also proposed for discontinuity plane 
detection with the fast Fourier transform (FFT)-based 
decomposition of signals (Singh et al. 2022a). However, this 
method also requires manual selection of several parameters 
within the optimal range for different datasets.

In addition, compared with the traditional machine 
learning methods, the rapid development of deep learning 
techniques and artificial intelligence gives another solution 
to improve the accuracy, efficiency, and automation in dis-
continuity plane recognition. As one of the representative 
techniques in computer vision in deep learning field, the 
convolution neural network (CNN) has been widely used in 
many aspects of rock engineering, such as rock type clas-
sification (Ran et al. 2019; Alférez et al. 2021; Chen et al. 
2023), rock discontinuity trace detection (Chen et al. 2021; 
Qiao et al. 2022), rock strength prediction (Zhao et al. 2023), 
etc. However, because of the lack of large-scale 3D rock dis-
continuity data with various rock types and the high labeling 
expense of 3D discontinuity planes, the deep-learning-based 
method of 3D discontinuity plane recognition has not been 
widely applied.

This paper proposes an intelligent recognition method of 
rock discontinuity based on optimal color mapping (OCM) 
of 3D point clouds via deep learning. The proposed method 
mainly consists of five steps, including step 1 of point cloud 
preprocessing and discontinuity intersection line extrac-
tion, step 2 of normal vector OCM, step 3 of generation of 
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OCM images, step 4 of data preparation and Mask R-CNN 
model training, and step 5 of discontinuity recognition by 
the trained Mask R-CNN model. This paper is organized as 
follows: an introduction of rock discontinuity recognition 
methods using 3D point clouds is presented in Sect. 1, the 
specific procedure of the proposed method is presented in 
Sect. 2, the proposed method is applied to three cases in 
Sect. 3, the method is discussed in Sect. 4 and some conclu-
sions are drawn in Sect. 5.

2 � Methodology

This paper proposes an intelligent recognition method of 
rock discontinuities based on OCM of 3D point clouds 
via deep learning. The detailed flow chart of the proposed 
method is shown in Fig. 1. This method starts with the input 
of 3D point cloud models and is mainly composed of five 
steps. In step 1, after obtaining 3D point clouds of rock mass, 
a neighborhood PCA-weighted oriented contraction (NPW-
OC) method is proposed to extract sharp point skeletons as 
discontinuity intersection lines. In step 2, the OCM method 
is proposed to map normal vectors to optimal RGB colors. 
In step 3, the color-mapped point cloud combined with sharp 
point skeletons is used for OCM image generation. In step 4, 
OCM images are manually labeled with ground truth discon-
tinuities and augmented. Next comes a two-stage operation. 
In the training stage of step 4, the Mask R-CNN model is 
adopted for training with augmented OCM images and the 
mask images corresponding to labeled OCM images. In the 
recognition stage of step 5, discontinuities are segmented 
by the trained Mask R-CNN model using OCM images to 
generate mask images. Finally in step 5, 3D discontinuities 
are mapped from 3D point cloud models based on the mask 
images of segmented discontinuities.

A rock slope case is adopted to illustrate each step of 
the proposed method. The rock slope is located in Moun-
tain Lao, Qingdao, China. An Iphone12 mobile phone is 
used to take seven images (4032 × 3024) at different loca-
tions in front of the slope (Fig. 2a). The image sequence is 
then processed by the Meshroom opensource software to 
reconstruct the 3D point cloud model. The region of interest 
(ROI) is shown in the black rectangle in Fig. 2b, which con-
tains 397,546 points with the approximate average spacing 
of adjacent points of 2.20 cm.

2.1 � Point cloud preprocessing and discontinuity 
intersection line extraction (step 1)

After obtaining the raw point cloud, the preprocessing is 
first to be performed. Considering the intersection lines 
of adjacent discontinuity planes are commonly used for 
discontinuity segmentation (Khaloo and Lattanzi 2017; 

Li et al. 2016; Singh et al. 2022b), the Laplacian-based 
contraction method is used for the extraction of point 
cloud skeletons located on the intersection lines of 
adjacent discontinuities (Zhang et al. 2020). However, 
this method requires point cloud meshing and cannot be 
directly performed on raw point clouds. Therefore, this 
section proposes a neighborhood principle-component-
analysis (PCA)-weighted oriented contraction (NPW-OC) 
method to extract intersection line as point cloud skeletons 
from raw point clouds without meshing.

2.1.1 � Normal vector calculation and hemispherization 
(step 1.1)

After obtaining 3D point cloud models, normal vectors 
are required to be calculated first. The least square method 
and the PCA are often used in normal vector estimation 
(Sturzenegger and Stead 2009; Abellán et al. 2014). In 
addition, there are some adaptive methods to improve 
the robustness of normal vector quality to noises (Wang 
et al. 2013). In this paper, the PCA method is adopted for 
normal vector calculation.

Given the point cloud P = {p1, p2,… , pN} (N denotes 
the point number), then the normal vector of a point 
p0 ∈ P requires to calculate the covariance matrix as

where pi is the ith point of knn nearest points of p0 with 
Euclidean distance. �1 ≥ �2 ≥ �3 are the eigenvalues and 
the normal vector vec0 of p0 is the 3rd eigenvector ��⃗e3 of 
Mcov . Considering that small knn (e.g., knn=15) can cause 
significant noise in normal vector calculation and large knn 
(e.g., knn>30) can significantly smooth local curvatures 
(Riquelme et al. 2014), knn = 20 is set as an initial value 
in this paper. Equation (1) is programmed from scratch in 
Matlab.

Because normal vector hemispherization is commonly 
used in discontinuity analysis (Jimenez-Rodriguez and 
Sitar 2006), all vectors with z coordinates smaller than 
zero are reversed to the upper unit hemisphere.

2.1.2 � Sharp point detection (step 1.2)

Sharp points are referred to edge points and corner points 
located in large curvatures (Wang et al. 2013). Therefore, 
the neighbor angle variation is adopted for the sharp point 
detection.

The distance metric is first defined as the acute angle 
of normal vectors (Jimenez-Rodriguez and Sitar 2006). 

(1)Mcov =
1

knn

knn∑
i=1

(
pi − p0

)(
pi − p0

)T
=

3∑
i=1

𝜆i��⃗ei��⃗ei
T
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Given the normal vector set Vec = {vec1, vec2,… , vecN} , 
the distance metric is defined as (2)dist

�
veci, vecj

�
= arccos

⎛⎜⎜⎝

���veci ⋅ vecj
���

��veci�����vecj
���

⎞⎟⎟⎠

Fig. 1   Flow chart of the proposed method. In and Out denote the input and output data types of each step, respectively



4877OCM: an intelligent recognition method of rock discontinuity based on optimal color mapping…

where veci and vecj denote any two normal vectors. All the 
arccos calculation in this paper is performed using the acosd 
function in Matlab.

Then the neighbor variation angle �i is defined as

where vecj denotes the normal vector of the jth knn nearest 
points of pi . The k-nearest searching algorithm is performed 
using the knnsearch function in Matlab.

Finally, the sharp point set Setshp are defined as

Equation  (4) is performed using the find function in 
Matlab.

2.1.3 � Neighborhood PCA‑weighted oriented contraction 
(step 1.3)

The diversity of rock mass and point cloud density can 
lead to over sparse sharp points near intersection lines in 
Sect. 2.1.2, which occupies a large area of discontinuities. 
The uneven distribution of sharp points can also reduce the 
continuity of intersection lines. Thus, the point cloud con-
traction algorithm is considered to extract sharp point skel-
etons as intersection lines. However, traditional point cloud 
contraction algorithms often require meshing and cannot 
be directly performed on raw point clouds (Au et al. 2008; 
Cao et al. 2010; Zhang et al. 2020). Therefore, a NPW-OC 
method is proposed to achieve the oriented contraction of 
sharp points without meshing. Figure 3b shows the point 
cloud contraction skeleton of Fig.  3a by the proposed 
method.

(3)�i =
1

knn

knn∑
j=1

dist(veci, vecj)

(4)Setshp = {i|𝛿i > 1

N

N∑
j=1

𝛿j, i ∈ {1, 2,… ,N}}

Considering the eigenvalue of PCA indicates the disper-
sion degree of the neighbor point distribution along eigen-
vector directions (Lee et al. 2006), the eigenvector ��⃗e1 cor-
responding to the largest eigenvalue �1 is, therefore, used 
to represent the local tangent direction of the point cloud 
(shown in Figs. 3d and 4). To evaluate the dominance of tan-
gent directions, a linear significance parameter u1 is defined 
as

In general, the points ( pi in Fig. 5a) far from the skeleton 
can result in a larger knn neighbor point distribution length 
(similar to u1 ) along ��⃗e1 than the points ( pcen in Fig. 5a) closer 
to the skeleton. Therefore, a parameter wc is defined by u1 
to give points near skeletons large contraction weights as

Figure 3e shows the value of wc . It can be seen that wc 
is smaller at the sharp point away from the skeleton and 
larger near the skeleton as expected. Then the NPW-OC is 
performed using wc to make sharp points move toward the 
skeleton. Given a point pi in the point cloud, its weighted 
contraction point pi′ is defined as

where pij denotes the jth the nearest point of pi . pi′ is 
denoted in Fig. 5a.

To ensure the continuity of the contracted sharp points 
along the skeleton, sharp points are designed to move 
perpendicular to the tangent directions. Therefore, the 
displacement vector �������⃗pipi′ is projected on ��⃗e2 to generate the 
orientation calibrated point p′′

i
 as

(5)u1 =
�1

�1 + �2 + �3

(6)wc = u2
1

(7)p�
i
=

1∑knn
j=1

wcj

knn�
j=1

wcj

�
pij − pi

�

Fig. 2   Data collection and 
processing of a rock slope. a 
Image sequence. ROI is in the 
black rectangle region. b 3D 
reconstructed point clouds
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where ‖⋅‖2 denotes the mode length. The oriented contracted 
point p′′

i
 is shown in Fig. 5a.

All the sharp points are performed by the NPW-OC 
method based on Eqs. (5) to (8) which are programmed 
from scratch in Matlab. Figure 5a shows the skeleton 
generated by one-time contraction. It can be seen in 
Fig. 5c–d that more contraction times can generate thinner 
and more accurate skeletons. However, large contraction 
times can also reduce the computational efficiency. 
Considering the aim of contraction is to improve the 
accuracy of discontinuity intersection lines without 
quantitative requirements, two-time contraction is used 
as the initial NPW-OC time with the balance between 
accuracy and efficiency.

(8)p��
i
=
(
p�
i
− pi

) ||| ��⃗e2
(
p�
i
− pi

)|||
‖‖‖p�i − pi

‖‖‖2‖‖ ��⃗e2‖‖2
+ pi

Fig. 3   Process of the neighborhood PCA-weighted oriented contraction (NPW-OC). a Sharp points. b The point cloud skeleton of sharp points 
after NPW-OC. c An example set of sharp points. d Tangent vectors of the example sharp points. e w

c
 of example sharp points

Fig. 4   Eigen values and eigen vectors of PCA
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2.2 � Normal vector optimal color mapping (step 2)

After obtaining normal vectors, the philosophy of coloring 
with normal vectors implemented by Jaboyedoff et  al. 
(2007) can be used to assign colors according to the dip 
and dip direction, which can effectively contribute to the 
structural analysis of rock mass. For the purpose of further 
improving the quality of normal vector color mapping to 
make it more effective and stable for the segmentation of 
discontinuity planes based on their normal vector colors 

from the point cloud models, we propose an OCM method 
of normal vectors in this section.

To assign colors to normal vectors, the stereographic 
projection plane of normal vectors is first mapped to HSV 
color space and then mapped to the RGB space. In addi-
tion, considering the boundary points (Fig. 6a) on the ste-
reographic projection plane can cause large difference of 
colors in the same discontinuity plane (Fig. 6b), an opti-
mal stereographic projection method based on minimum 

Fig. 5   Explanation of NPW-OC process. a Point cloud contraction process. b Contraction results of one-time NPW-OC, c Contraction results of 
two-time NPW-OC. d Contraction results of three-time NPW-OC
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boundary dip angles (MBDA) is proposed to make the 
colors within a single discontinuity as uniform as possible.

2.2.1 � RGB mapping of normal vectors (step 2.1)

Hemisphere projection of discontinuity poles (such 
as discontinuity normal vectors) is often used for the 
description of orientation distribution (Priest 1985; Jimenez-
Rodriguez and Sitar 2006). Therefore, normal vectors are 
first projected to the upper unit hemisphere.

Normal vectors are then mapped to the HSV space. 
HSV space is one of the most classical color spaces. Since 
the HSV space is conical, the one-to-one mapping of 
normal vectors to HSV values is achieved by setting the 
stereographic projection plane onto the HSV horizontal 
section. HSV is represented by H ∈ [0

◦

, 360
◦

] , saturation 
S ∈ [0, 1] , and value V ∈ [0, 1] . To make the color more 
distinguishable, the stereographic projection plane is set 
to coincide with the HSV horizontal section of V = 1 . 
Then normal vectors are mapped based on the relationship 
between the stereographic projection plane and the HSV 
space.

Specifically, given the normalized normal vector 
set Vec = {vec1, vec2,… , vecN} , the coordinate of each 
veci ∈ Vec is veci =

[
xi, yi, zi

]T , then except for Value = 1 , 
H and S are defined as

(9)H =

⎧
⎪⎪⎨⎪⎪⎩

1

360
arccos

�
xi√
x2
i
+y2

i

�◦

, yi > 0

1 −
1

360
arccos

�
xi√
x2
i
+y2

i

�◦

, yi ≤ 0

Equations (9) and (10) are programmed from scratch in 
Matlab.

Given the HSV value of veci as [H, S,V] , the [R,G,B] 
value is mapped as follows (Smith 1978):

1.	 H = 6 ∗ H

2.	 I = floor(H),F = H − I

3.	 M = V × (1 − S) , N = V × (1 − S × F) , K = V × (1 − S × (1 − F))

4.	 [R,G,B] =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[V ,K,M], if I = 0

[N,V ,M], if I = 1

[M,V ,K], if I = 2

[M,N,V], if I = 3

[K,M,V], if I = 4

[V ,M,N], if I = 5

In step 2, floor(x) denotes the integer just less than or 
equal to x. Figure 6a denotes the normal vector stereographic 
projection after RGB mapping, and Fig. 6b denotes the cor-
responding 3D RGB point cloud. The floor(x) calculation in 
step 2 is performed using the floor function in Matlab, and 
other steps are programmed from scratch in Matlab.

2.2.2 � Optimal transformation of RGB mapping (step 2.2)

Hemisphere projection can cause normal vectors with 
approximate 90° dip angles to generate large differences 
of dip directions near the boundary of the stereographic 
projection plane. For example, as shown in Fig. 6a, normal 
vectors in region I and I� have similar directions, but the 

(10)S =

√
x2
i
+ y2

i

Fig. 6   RGB color mapping results. a RGB color mapping of normal vectors. b 3D RGB point clouds after color mapping of normal vectors 
(color figure online)
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hemispherical projection causes them to be distributed on 
both sides of the stereographic projection plane, resulting in 
excessive color differences. This can cause the point color 
in the same discontinuity plane non-uniform (Fig. 6b), 
disturbing the color-based segmentation of discontinuities. 
Therefore, an optimal transformation of normal vectors 
is proposed to make the hemisphere projection of normal 
vectors away from the boundary of the stereographic 
projection plane as far as possible, making point colors in 
the same discontinuity as uniform as possible.

2.2.2.1  Generation of  candidate direction points 
(CDPs) based on  ortho‑icosahedron subdivision (step 
2.2.1)  Because the optimal transformation of a specific set 
of normal vectors is unknown in advance, the candidate 
direction points (CDPs) are proposed to serve as possible 
rotation directions in the 3D normal vector space. Then the 
set of normal vectors are rotated according to each of the 
CDPs’ directions to find one of the CDPs as the optimal 
direction for the RGB mapping of normal vectors according 
to the proposed method of minimum boundary dip angles. 
To distribute CDPs uniformly over the entire normal vector 
space, the ortho-icosahedron subdivision is used to generate 
CDPs approximately uniformly distributed over the upper 
unit hemisphere. Therefore, CDPs are generated using the 
method of Fekete and Treinish (1990) as

1.	 Input the initial 20 vertices Vtx = [vtx1, vtx2,… , vtx12] 
and 20 triangular patches Pth = [pth1, pth2,… , pth20] of 
the ortho icosahedron (Fig. 7a).

2.	 For each pthi ∈ Pth , calculate and normalize the 
midpoints Vtxadd = [vtxi1, vtxi2, vtxi3] of each edge of 
pthi , then four new triangular patches are generated as 
pthadd = [pthi1, pthi2, pthi3] (Fig. 7b).

3.	 Replace pthi in Pth by Pthadd , and merge Vtxadd in Vtx.
4.	 Repeat step 2 to step 3 ndiv times to generate appropriate 

number of CDPs.
5.	 All the points in Vtx and on the upper unit hemisphere 

are selected as CDPs.

The subdivision time ndiv decides the number and 
the accuracy (the mean angle between adjacent CDPs) 
of CDPs. As shown in Table 1, the more the CDPs, the 
higher the accuracy. However, excessive numbers of 
CDPs can reduce the search efficiency of the optimal 
CDPs. Considering ISRM recommends 5° as the manual 
measurement error of orientation (Barton 1978), 1321 

Fig. 7   Subdivision of ortho-icosahedron for CDP generation. a Initial 
vertices and triangular patches of the ortho-icosahedron. b Ortho-ico-
sahedron subdivision with n

div
= 1 . c Ortho-icosahedron subdivision 

with n
div

= 5 . d Stereographic projection of initial CDP. e Stereo-
graphic projection of CDP with n

div
= 1 . f Stereographic projection of 

initial CDP with n
div

= 5

Table 1   CDPs with different subdivision numbers

Subdivision number n
div

2 3 4 5

CDP number 26 91 341 1321
Mean adjacent angle (°) 19.63 12.62 7.21 3.87
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CDPs of ndiv = 5 is selected as the default CDPs. The mean 
adjacent angle is 3.87° less than 5°.

The methods in this section are programmed from 
scratch in Matlab.

2.2.2.2  Optimal rotation of normal vectors based on mini‑
mum boundary dip angles (step 2.2.2)  Normal vectors are 
required to be distributed away from the boundary of the 
stereographic projection plane as far as possible to avoid 
the non-uniform colors in the same discontinuity plane 
(Fig. 7a, b). Therefore, a method of minimum boundary 
dip angle is proposed.

Given normal vector set Vec = {vec1, vec2,… , vecN} , 
CDP set Vtx = {vtx1, vtx2,… , vtxM} (M denotes CDP 
number), the proposed method is performed as follows:

1.	 According to ISRM’s recommendation to define 5° as 
the manual measurement error of orientations, normal 
vectors with dip angles larger than 85° are selected as 
boundary vectors.

2.	 Given a CDP vtxi ∈ Vtx  and the coordinate 
vtxi =

[
xi, yi, zi

]T , calculate the rotation matrix Roti to 
rotate vtxi to [0, 0, 1]T . First calculate the angle angz that 
rotates vtx1 clockwise around the z-axis to the positive 
x-axis as

	   Then calculate the angle angy that rotates vtxi 
clockwise around the y-axis to the positive z-axis as

	   Therefore, Roti is defined as

	   It should be noted that a two-axis rotation is required 
rather than a three-axis rotation. This is because the aim 
of the rotation is to compute the sum of the boundary dip 

(11)angz =

⎧
⎪⎪⎨⎪⎪⎩

360
◦

− arccos

�
xi√
x2
i
+y2

i

�◦
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angles of all normal vectors. The control variable for the 
rotation is the current z-axis, and the other normal vectors 
are performed to follow the same rotation as the current 
z-axis. The two-axis rotation can uniquely determine the 
orientation of the current z-axis rotation. Once the normal 
vectors have been performed by the same rotation of the 
current z-axis, the sum of the boundary dip angles of all 
normal vectors can be uniquely determined. Therefore, a 
two-axis rotation is used instead of a three-axis rotation.

3.	 Rotate Vec using Roti to generate Veci′ , then calculate 
the sum of dip angle sai of all boundary normal vectors 
in Veci′,

4.	 For each CDP in Vtx , perform step 2 to step 
3 to generate the sum of boundary dip angles 
Sumang = {sa1, sa2,… , saM} corresponding to all CDPs,

5.	 Normalize sai ∈ Sumang as

6.	 The optimal rotation direction is selected as the 
CDPs corresponding to min(Sumang) , then rotate Vec 
accordingly.

To summarize, the main idea of OCM is to find an 
optimal rotation direction to rotate the current normal 
vectors so that the sum of the boundary dip angles 
of all normal vectors after the rotation is minimized. 
Specifically, given a possible rotation direction dirp of 
the current z-axis, let the normal vectors follow the same 
rotation of the current z-axis, then calculate the sum of 
the boundary dip angles of normal vectors. This involves 
two main aspects. First, there are countless dirp in the 
whole 3D normal vector space, and the optimal rotation 
direction dirp is unknown in advance for an arbitrary set 
of normal vectors. Therefore, we propose the concept of 
CDPs to approximate all possible dirp in the whole 3D 
normal vector space for selecting the optimal dirp . Second, 
the control variable of the rotation in this method is the 
current z-axis. The rotation of the current z-axis can be 

(14)sai =
sai −min

(
Sumang

)

max
(
Sumang

)
−min

(
Sumang

)

uniquely determined by a two-axis rotation, which can also 
uniquely determine the sum of the boundary dip angles. 
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Therefore, the optimal rotation of normal vectors requires 
only a two-axis rotation instead of a three-axis rotation.

Figure 8a shows the Sumang corresponding to all CDPs. 
Figure 8d, e shows the results of RGB colors mapped with 
the optimal rotation of normal vectors corresponding to 
min(Sumang) . It can be observed that boundary normal 
vectors are effectively avoided, and the colors in the same 
discontinuity plane are uniform and homogeneous, which 
facilitates the identification of discontinuities by their colors. 
Comparatively, the results after the worst rotation of normal 
vectors corresponding to max(Sumang) are shown in Fig. 8b, 
c. It can be observed that many normal vectors are distrib-
uted near the boundaries of the stereographic projection 
plane, such as the normal vectors in the regions of I − I� and 
II − II� , resulting in an non-uniform distribution of colors 
within the same discontinuity plane and making it difficult 
to distinguish discontinuities by their colors.

The methods in this section are programmed from scratch 
in Matlab.

2.3 � Generation of OCM images (step 3)

After the OCM of normal vectors, the corresponding OCM 
point cloud can be obtained. This section generates OCM 
images of OCM point clouds to facilitate the recognition of 
Mask R-CNN. Considering the direction and density of point 

clouds vary with different cases, methods of point cloud 
direction calibration and image filling are used to generate 
standard OCM images.

2.3.1 � Direction calibration of point clouds (step 3.1)

In this paper, point cloud OCM images are generated from 
OCM points at the xoz viewpoint. To make discontinuities 
as perpendicular to the viewing angle as possible, the point 
cloud model is rotated around the z-axis to make the overall 
planar fitted vectors parallel to negative y-axis. Given the 
overall planar fitted vector vecmean calculated by Eq. (1) 
using all points, vecmean is then projected to the upper unit 
hemisphere as vecmean =

[
xm, ym, zm

]T  . Rotate clockwise 
around the z-axis to get angle angz that makes vecmean 
negatively parallel with the y-axis. Then angz is defined as

Equation (15) is programmed using the acosd function in 
Matlab. The point cloud P is rotated clockwise around the 
z-axis according to angz to obtain P′ , and the point cloud 
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Fig. 8   The optimal and the worst rotation of normal vectors. a Sum 
of dip angles of boundary normal vectors of all CDP. b Stereographic 
projection of the worst rotation. c OCM point cloud of the worst rota-

tion. d Stereographic projection of the optimal rotation. e OCM point 
cloud of the optimal rotation
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OCM image is generated based on the x and z coordinates of 
all the points in P′ and their corresponding colors (Fig. 10a).

It should be noted that in the recognition stage of the 
proposed method, the point cloud orientation calibration 
needs to be run automatically (e.g., Fig. 10a). While in the 
data labeling of the training stage, the direction calibration 
can be replaced by manual point cloud rotations to get 
the visually most convenient viewpoint for labeling (e.g., 
Fig. 11i).

2.3.2 � Image size calibration and image filling of OCM 
images (step 3.2)

Because the point cloud varies in size, it first needs to be 
mapped to a standard OCM image size to facilitate training 
and recognition. In addition, considering the point cloud is 
often sparse with different intervals, mapping each point as 
only one pixel will result in voids in the image (Fig. 10a), 

leading to discontinuous colors on the same discontinuity 
plane. Therefore, this section performs image size calibration 
and image filling for point clouds.

Given the point cloud coordinate set after Sect. 2.3.1 as 
Pcoord = {

[

x1, x2,… , xN
]T ,

[

y1, y2,… , yN
]T ,

[

z1, z2,… , zN
]T} 

a n d  t h e  c o r r e s p o n d i n g  R G B  s e t  a s 
RGB = {

[

r1, r2,… , rN
]T ,

[

g1, g2,… , gN
]T ,

[

b1, b2,… , bN
]T}   . 

Let the reference OCM image length Limg = 800 , then the 
calibrated image size is calculated as follows.

First, normalize the coordinates 
[
xi, yi, zi

]T
∈ P

coord
 of point 

pi as

(16)
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Fig. 9   Illustration of filling length (FL) and void pixels. a–c Rectangle filling region with FL of 1, 3 and 5. Blue rectangle regions denote filling 
regions of a pixel. d Void pixel illustration. Black pixel i

1
∼ i

6
 represent void pixels around pixel i (color figure online)

Fig. 10   OCM image generation with different FL. a–c OCM images filling with FL of 1, 3, and 5. d–f Void pixels corresponding to FL of 1, 3, 
and 5
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where round indicates rounding to the nearest integer and 
is performed using the round function in Matlab. Then the 
image size is set as H = max(y) and W = max(x).

Next, perform the initial generation of OCM images 
based on the pixel filling. Given a zero image matrix Img 
with the shape of [H,W, 3] , the corresponding RGB value 
of 

[
xi, yi, zi

]T  is 
[
ri, gi, bi

]T  . Then round 
[
xi, yi, zi

]T  and fill [
ri, gi, bi

]T to the rectangle pixel region with the filling length 
FL and the center location of height zi and width xi in Img 
(Fig. 9). During the filling process, set 

[
ri, gi, bi

]T as [0, 0, 0]T 
if point pi belongs to the sharp point set Setshp generated in 
Sect. 2.1.2. After all the points in Pcoord are performed by 
filling, the OCM image can be generated.

There are two reasons for masking non-ROI regions 
of the OCM image with black. First, it can reduce the 
interference of non-ROI regions on the discontinuity 
recognition in ROI regions. Second, the RGB mapping in 
Sect. 2.2.1 keeps assigning non-black colors to the point 

cloud by setting V = 1 , avoiding the point cloud having the 
same color as the black background of the OCM image, 
which further reduces the disturbance of non-ROI regions 
during discontinuity recognition.

A small FL can make the intervals in OCM images 
affect registration (Fig. 8a). However, a large FL can cause 
the excessive overlap of pixels and reduce generation 
efficiency. Therefore, a void ratio is defined to measure 
the interval extent of OCM images.

The concept of void pixels is defined as black pixels 
located at the 8 neighbor pixels of a non-black pixel. For 
example, as shown in Fig. 9d, the void pixel near the blue 
i pixel is the black pixel of i1 ∼ i6 . The white pixel loca-
tions in Fig. 10d–f denote the void pixels corresponding 
to Fig. 10a–c, respectively. The void ratio is defined to 
evaluate the filling extent of non-black pixels. Given Nvd 
the number of void pixels and Nnb the number of non-black 
pixels, then the void ratio is defined as

Fig. 11   Data collection and processing examples of the proposed method. a–d Images of rock slopes. e–h ROI of 3D reconstructed point clouds. 
i–l OCM images obtained using the methods from Sects. 2.1 to 2.3. m–p Discontinuity ground truth by manual labeling using software Labelme
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Figure 10a–c shows the OCM images with different 
void ratios. It shows that the void ratio of 0.45 can cause 
large numbers of void pixels, resulting in the discrete 
distribution of color pixels in discontinuities. It also shows 
that ratiovd = 0.07 of FL = 3 can generate OCM images 
with continuous color distribution in discontinuities. 
However, the ratiovd = 0.06 of FL = 5 is almost the same 
as ratiovd = 0.07 of FL = 3 , indicating FL = 5 causes more 
overlapping of pixels and redundant filling calculation 
expense. Therefore, the default ratiovd is set as 0.1. The point 
cloud filling requires to be performed with the FL sequence 
of [1, 3, 5,…]T until ratiovd ≤ 0.1.

2.4 � Data collection and processing (step 4.1)

2.4.1 � Dataset description (step 4.1.1)

The dataset of this paper includes 43 3D point cloud mod-
els of rock slopes. Forty-two models are rock slope data 
(Fig. 11a–d) collected from Yangkou ring road in Moun-
tain Lao, Qingdao, China. In the acquisition process, 4–8 
images were first taken at different angles in front of the rock 
mass using an Iphone12 mobile phone with the resolution 
of 4032 × 3024. Then the image sequence was sent into the 
Meshroom (Griwodz et al. 2021) opensource 3D reconstruc-
tion software (https://​github.​com/​alice​vision/​Meshr​oom) to 
reconstruct the 3D point clouds. Specifically, after dragging 
the image sequence into Meshroom, click the start button 
on the top of the software interface to carry out a fully auto-
matic 3D reconstruction, then export the XYZ and RGB 
information of the point cloud using the default resolution 
(The specific operations can refer to Meshroom’s tutorial 
at https://​sketc​hfab.​com/​blogs/​commu​nity/​tutor​ial-​meshr​
oom-​for-​begin​ners). The txt format of point clouds is used as 
the default, and the reference densities of point cloud cases 
are described in Sect. 3. In this paper, the only input data 
to Meshroom is the image sequence, and other parameters 
such as camera internal and external parameters are auto-
matically calculated and matched by Meshroom using the 
built-in camera parameter database. Finally, after obtaining 
the point cloud model, ROI of the point cloud was manu-
ally cropped or split into different point cloud models in the 
CloudCompare software. Figure 11e–h shows the ROI point 
cloud of Fig. 11a–d. In addition, a publicly available bench-
mark point cloud model was also adopted for analyzation. 
This rock slope was located in Ouray, Colorado, US and was 
scanned by Lato et al (2013) using a laser scanner. The raw 
data include 1,515,722 points.

The 43 rock slopes were divided into a training set, a vali-
dation set, and a testing set with the ratio of 70%, 20%, 10%, 

(17)ratiovd =
Nvd

Nnb

respectively. Table 2 shows the specific information of each 
dataset. For each point cloud model, the method of Sects. 
2.1–2.3 was used to generate point cloud OCM images. A 
total of 4,415 discontinuity planes were labeled for all OCM 
images. Through data enhancement, a total of 4,632 valid 
point cloud OCM images were obtained, including a total of 
430,613 discontinuity planes.

2.4.2 � Discontinuity labeling based on OCM images (step 
4.1.2)

The Labelme software (Wada 2023) is used to manually 
and interactively annotate the 43 point cloud OCM images. 
The process of labeling mainly requires visual judgements 
to segment regions with similar colors into discontinuity 
plane polygons. Discontinuity planes are also assigned with 
different indexes when labeling. In addition, sharp points 
located near the intersection lines of adjacent discontinuity 
planes can serve as the auxiliary remind of labeling. The 
result of labeling are mask images containing discontinuity 
polygons with different indexes. Figure  11m–p shows 
the labeling results of Fig. 11i–l. It should be noted that 
the color of Fig. 11i is a little different from Fig. 10a–c. 
This is because Fig.  10a–c is color mapped using the 
automatic direction calibration method of Sect. 2.3.1. All 
the OCM images must be performed by the automatic 
direction calibration in the recognition stage without any 
manual intervention. But Fig. 11i is color mapped in the 
training stage, allowing to replace the automatic direction 
calibration by manual rotation of the point cloud for labeling 
convenience (Sect. 2.3.1).

2.4.3 � Augmentation by transformation of HSV, affine, 
and flipping for OCM images and mask images (step 
4.1.3)

Image augmentation is applied to expand the dataset for 
overfitting reduction and generalization improvement 
of Mask R-CNN. In this paper, three data augmentation 
methods are used, including HSV transformation, affine 
transformation, and image flipping.

The purpose of HSV transformation is to improve 
the model’s performance to recognize different colors. 
Because the method in this paper essentially identifies 

Table 2   Dataset description for training, validation and testing

Dataset Case number Date type Data object

Training set 30 1 point cloud and 29 
image sequences

Rock slope

Validation set 9 9 image sequences Rock slope
Testing set 4 4 image sequences Rock slope

https://github.com/alicevision/Meshroom
https://sketchfab.com/blogs/community/tutorial-meshroom-for-beginners
https://sketchfab.com/blogs/community/tutorial-meshroom-for-beginners
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discontinuity planes by the relative color values instead 
of the absolute color values between adjacent disconti-
nuity planes in the point cloud OCM images, the HSV 
transformation can increase the model’s perception to 
the relative color values and reduce the overfitting to the 
absolute color values. Therefore, the HSV transforma-
tion used in this paper refers to transforming the Hue val-
ues with the S and V values unchanged. Ten H values of 
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] are adopted for the 
HSV transformation of each OCM image. The nine HSV 
transformations of Fig. 11i are shown in Fig. 12 (the rest 
one is Fig. 11i itself).

The affine transformation is then performed on all HSV-
transformed images. The purpose of affine transformation 
is to increase the diversity of discontinuity plane 
morphology. An affine transformation often includes 
shearing, translation, rotation, and scaling. To control 
the deformation of discontinuity planes in a relatively 
reasonable range, the angular ranges of shear and rotation 

are set to [−15◦, 15◦] and [−90◦, 90◦] , respectively. The 
maximum range of translation is set to be half of the side 
length of images. In this paper, the scaling transformation 
is not required because all images are uniformly sized 
before entering the Mask R-CNN model. The total affine 
transformation of each image is the combination of 
the above transformations. In addition, the same affine 
transformation needs to be applied to the pair of point 
cloud OCM images and mask images.

Image flipping is performed after the HSV and affine 
transformations. Horizontal flipping and vertical flipping of 
an OCM image are performed with the probability of 0.5, 
respectively. Similar to affine, both the OCM image and the 
corresponding mask image are required to be performed by 
the same flipping transformation.

Figure 13 shows the affine and flipping transformation 
results of Fig. 12.

The methods in this section are programmed from scratch 
in Python.

Fig. 12   Data augmentation of HSV transformation. The purpose of 
HSV transformation is improving the Mask R-CNN’s performance to 
recognize different colors. Because the proposed method essentially 
identifies discontinuity planes by the relative color values instead of 

the absolute color values between adjacent discontinuity planes in 
OCM images, the HSV transformation can increase Mask R-CNN’s 
perception to the relative color values and reduce the overfitting to the 
absolute color values (Sect. 2.4.3) (color figure online)
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2.5 � Mask R‑CNN training (step 4.2)

Mask R-CNN (He et al. 2018) is one of the most classical 
CNNs for instance segmentation in computer vision field 
(Agarwal et al. 2019; Gu et al. 2022; Hafiz and Bhat 2020; 
He et al. 2018). It is typically a two-stage CNN that first 
generates candidate bounding boxes via a region proposal 
net (RPN), and then fine-tunes the bounding box while 
generating pixel-level segmentation within the bounding 
box, which is well suited for accurately identifying the 
geometry of discontinuities. In addition, it is simple and 
flexible to be trained and generalized well in applications 
(Zaidi et al. 2022). Therefore, Mask R-CNN is adopted for 
the discontinuity recognition.

2.5.1 � Data assignment (step 4.2.1)

As described in Sect. 2.4.1, the augmented dataset in this 
paper includes a total of 4,632 point cloud OCM images. 
According to the dataset division in Table 2, OCM images 
are divided into a training set of 3260 images, a validation 
set of 1010 images, and a test set of 362 images, which 
includes 302,425, 94,806, and 33,382 discontinuity 
planes, respectively. The training set and validation set 
are involved in the training process. The training set is 
directly used in the gradient backward propagation, while 
the validation set is not directly used in training and is only 
used to generate validation metrics for hyperparameter 
fine-tuning. The method in this section is programmed 
from scratch in Python.

2.5.2 � Loss function and evaluation metric (step 4.2.2)

2.5.2.1  Loss function  According to the initial settings of 
Mask R-CNN, the loss function of each bounding box of 
discontinuity planes is set as a multi-task loss as (He et al. 
2018)

where Lcls denotes the binary cross-entropy loss of the 
bounding box containing discontinuity planes, which is 
defined as

where p denotes whether the bounding box contains a 
discontinuity plane, q denotes the predicted probability that 
the bounding box contains a discontinuity plane.

In Eq.  (18), Lbox denotes the regression loss of the 
bounding box.

where (tx, ty, tw, th) denotes the predicted values of the 
bounding box and (vx, vy, vw, vh) denotes the ground truth of 
the bounding box; smoothL1 is defined as

In Eq.  (18), Lmask denotes the average binary cross-
entropy loss of each pixel in the bounding box, indicating 

(18)L = Lcls + Lbox + Lmask

(19)Lcls = −[plogq + (1 − p)log(1 − q)]

(20)Lbox =
∑

i∈{x,y,w,h}
smoothL1(ti − vi)

(21)smoothL
1

=

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise

Fig. 13   Data augmentation of affine and flipping transformation. a Augmentation of OCM images. b Augmentation of ground truth mask images
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whether a pixel belongs to a discontinuity plane or not. 
Lmask is defined as

where Npix denotes the number of pixels in the bounding 
box, pi denotes the ground truth that whether the ith pixel is 
a discontinuity pixel, and qi denotes the predicted probability 
of the ith pixel belonging to a discontinuity plane. The loss 
functions in this section are programmed using the Pytorch 
module in Python.

2.5.2.2  Evaluation metric  Precision is one of the most 
effective metrics for measuring model performance in the 
field of object detection and semantic segmentation (Papan-
dreou et al. 2017; He et al. 2018; Zou et al. 2023). Thus, 
precision is used for model performance evaluation in Mask 
R-CNN training (He et al. 2018). Precision is defined as

where TP denotes the bounding box containing a 
discontinuity plane and is predicted as positive, and FP 
denotes the bounding box does not contain a discontinuity 
plane but is predicted as positive.

The intersection over union (IOU), one of the important 
evaluation metrics in the field of image segmentation in 
computer vision, is used to evaluate the degree of conformity 
between the predicted mask and the real mask (Ahmed 
et al. 2015). The higher the IOU, the higher the accuracy 
of the predicted mask. According to the method of He et al. 
(2018), this paper adopts the standard COCO (Lin et al. 
2015) metrics including AP (average precision, averaged 
over IOU thresholds of 0.5 ∶ 0.05 ∶ 0.95 ), AP50 (average 
precision over the IOU threshold of 0.5), and AP75 (average 
precision over the IOU threshold of 0.75) to evaluate the 
model performance, where AP is evaluated using the mask 
IOU instead of the bounding box IOU.

The methods in this section are performed using the 
pycocotools-windows module in Python.

2.5.3 � Training parameter selection (step 4.2.3)

During training process, an ROI is considered positive if it 
has IOU with a ground truth box of at least 0.5 and negative 
otherwise. The mask loss Lmask is defined only on positive 
ROIs. The mask target is the intersection between an ROI 
and its associated ground truth masks. Each OCM image 
is set to generate 512 bounding boxes by default, with the 
ratio between positive and negative samples as 1:1. The non-
maximum suppression (NMS) threshold of bounding boxes 

(22)Lmask = −
1

Npix

Npix∑
i=1

[
pilogqi + (1 − pi)log(1 − qi)

]

(23)Precision =
TP

TP + FP

is set as 0.7. The minimum probability score of bounding 
boxes is set as 0.05.

All datasets are trained for a total of 260 epochs (211,900 
iterations). The batch size is set to 4 and learning rate is 1e-5. 
The cosine scheduler is used for the first 150 epochs to discount 
the learning rate with a decay rate of 0.01. The learning rate is 
kept unchanged when the epoch number is larger than 150.

The training (and the inferring) process is performed 
using the Pytorch module in Python.

2.5.4 � Training results

Figure 14 shows the loss curvatures of training, validation, 
and testing. It can be seen that all the training loss, vali-
dation loss, and testing loss can effectively reduce within 
150 epochs. There is an obvious convergence stage with the 
epochs larger than 150. Finally, the validation loss is a little 
bigger than the training loss, and the testing loss is bigger 
than the validation loss.

Table 3 shows the AP results of the validation set and 
testing set. It can be seen that AP is 0.616, AP50 is 0.851, 
and AP75 is 0.725 with the testing set, demonstrating the 
effectiveness of Mask R-CNN for discontinuity detection 
and segmentation using OCM images. Table 3 also shows 
that APsmall < APmedium < APlarge , indicating that Mask 
R-CNN is better at recognizing large areas of discontinuities 
in OCM images than small areas of discontinuities.

Figure 15a is the case in the validation set. Figure 15c 
shows Mask R-CNN’s discontinuity recognition results 
(mask image) of Fig. 15a. It can be seen that the number 
and shape of the recognized discontinuities are very close 
to the ground truth (Fig. 15b). Although there is an absence 
of some small discontinuity planes (areas in the red circles 

Fig. 14   Loss curvatures of training, validation and testing
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of Fig. 15c), most of the large areas of discontinuities have 
been recognized correctly.

2.6 � 3D discontinuity mapping and orientation 
generation (step 5.2)

The discontinuity recognition results of Mask 
R-CNN are 2D mask images. Thus, it is neces-
sary to map from the 2D discontinuity mask 
image to discontinuities in 3D point clouds. Given 
Pcoord = {

[
x1, x2,… , xN

]T
,
[
y1, y2,… , yN

]T
,
[
z1, z2,… , zN

]T 
as the point cloud coordinates after the direction calibra-
tion in Sect. 2.3.1, Img as the OCM image generated in 
Sect. 2.3.2, Imgmask as the discontinuity mask image recog-
nized by Mask R-CNN and Label =

[
l1, l2,… , lN

]T as the 3D 
discontinuity indexes corresponding to Pcoord.

Since OCM images are generated by x and z coordinates 
(Sect. 2.3.2), the x and z coordinates in Pcoord are first rounded 
to serve as the index of the image coordinates. Considering 
the size of Img and Imgmask are the same, the 3D discontinu-
ity index li of each point 

[
xi, yi, zi

]T
∈ Pcoord is the pixel value 

corresponding at the pixel location of height zi and width xi 
position in Imgmask . Figure 15d shows the mapping results of 
3D discontinuities of Fig. 15a.

After obtaining the discontinuity indexes of points in the 3D 
point cloud, all points contained in each discontinuity plane are 
calculated by Eq. (1) to obtain the discontinuity normal vector 
vecp , and then vecp is projected onto the upper unit hemisphere. 
Given vecp =

[
xp, yp, zp

]T , then the dip direction (DD) and dip 
angle (DA) corresponding to vecp are calculated as
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Table 3   Average precision of 
validation datasets

*AP , average precision over IOU thresholds of 0.5 ∶ 0.05 ∶ 0.95 ; AP50 , average precision over the IOU 
threshold of 0.5; AP75, average precision over the IOU threshold of 0.75; APsmall , average precision for 
objects with area < 32

2 ; APmedium , average precision for objects with 322 < area < 96
2 ; APlarge , average 

precision for objects with area > 96
2

Metric AP AP50 AP75 APsmall APmedium APlarge

Validation 0.714 0.980 0.894 0.640 0.738 0.872
Testing 0.616 0.851 0.725 0.523 0.609 0.714

Fig. 15   Discontinuity recogni-
tion procedures of the proposed 
method. a OCM image. b 
Discontinuity ground truth by 
manual labeling. c Discontinu-
ity recognition results. d 3D 
discontinuity mapping results
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The methods in this section are programmed from scratch 
in Matlab.

3 � Case study

3.1 � Case 1: a benchmark rock slope from Lato et al. 
(2013)

This case is a publicly available point cloud of rock slopes 
scanned by Lato et al. (2013) (Fig. 16a). The raw point cloud 
includes 1,515,722 points. After cropping and downsam-
pling, the ROI region (Fig. 16a) contains 414,710 points 
with the approximate average spacing of adjacent points of 
2.41 cm. It is adopted in many studies as a benchmark model 
for orientation identification validation (Riquelme et al. 
2014; Kong et al. 2020; Wu et al. 2020; Daghigh et al. 2022). 
Representatively, Daghigh et al. (2022) manually determine 
the discontinuity orientations using the Segment tool in the 
CloudCompare software. The orientation results are used 
as the ground truth of this case for comparison. Chen et al. 
(2016) proposed a fully automated method of discontinuity 
recognition and analyzed this case. The raw point cloud was 
first preprocessed into Delaunay triangular meshes. Then 
mesh normal vectors were clustered into five sets using an 
improved K-means algorithm. Finally, discontinuity planes 
were extracted using shared edge connection of triangular 
meshes. Therefore, this case is used to compare the accu-
racy of the proposed method with the above methods on this 
benchmark case.

Figure 16b shows the OCM image of this case. It can be 
seen that the color within discontinuities is uniform, which 
effectively avoids the problem of excessive color inconsistence 
(Figs. 6 and 8b, c). In addition, the sharp points located near 
intersection lines of discontinuity planes can serve as an effec-
tive auxiliary remind for discontinuity segmentation, which is 
convenient for labeling and recognition. This image is involved 

in training as a validation data, and the manually labeled ground 
truth is shown in Fig. 17a. Figure 17b shows the discontinuity 
recognition result by Mask R-CNN, which is very close to the 
manually labeled ground truth (Fig. 17a). Although some trivial 
discontinuities (areas within the white ovals in Fig. 17b) are 
missing, major discontinuity planes are effectively identified. 
The mapping results of 3D discontinuities in point clouds are 

Fig. 16   Data collection and 
processing of case 1. a The 
rock slope scanned by Lato 
et al. (2013). ROI is denoted in 
the black rectangle region. b 
OCM image generated by the 
proposed method

Fig. 17   Discontinuity recognition procedures of case 1 by the pro-
posed method. a Discontinuity ground truth by manual labeling. b 
Discontinuity recognition results. c 3D discontinuity mapping results
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shown in Fig. 17c. It can be observed that each discontinuity 
plane is relatively complete and flat in the 3D point cloud model.

The orientation of each discontinuity plane in Fig. 17c 
is calculated according to Eqs. (24–25). Table 4 shows the 
orientation comparison of the proposed method with other 
methods. It can be seen that the proposed method has the 
smallest average error of 1.9°, and the maximum error of 
5.2° has been effectively reduced compared with the other 
methods of 8.1°.

This case indicates the effectiveness and accuracy of the 
proposed method on benchmark rock slope models.

3.2 � Case 2: a rock slope

This case is collected from a rock slope of Yangkou ring 
road in Mountain Lao, Qingdao, China. An Iphone12 
mobile phone was used to take four images with the res-
olution of 4032 × 3024 at different angles in front of the 
slope (Fig. 18a). The image sequence was processed by the 
Meshroom software to reconstruct the raw point cloud of 
341,611 points. After the cropping without downsampling, 
the ROI region contained 297,823 points with the approxi-
mate average spacing of adjacent points of 2.17 cm. The 
virtual compass tool in the CloudCompare software was 
used to interactively select and measure the discontinuity 
orientation as the ground truth. Figure 18b shows the 20 
representative discontinuity planes by manual selection. The 
corresponding orientations are listed in Table 5. This case is 
used to compare the accuracy of the proposed method with 
the fully automated discontinuity identification method of 
Chen et al. (2016).

Figure 19a shows the point cloud OCM image generated 
according to Sects. 2.1–2.3, where it can be seen that each 
discontinuity plane is filled with a uniform color. The sharp 
points at the intersection lines of adjacent discontinuity 
planes can serve as an effective remind of segmentation. 
This case is also used in the validation set. It can be seen 
from Fig. 19c that the recognized discontinuity planes are 
very similar to the shapes and locations of the manually 
labeled discontinuities (Fig. 19b). Figure 19d shows the rec-
ognized 3D discontinuities after mapping.

Figure 19e shows the identification results of the method 
of Chen et al. (2016). An improved K-means method was 
first used to cluster normal vectors into k from 2 to 6 groups. 
The Silhouette index was then calculated for each grouping 
result to select the optimal group number as 3 (Fig. 20). In 
addition to k = 3, the grouping results corresponding to k = 4 
and k = 5 (Fig. 21a, c) with relatively large Silhouette val-
ues and the corresponding discontinuity identification results 
(Fig. 21b, d) were also calculated.

Table 5 shows the orientation error of different meth-
ods. The proposed method has the highest accuracy with 
an average error of only 2.9° and a maximum error of 

Table 4   Orientation comparison of case 1 by different methods

*∆ denotes the angle between planes (°)

Plane id Ground truth 
Daghigh et al. 
(2022)

Chen et al. 
(2016)

The proposed 
method

DD/DA ∆ DD/DA ∆

11 246.1/39.1 244.6/38.4 1.2 245.8/38.9 0.3
12 248.1/49.5 256.2/52.2 6.8 254.6/51.1 5.2
13 249.8/35.7 251/36.2 0.9 251.7/36 1.2
14 251.8/34.7 251.4/33.9 0.8 252.6/35.6 1
15 249.3/35.4 250.8/36.8 1.7 251.1/35.6 1.1
16 250.1/35.7 250.5/35.9 0.3 250.2/35.7 0.1
17 253.4/33.3 253.2/33.5 0.2 252.1/34.6 1.5
21 339.5/83.1 157.6/83.8 2 338/83.4 1.5
22 345.7/73.2 166.3/78.7 5.5 346.5/74.2 1.3
23 338.2/88.1 157.5/86.9 1.4 159.6/89.7 2.1
24 173.7/76.7 353.1/77.8 1.2 176.5/74.9 3.3
31 136.7/77 314.7/80 3.6 135.4/81.4 4.6
32 131/84 136.5/89.9 8.1 130.8/81 3
33 147.2/89.1 145.6/89.9 1.8 331.4/89.1 4.2
41 97.2/62.2 286/59.8 8.1 100.4/60.1 3.5
42 92.5/48.6 272.6/47.6 1 93.2/48.3 0.6
43 97.7/48.8 277.3/49.3 0.6 97.3/49.6 0.9
51 304.4/77.9 305/77.6 0.7 302.6/77.9 1.8
52 286.7/70.7 109.3/76.6 6.4 286.5/71.3 0.6
Mean error 2.8 1.9
Max error 8.1 5.2

Fig. 18   Data collection and processing of case 2. a Image sequence. 
b 3D reconstructed point clouds. Blue numbers denote indexes and 
locations of manually selected discontinuity planes (color figure 
online)
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11.7°. In comparison, the method of Chen et al. (2016) has 
the highest accuracy with an average error of 7° and the 
smallest maximum error of 28.3°. The better performance 
of the proposed method mainly attributes to the flatness 
of the recognized discontinuity planes and the shapes well 
similar to the manually labeled discontinuities. In con-
trast, the discontinuity recognition effect of Chen et al. 
(2016) is first affected by the selection of group numbers. 
Besides, the segmentation of discontinuity planes is inac-
curate, making the shape of discontinuities more differ-
ent from the manual judgements (Fig. 19b). For example, 
the largest error of 36° mainly attributes to the No. 12 
(Fig. 19e) plane which is not separated sufficiently from 
the No. 11 plane and contains non-in-plane noise. Simi-
larly, the No.16 (error of 32.5°) plane and the No.20 (error 
of 31.8°) plane are also failed to be well segmented from 
other planes and noise. However, when the discontinuity 
plane is well segmented, such as shown in the No.13 plane 
in Fig. 19e, the corresponding orientation error can be 
very small as 1.7°.

This case indicates that the proposed method has bet-
ter accuracy and robustness than the method of Chen et al. 
(2016).

3.3 � Case 3: a rock tunnel excavation face

This case is an excavation face from a rock tunnel in western 
China. The tunnel is excavated using the drilling and blast-
ing method. The blasting and construction disturbance joints 
increase the difficulty of discontinuity identification. Dur-
ing the construction gap after blasting slagging and before 
the steel arch installation, six images with the resolution of 
5760 × 3240 (Fig. 22a) were taken at different angles in front 
of the excavation face using an Iphone11promax mobile 
phone. The Meshroom software was used to reconstruct the 
3D point cloud model (Fig. 22b) from the image sequence. 
The raw point cloud contained 1,429,767 points. After the 
cropping without downsampling, the ROI region contained 
639,955 points with the approximate average spacing of 
adjacent points of 2.91 cm. The virtual compass tool in the 
CloudCompare software was used to interactively select and 
measure 20 representative discontinuities (Fig. 22b) as the 
ground truth.

This case is adopted as a testing data which does not 
participate in any Mask R-CNN training process. Since the 
training and validation sets of the Mask R-CNN network 
only include rock slope data, this case of a rock tunnel 

Table 5   Orientation comparison 
of case 2 by different methods

*∆ denotes the angle between planes (°)

Plane id Ground truth Chen et al. (2016) The proposed 
method

k = 3 k = 4 k = 5

DD/DA ∆ DD/DA ∆ DD/DA ∆ DD/DA ∆

1 249.2/40.2 350.4/71.5 15.3 337.4/60.5 1.6 337.8/59.2 1.4 332.6/59.6 5.8
2 264.2/57 185.7/50.5 10.8 185.1/46.9 13.1 185.5/46.2 13.9 172.1/56.7 3.2
3 264/41.9 350.4/71.5 15.2 337.4/60.5 2.8 344.9/59.6 8.1 341.3/62.2 4.3
4 252.6/36.5 42.1/87 27.9 189.1/88.8 5.4 189.9/89.4 4.9 192.6/86.9 1.6
5 248.7/37 42.1/87 12.8 50.6/84.4 4 50.6/84.5 4 51.5/84.5 3.2
6 254.8/29.9 171/37.8 1.7 171.1/37.4 1.3 171.1/37.4 1.2 170.7/37 0.8
7 249.9/35.9 0.7/71.7 21 345.2/56.8 0.7 345/55.8 0.3 343.7/55.9 1.2
8 338.7/82.4 352/80.7 12.8 348.5/76.7 7.6 350.3/76.2 8.3 344.5/77.2 6.9
9 347.5/79 352/80.7 18.6 340.8/64.9 0.8 340.9/64.9 0.8 340.3/64.9 0.8
10 341/89.5 155.1/52.7 2.8 152.1/51.5 4.4 146.4/57.3 7 154.1/54.9 0.7
11 353.5/76.4 353/83.4 10.5 344.9/76.8 0.2 344.9/76.6 0 345.4/77 0.6
12 314.1/77.2 353/83.4 36.1 345.9/79.5 28.2 346.1/79.5 28.3 323.4/63.6 1.7
13 302.4/75.9 43.2/84.4 1.7 44.7/83.9 0.6 45.4/83.6 1 45.1/83.6 0.7
14 330.2/83 168.7/51.9 5.8 167.5/50.6 5.1 168.4/49.3 3.6 171.8/44.6 1.9
15 286.1/58.9 170/69.4 10.4 358/89.9 18.8 183.2/76.3 5.5 177.3/82.5 11.7
16 274.2/51.1 170/69.4 32.5 165.1/66.2 32.6 180.2/55.2 15.8 192.4/45.3 2.2
17 277.2/46.4 352.4/69.2 13.1 352.7/60.5 4.4 352.7/60.6 4.5 352.7/61.7 5.5
18 305/77.6 347.6/79.6 19.7 347.7/75.6 15.7 348.7/60.2 0.5 349/62.1 2.2
19 290.2/67 235.2/88 19.8 235.3/87.9 19.7 235.3/88 19.8 46.2/72.4 2.4
20 236.8/45.7 196.3/54.3 31.8 219.8/45.4 12.1 220.5/45.3 11.6 237.3/47.2 1.5
Mean error 16.0 8.9 7.0 2.9
Max error 36.1 32.6 28.3 11.7
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excavation face is also used to validate the adaptability and 
robustness of the proposed method in different scenarios.

Figure 23a–c shows the recognition results of the proposed 
method. Specifically, Fig. 23a indicates the proposed method 
can effectively generate point cloud OCM images because the 
color within each discontinuity plane is uniform. Sharp points 
are still located at the intersection lines of discontinuity planes, 
facilitating the recognition and segmentation of discontinuity 
planes. Figure 23b shows that the discontinuity planes identi-
fied by Mask R-CNN can cover most of the main discontinuity 
planes generated by manual labeling (Fig. 23a). All of the 20 

manually selected typical discontinuity planes have been effec-
tively identified. Figure 23c shows the mapping results of 3D 
discontinuity planes in the point cloud.

Figure 23d shows the discontinuity recognition results 
of Chen et al. (2016). The optimal grouping results cor-
respond to the largest Silhouette value of k = 6 (Fig. 24). 
It can be seen that there are some flat discontinuity planes 
similar to the OCM image in Fig. 23a, such as the No. 9 
plane in Fig. 23d. However, many discontinuity planes are 
not segmented effectively, such as the No.3 plane and the 
No.4 plane in Fig. 23d. Some discontinuity planes (e.g., 
No.1, 7, 12, 16, 19 planes in Fig. 23d) are not very flat 
because they contain uneven regions that have non-uniform 
colors in Fig. 23a. In addition, discontinuity recognition 
results (Fig. 25b, d) corresponding to other grouping results 
(Fig. 25a, c) with large Silhouette values of k = 3 and k = 4 
(Fig. 24) were also computed for comparison.

The orientation comparison of different methods is shown in 
Table 6. It can be seen that the proposed method has the small-
est average error (3.1°) and the smallest maximum error (7.8°). 
Comparatively. The method of Chen et al. (2016) has the small-
est average error of 6.2° at the optimal group number of k = 6, 
which are almost twice as much as the proposed method. The 
maximum orientation error is as high as 35.8° of the No. 1 plane 
in Fig. 23d. This is because the No. 1 plane is very uneven. 
Figure 23d shows that the No. 1 plane contains regions with 
obviously different colors and multiple sharp lines in Fig. 23a. 
The large orientation error of the No.18 (Fig. 25b) plane and 
the No.11 (Fig. 25d) plane is also caused by the unevenness of 
identified discontinuity planes. In contrast, the proposed method 
performs recognition directly based on the color of OCM images 
reflecting the flatness, generating flat discontinuity planes that 
better match the manual labeling results.

Fig. 19   Discontinuity recognition procedures of case 2 by different 
methods. a OCM image generated by the proposed method. b Dis-
continuity ground truth by manual labeling. c Discontinuity recog-
nition results of the proposed method. d 3D discontinuity mapping 
results of the proposed method. e Discontinuity recognition results of 
Chen et al. (2016)

Fig. 20   Silhouette values of case 2 for grouping results of Chen et al. 
(2016)
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This case illustrates that although only rock slope data are 
used for the Mask R-CNN training, the proposed method can 
effectively identify rock tunnel excavation faces, demonstrat-
ing the adaptability and robustness of the proposed method for 
different scenarios.

4 � Discussion

4.1 � Sensitivity analysis toward point cloud density

The proposed method can identify and generate 3D dis-
continuity planes without any manual intervention when 

processing different 3D point cloud models. Therefore, the 
density of point clouds is critical for the proposed method. 
To analyze the effect of different point cloud densities on 
the proposed method, the point cloud of case 2 is ran-
domly resampled using nine downsample ratios. As shown 
in Table 7, the original case 2 contains 297,823 points. 
Then nine ratios of 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 
0.2 are used to perform the downsampling, generating the 
downsampled models with 297,823; 268,041; 238,258; 
208,476; 178,694; 148,912; 119,129; 89,347; and 59,565 
points, respectively. The method of Sect. 2.3.2 is used to 
generate point cloud OCM images by color filling with the 
void ratio around 0.1.

Fig. 21   Orientation grouping and discontinuity recognition results of case 2 by Chen et al. (2016). a Orientation grouping results of k = 4. b Dis-
continuity recognition results of k = 4. c Orientation grouping results of k = 5. d Discontinuity recognition results of k = 5

Fig. 22   Data collection and 
processing of case 3. a Image 
sequence. b 3D reconstructed 
point clouds. Blue numbers 
denote indexes and locations of 
manually selected discontinuity 
planes (color figure online)
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The specific parameters of different point cloud density 
models (M1–M9) are shown in Table 7. Figures 26 and 27 
show the OCM images and the recognition results of the pro-
posed method. It can be seen that the void increases and the 
color in discontinuity planes gradually become discrete as 
the density decreases. Meanwhile, as shown in Table 7, the 

number of effectively recognized discontinuities decreases 
with the downsample ratio increases. However, it should 
be noted that all of the 20 manually selected representa-
tive discontinuity planes (red dot locations in Fig. 27) are 
effectively identified from M1 to M3. Even when the down-
sampling changes from M1 to M7, most of the representa-
tive discontinuity planes can still be recognized, indicating 
the recognition effect of main discontinuity planes (i.e., 
manually labeled representative discontinuity planes) by the 
proposed method is robust to variations of the point cloud 
density. However, when the point cloud downsampling rate 
reaches 0.3 (M8) or even 0.2 (M9), both of the total number 
of recognized discontinuities and the number of recognized 
representative discontinuities have been steeply reduced, 
indicating the overly sparse point cloud can significantly 
affect the proposed method. Therefore, the point number in 
3D point cloud models is suggested to be larger than about 
25% of the reference image pixels with the resolution of 
800 × 800, which is 160,000 points.

4.2 � Efficiency of the proposed method

The proposed method contains two operation stages 
of training and recognition after acquiring the raw 3D 
point cloud. All algorithms are programmed using the 
combination of Matlab (2022a) and Python. All the 

Fig. 23   Discontinuity recogni-
tion procedures of case 3 by dif-
ferent methods. a OCM image 
generated by the proposed 
method. b Discontinuity recog-
nition results of the proposed 
method. c 3D discontinuity 
mapping results of the proposed 
method. d Discontinuity rec-
ognition results of Chen et al. 
(2016)

Fig. 24   Silhouette values of case 3 for grouping results of Chen et al. 
(2016)
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programs are performed on a Windows platform of an Intel 
CPU I7 13700K, GPU NVIDIA 4090 and RAM 64GB. The 
specific running time for the two stages is shown in Table 8. 
The training stage starts with manual labeling, which takes 
about 2 h per OCM image, thus the manual labeling of the 
43 original OCM images takes about 86 h in total. Then 
Mask R-CNN training has run for 260 epochs (211,900 
iterations) with a total of about 20 h. The main operation 
time in the training stage is about 106 h. In the recognition 
stage, it takes 12 s to process a case on average, including 
6 s for the NPW-OC contraction, 1 s for normal vector 
optimal RGB transformation, 2 s for point cloud OCM image 
generation, and 3 s for Mask R-CNN-based discontinuity 
recognition and orientation calculation. The good efficiency 
of the proposed method mainly attributes to the conversion 
from the direct recognition of large-scale 3D point clouds to 
Mask R-CNN’s recognition of 2D OCM images with fixed 
sizes, which effectively reduces the iterative calculation of 
3D point clouds with different densities and improves the 
efficiency stability.

4.3 � Analysis of characterization and rationality 
for the proposed method

Different from the traditional methods of discontinuity rec-
ognition that directly process point cloud with orientation 
data (Riquelme et al. 2014; Chen et al. 2017; Ge et al. 2018; 
Kong et al. 2020; Singh et al. 2021), the proposed method 
uses OCM images to reflect both the orientation as well as 
the spatial information of the point cloud. Combined with 
deep learning methods, the proposed method switches the 
direct recognition of 3D point clouds into the implicit rec-
ognition of 2D OCM images by Mask R-CNN, aiming to 
improve the performance in the following three aspects com-
pared with traditional methods:

1.	 Recognition efficiency.

The recognition efficiency of traditional methods is sen-
sitive to the number of points because 3D point clouds are 
required to be directly processed. In contrast, the proposed 

Fig. 25   Orientation grouping and discontinuity recognition results of case 3 by Chen et al. (2016). a Orientation grouping results of k = 3. b Dis-
continuity recognition results of k = 3. c Orientation grouping results of k = 4. d Discontinuity recognition results of k = 4
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method maps the point cloud into an OCM image of fixed 
sizes (800 × 800, Sect. 2.3.2) for processing, and Mask 
R-CNN is also efficient in recognizing 2D images (He et al. 
2018), which enables a stable and efficient recognition of 
point clouds with different point numbers.

2.	 Recognition automation.

Traditional methods often require manual fine-tuning of 
parameters for recognizing different rock models (Riquelme 
et al. 2014; Kong et al. 2020). Comparatively, the proposed 
method can finish all the tedious and time-consuming labe-
ling by manual interactions in the training stage, resulting 

Table 6   Orientation comparison 
of case 3 by different methods

*∆ denotes the angle between planes (°)

Plane id Ground truth Chen et al. (2016) The proposed 
method

k = 3 k = 4 k = 6

DD/DA ∆ DD/DA ∆ DD/DA ∆ DD/DA ∆

1 322.7/54.7 323.9/57.6 3.1 2.9/57.6 33.2 5.8/58 35.8 322.6/53.9 0.8
2 40.8/70.6 28.4/66.3 12.3 34.9/72 5.8 35.1/72.3 5.7 34.7/72.4 6.1
3 343.5/60.7 338.9/83.5 23.2 340.2/67.1 7 343.9/60.8 0.4 341.6/66.5 6.1
4 322.2/56.7 338.9/83.5 30.9 337.3/68.6 17.8 320.5/59.5 3.1 321.7/59 2.4
5 180.9/81.6 164.1/83.5 16.8 164.4/83.8 16.4 171.9/81.8 8.9 175.4/81.8 5.4
6 39.9/79.2 20.3/74.9 6.8 32.9/75.6 7.7 37.9/77.7 2.4 34.2/77.5 5.8
7 28.9/71 22.9/65.4 7.9 24.1/81.5 11.5 24.9/80.4 10.1 29/72.8 1.8
8 188.8/59.1 187/62.3 3.5 187/62.3 3.6 188.7/59.8 0.7 180.9/62.9 7.8
9 175.5/85.9 177.4/85.8 1.9 177.5/85.7 2 176.2/87.7 1.9 178.4/86 2.8
10 216.6/53.5 213.5/55.1 3 212.9/55.7 3.7 216.8/56 2.6 215.2/55.1 1.9
11 22.3/74.8 20.3/74.9 2 32.9/75.6 10.2 30.9/80 9.9 22.4/80.3 5.5
12 205.5/69.6 192.2/79.1 16 192/79.5 16.3 200.8/77.4 9 205/71.7 2.2
13 46.7/85.9 20.3/74.9 10.2 32.9/75.6 8.1 30.9/80 7.9 45.1/84.7 2
14 154.8/85.4 158.9/81.1 5.9 158.9/81.2 5.9 162/85.9 7.2 154.7/84.9 0.5
15 32.3/75.8 34.6/77.3 2.7 35.4/77.5 3.4 35.4/77.5 3.4 34.8/76.8 2.6
16 45.9/88.5 42.2/87 4 43.2/87.5 2.9 43.9/87.9 2 45.9/87.4 1
17 316.6/82.9 320.4/79.7 4.9 324.2/80.6 7.8 313/80.2 4.5 318.9/82.9 2.3
18 133.5/68.4 167.3/71.1 31.8 315.2/88 23.7 132/66.4 2.4 131.8/67.2 2
19 35.2/89.5 216/87.5 3.1 216/87.6 3 216.1/87.9 2.8 216/88 2.6
20 42.2/88.2 216.4/85.1 6.5 218.6/87.1 3.7 218.9/87.4 3.3 42.4/87.4 0.8
Mean error 9.8 9.7 6.2 3.1
Max error 31.8 33.2 35.8 7.8

Table 7   Information and 
recognition results of 
downsample models of case 2

* ND : recognized discontinuity number; NRD : recognized representative discontinuity number

Model Downsample 
ratio

Point number Point number/Non-
black pixel number

FL ratio
vd

N
D

N
RD

Ground truth 1 297,823 0.47 3 0.07 143 20
M1 1 297,823 0.47 3 0.07 119 20
M2 0.9 268,041 0.42 3 0.091 110 20
M3 0.8 238,258 0.37 3 0.103 102 20
M4 0.7 208,476 0.33 3 0.105 96 18
M5 0.6 178,694 0.28 3 0.107 84 17
M6 0.5 148,912 0.23 5 0.085 91 17
M7 0.4 119,129 0.19 5 0.106 65 18
M8 0.3 89,347 0.14 7 0.093 63 14
M9 0.2 59,565 0.09 9 0.092 63 11
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Fig. 26   OCM images of point cloud models with different densities

Fig. 27   Discontinuity recognition results of point cloud models with different densities. Red points denote the locations of 20 representative dis-
continuity planes by manual selection (color figure online)

Table 8   Running time of the 
proposed method

Operations Running time

Training stage (h) Recognition stage (s)

OCM image labeling 86h
Mask R-CNN training 20h
NPW-OC contraction 6s
Optimal RGB transformation of normal vectors 1s
Generation of point cloud OCM images 2s
Mask R-CNN predicting and orientation generation 3s
Total time 106 h 12s
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in the intelligent recognition without manual fine-tuning of 
parameters for different models during the recognition stage.

3.	 Proximity of the recognition results to manual 
judgements.

Traditional methods often need to control the rec-
ognition effect using uniform parameter settings of the 
algorithm (Zhang et al. 2018; Singh et al. 2021), which 
is ineffective to adjust the morphology of individual 
discontinuity planes. In contrast, the proposed method 
can directly edit the morphology of each individual dis-
continuity plane in the training stage by careful manual 
annotation, making the morphology of individual discon-
tinuity planes generated by the recognition stage closer 
to manual judgements.

Besides, the proposed method shows the generaliza-
tion to different scenarios, which is mainly because the 
OCM image only depends on the geometrical properties 
of rock mass and is independent of scenarios and litholo-
gies. As analyzed in Sect. 3.3, the proposed method can 
be effectively applied to the discontinuity recognition of 
the rock tunnel excavation face by training with only rock 
slope data, demonstrating the generalization to different 
scenarios of rock engineering.

From the applicability point of view, since OCM 
images are generated from 3D point clouds and normal 
vectors, the applicability of the proposed method also 
fundamentally depends on the accuracy and density 
of point clouds. As analyzed in Sect. 3 and shown in 
Figs. 16, 18, and 22, effective recognition results can 
be generated when the approximate average spacing of 
adjacent points is about 2–3 cm. Both the image-based 
3D reconstruction method (case 2 and case 3) and the 
3D laser scanning method (case 1) can generate effective 
point cloud for the recognition of the proposed method. 
However, it should be noted that when the point cloud 
is too sparse, the morphology of discontinuity planes in 
OCM images is incomplete (Fig. 26), which affects with 
the recognition effects (Fig. 27). In addition, although 
some point cloud acquisition techniques (such as 3D laser 
scanning) can collect point cloud with very high resolu-
tion (such as the Z + F Imager 5016 laser scanner can 
reach the resolution of 0.6 mm at 10 m), too dense point 
cloud is also unnecessary for the proposed method. This 
is mainly because the size of an OCM image is fixed at 
800 × 800 (Sect. 2.3.2), and too dense point clouds will 
cause the same pixel of the OCM to be repeatedly colored 
by different points, resulting in the redundancy of point 
cloud data. Therefore, different point cloud acquisition 
techniques can be applied to the proposed method as long 
as the density of the acquired point cloud is suitable.

In addition, the proposed method also has some 
limitations. First, considerable manual interaction and 
advanced knowledge are required in the field during the 
model training stage. The labeling operation is tedious 
and time-consuming. Second, the characteristics of rock 
discontinuities are diverse, making it difficult to recog-
nize complex and random cases only by training a lim-
ited amount of data. Third, too sparse point cloud can 
make the discontinuity planes in OCM images incom-
plete (Fig. 26), which significantly affects the recognition 
effect (Fig. 27). Finally, because the neural network is 
used for an implicit recognition, it is difficult to explicitly 
adjust and control the recognition effect by manual set-
ting algorithm parameters as traditional methods when 
the recognition effect is unsatisfactory.

4.4 � Applications of the proposed method

The recognized 3D discontinuity planes and orientations 
can be further used for applications such as rock dis-
continuity description, geological modeling, rock qual-
ity evaluation, and rock numerical analysis (Zhu et al. 
2016; Li et al. 2019; Zhang et al. 2020, 2021; Cai et al. 
2022). In this section, three applications are taken for 
example, including orientation grouping, 3D trace length 
distribution analysis, and discrete fracture network (DFN) 
generation.

In  t e r ms  o f  o r i en t a t i on  g roup ing ,  g iven 
PD = {p1, p2,… , pDN} (DN denotes the number of all 
points belonging to discontinuity planes) the coordi-
nates of all points belonging to discontinuity planes, 
and Plane = {pl1, pl2,… , plDM} (DM denotes the number 
of discontinuity planes) the index set of discontinuity 
points, then the normal vectors of points belonging to 
the ith discontinuity plane pli are the same, which can be 
calculated by Eq. (1). After obtaining the normal vectors 
of all points in PD , the improved K-means algorithm of 
Chen et al. (2016) is used to perform orientation grouping 
with the group number k set from 2 to 6. The grouping 
quality is evaluated using the Silhouette index to deter-
mine the optimal group number and the corresponding 
grouping results. The Silhouette value of the ith point in 
PD is calculated as

where a(pi) is defined as the average distance of pi to all 
other points in the same group, and b(pi) is defined as the 
minimum of the average distance between pi and points in 
other groups. The final Silhouette value is the mean value 
of all Silhouette values of points in PD . A large Silhouette 
value indicates a good grouping quality.

(26)S
(
pi
)
=

b
(
pi
)
− a(pi)

max{a
(
pi
)
, b(pi)}
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Figure 28a–c illustrates the optimal K-means grouping 
results of case 1–3 with the optimal group numbers of k = 3, 
k = 4 and k = 3, respectively.

As for trace generation and statistical analysis, Laux 
and Henk (2015) and Riquelme et al. (2018) consider the 
exposed discontinuity surface as a polygon. They hold 
that the distance between the two farthest points in the 
discontinuity point set represents the trace length of the 
discontinuity. Therefore, given pi1 and pi2 are the farthest 
points in discontinuity plane pli , then the 3D trace line is 

defined as the line from pi1 to pi2 , and the trace length leni 
of pli is defined as

Figure 28d–f shows the 3D trace results correspond-
ing to Fig. 28a–c, respectively. In addition, the negative 
exponential function is often used to fit the distribution of 
trace length (Zhang and Einstein 1998, 2000). The fitting 
results of trace length distribution are shown in Fig. 28g–i.

DFN is an important basis for rock property analysis 
(Guo et al. 2022). In DFN, discontinuity planes are often 

(27)leni = ||pi1 − pi2||

Fig. 28   Applications of the proposed method on case 1–3. a–c Orientation grouping results of case 1–3. d–f 3D trace recognition results of case 
1–3. g–i 3D trace length distribution fitting results of case 1–3. j–l DFN generation results of case 1–3
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represented by circular discs to simulate the persistence 
of fractures in 3D space (Zhang and Einstein 2000). The 
3D spatial disc of the discontinuity plane is determined 
by the center, radius, and normal vector, corresponding 
to the midpoints of 3D trace lines, the half-length of 3D 
trace length, and the normal vector of discontinuity planes, 
respectively. Figure 28j–l shows the DFN models corre-
sponding to case 1–3.

5 � Conclusion

This paper proposes an intelligent recognition of rock 
discontinuity based on OCM of 3D point clouds via deep 
learning, named OCM. The innovative contributions consist: 
(1) A neighborhood PCA-weighted oriented contraction 
(NPW-OC) method is proposed to extract point cloud 
skeletons as discontinuity intersection lines, (2) OCM of 
normal vectors based on optimal transformation among 
normal vectors, HSV and RGB, (3) generation of OCM 
images based on point cloud direction calibration and filling, 
(4) OCM image augmentation based on HSV transformation, 
affine transformation, and image flipping, (5) deep-learning-
based discontinuity recognition of Mask R-CNN toward 
OCM images, and (6) 3D discontinuity mapping from OCM 
recognition results.

Forty-two rock slope image sequences and a rock slope 
point cloud are collected and labeled for processing, 
generating a total of 4,632 OCM images including 430,613 
discontinuity planes after data augmentation for training 
the Mask R-CNN. Two rock slope cases and a rock tunnel 
excavation face case are adopted for testing. The average 
recognition time per 3D point cloud model is approximately 
12 s, and the total training time is about 106 h. The results 
show the proposed method can effectively recognize 
discontinuity planes with shapes, locations, and orientations 
close to manual recognition results. The proposed method 
is more accurate than traditional methods and shows good 
adaptability to different rock engineering scenarios. A 
sensitivity analysis is performed to validate the robustness 
of the proposed method to the variations of point cloud 
densities. In addition, the recognized discontinuity results 
are applied to three rock engineering practices including 
orientation grouping, 3D trace length distribution analysis, 
and DFN generation.

Future research can focus on the efficiency improvement 
of manual labeling during the training stage, the generali-
zation improvement by increasing the scale and quality of 
training datasets, the robustness improvement for processing 
too sparse point cloud, and the exploration of more powerful 
neural network structures.
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