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Abstract
A three-dimensional representation of the random distribution of fractures in rock masses, known as the discrete fracture 
network (DFN), is widely used to analyze the stability of jointed rock slopes. In this paper, a new framework for constructing 
three-dimensional DFN models in rock masses has been proposed to overcome the limitations of conventional circular or 
polygon-based models. The framework utilizes the universal elliptical disc (UED) model and integrates it with the discrete 
element method in 3DEC for the stability evaluation of jointed rock slopes. This paper starts by introducing the basic prin-
ciples of the UED model. The procedures for constructing a three-dimensional DFN using the UED model is then outlined. 
In the present study, a case study of a rock slope in Zhejiang Province, China is used to demonstrate the implementation of 
the proposed framework. A comprehensive comparative study is conducted to investigate the impacts of several UED model 
parameters, including the ratio of major axis to minor axis and rotation angle, and discontinuity density, on the stability of 
rock slopes and compared to the conventional Baecher disc model. The results show that the framework can effectively inte-
grate the UED model into 3DEC and provide a realistic representation of the three-dimensional DFN, leading to improved 
accuracy and efficiency in the stability evaluation of jointed rock slopes. The framework also shed light on the interactive 
effects of the UED model parameters and discontinuity density on the rock slope stability, providing a strong reference for 
using the UED model in constructing DFN models for rock slopes.

Highlights

•	 Three-dimensional discrete fracture networks (DFNs) of rock masses are successfully constructed using the universal 
elliptical disc (UED) model.

•	 Python subroutines are developed in 3DEC to construct 3D DFNs using the UED model for improved discrete element 
analyses of jointed rock slopes.

•	 The effects of several characteristic parameters of the UED model on the stability of jointed rock slopes are investigated.
•	 Based on a key block model, the mechanisms underlying the relationship between jointed rock slope stability and fracture 

discontinuity are rigorously explained.
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•	 The advantages of the UED model over the conventional Baecher disc model are comprehensively discussed based on a 
rock slope case study.

Keywords  Jointed rock slopes · Slope stability · Discrete element analysis · Discrete fracture network · Universal elliptical 
disc model · 3DEC

1  Introduction

Due to various geological, physical, and chemical processes, 
rock masses often exhibit extensive and intricate fractures 
and discontinuities. The mechanical and hydraulic proper-
ties of rock masses are then significantly impacted by the 
nature and characteristics of the discontinuities, which could 
further influence the behavior of geotechnical engineering 
systems such as rock slopes and rock tunnels (e.g., Priest 
and Hudson 1976; Vyazmensky et al. 2010; Wu and Kula-
tilake 2012; Zhou et al. 2023). In practice, measuring the 
intricate and random discontinuities within rock masses is 
not a trivial task, making the accurate and quantitative map-
ping of rock discontinuities a persistent challenge in this 
field. In an effort to represent the spatial distribution of rock 
discontinuities, current practices often rely on constructing 
a three-dimensional (3D) discrete fracture network (DFN), 
utilizing limited measurements of the visible discontinui-
ties at rock outcrops. In simpler terms, the shape, extent, 
and other significant features of the discontinuities within 
the rock masses are then estimated based on these limited 
measurements. As a result, the selection of an appropriate 
model to describe the DFN of a rock mass is a crucial fac-
tor in ensuring the reliability of slope seepage and stability 
analyses that involves rock mass discontinuities.

In the literature, studies on computational methods for 
representing rock discontinuities through the creation of 
a 3D DFN have been widely conducted, with a signifi-
cant number of these studies relying on the Baecher cir-
cular disc model (Baecher 1983). Despite its popularity, 
due to its ease of mathematical representation and quick 
computation (e.g., Liu et al. 2015; Zhan et al. 2017), the 
Baecher disc model has limitations in simulating slender 
fractures or joints with complex shapes (e.g., Guo et al. 
2020; Zheng et al. 2022). As a result, it may not be suit-
able for addressing complex geotechnical engineering 
challenges. To alleviate these limitations, various models 
have been proposed in the literature, including the paral-
lelogram-based model by Warburton (1980), the polygon-
based model by Dershowitz and Einstein (1988) and the 
rectangle-based model proposed by Decker et al. (2006) 
for sedimentary rocks. To make the DFN closer to the 
engineering reality, a method of replacing the disc with 
the polygon was also proposed by Xu and Dowd (2010). 
These models offer more flexibility in simulating the 

complex shapes of rock fractures, but they also have their 
own limitations and ambiguities, such as the difficulty in 
choosing the appropriate type of polygon-based model. 
In a nutshell, both the Baecher disc model and polygon-
based model have limitations in realistically representing 
the complex shapes of rock fractures.

On the other hand, Ivanova et al. (2014) developed a 
new method for modelling of rock fracture systems with the 
GEOFRAC three-dimensional stochastic model. With the 
enhanced GEOFRAC model and MATLAB-based Monte-
Carlo Simulation (MCS) program FRACSIM, the applica-
bility of the method was demonstrated. In addition, Zhang 
et al. (2002) proposed an ellipse-based model in simulating 
the DFN of rock masses. Jin et al. (2014) further adapted 
the ellipse-based model to simulate the occurrence of rock 
discontinuities. Recently, Guo et al. (2020), Zheng et al. 
(2022), and Guo et al. (2023) developed a new model called 
the universal elliptical disc (UED) model. The UED model 
that treats the ratio of major axis to minor axis and rotation 
angle as uncertain parameters, have been demonstrated to 
be effective in representing realistic rock fractures. How-
ever, the UED model is not widely used in slope engineering 
practice yet.

In this paper, a framework was proposed for integrating 
the UED model into 3DEC to construct a more realistic 
3D DFN of rock masses for improved stability analysis of 
jointed rock slopes. The effectiveness of the proposed frame-
work is demonstrated using a rock slope case in Zhejiang 
Province, China, and the effects of several key parameters 
in the UED model, including the ratio of major axis to minor 
axis, rotation angle, and discontinuity density, are investi-
gated through a comparative study with the conventional 
Baecher disc model. The results show that the proposed 
framework improves the understanding on the interactive 
effects of the UED model parameters and discontinuity den-
sity on the rock slope stability, and highlight the need for 
adopting the UED model in constructing realistic DFNs for 
rock slopes.

2 � Universal Elliptical Disc (UED) Model

The conventional Baecher circular disc models origi-
nally proposed by Baecher (1983) were formulated 
based on the size, azimuth, and density characteristics of 
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discontinuities. Specifically, the centroid location, diam-
eter, dip direction, dip angle and discontinuity density 
are among the important parameters considered in the 
Baecher disc models. The UED model shares similarities 
with the conventional Baecher disc model in which the 
size, azimuth and density of rock fracture discontinuity 
are important parameters. In this regard, the foundation 
for the UED model adopted in this paper is established 
by the principles and findings related to the conventional 
Baecher disc model. However, the UED model goes 
beyond the conventional Baecher disc model by including 
three additional parameters, namely the length of major 
axis, the ratio of major axis to minor axis and the rotation 
angle. These added parameters provide the UED model 
with greater flexibility in representing complex rock frac-
ture topologies (e.g., Guo et al. 2020; Zheng et al. 2022). 
Figure 1 summarizes the implementation procedures to 
characterize the DFN models of jointed rock masses using 
the UED model, which consist of four major steps. Details 
of the principles and steps illustrated in the figure are 
described in subsequent sections of the paper.

2.1 � Identification and Construction of Equivalent 
Fracture Planes

The discontinuities in the jointed rocks masses are often 
three-dimensional and have complex shapes. In some cases, 
the vertices of a discontinuity surface may not be coplanar, 
making it necessary to project the vertices onto an optimized 
two-dimensional (2D) plane before constructing a DFN 
using the UED model (Guo et al. 2020). This is because the 
UED model assumes that all fracture surfaces are planar.

Considering a rock slope with q visible discontinuity pol-
ygon surfaces, each of which contains n visible vertices at 
the rock outcrops, the coordinates of the n vertices of the i-th 
discontinuity polygon surface can be expressed as Pi: V1 (x1, 
y1, z1), V2 (x2, y2, z2), …, Vn (xn, yn, zn), i = 1, 2, …, q. Fol-
lowing this, the 2D fracture plane in space is optimized by 
minimizing the sum of the Euclidean distances between the 
n vertices and this 2D fracture plane. A simplified method 
is then developed to check whether the 2D fracture plane is 
a convex or concave polygon and compute its centroid coor-
dinates, (xm, ym, zm). The line segment composed of every 

Fig. 1   A summary of the procedure to characterize the DFN models of jointed rock masses using the UED model
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two adjacent vertices of the fracture plane is regarded as 
a vector. In this way, n vectors, ��������⃗V1V2 , ��������⃗V2V3 , …, ��������⃗VnV1 are 
obtained. The cross products between any two vectors are 
then calculated. The fracture plane is deemed as a convex 
polygon if all cross products have the same sign. Otherwise, 
it is a concave polygon (Marschner and Shirley 2015). As 
for the convex polygon, the centroid coordinates (xm, ym, zm) 
can be evaluated as

As for the concave polygon, the fracture polygon needs 
to be first triangulated. Then, the centroid coordinates for 
each triangle are estimated. The centroid coordinates of the 
concave polygon are equal to the weighted average of the 
centroid coordinates across all triangles as follows:

where j is the number of discretized triangles; Ai is the area 
of the i-th triangle; (xpi, ypi, zpi) are the centroid coordinates 
of the i-th triangle.

Thereafter, the matrix H0 that expresses the coordinates 
of the n vertices with respect to the centroid of the fracture 
polygon can be computed as follows:

To optimize the 2D fracture plane as described in Guo 
et al. (2020), the singular value decomposition method is 
adopted to factorize the matrix H0 as follows:

In this way, U being a n × n unitary matrix, V being a 
3 × 3 unitary matrix, and � being a n × 3 diagonal matrix 
are obtained. The unitary matrix V is then multiplied by a 
unit column vector (0, 0, 1)T to obtain the normal vector n of 
the projected plane in a 3D space as follows (Strang 2016):

(1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xm = 1
n

∑n
i=1 xn

ym = 1
n

∑n
i=1 yn

zm = 1
n

∑n
i=1 zn

(2)

⎧
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⎪
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xm =
∑j

i=1 Aixpi
∑j

i=1 Ai

ym =
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i=1 Aiypi
∑j

i=1 Ai

zm =
∑j

i=1 Aizpi
∑j

i=1 Ai

(3)H0=

⎡⎢⎢⎢⎣

x1 − xm
x2 − xm
…

xn − xm

y1 − ym
y2 − ym
…

yn − ym

z1 − zm
z2 − zm
…

zn − zm

⎤⎥⎥⎥⎦

(4)H0 = UΣVT

After obtaining the normal vector n = (a, b, c), the projec-
tion of the n vertices can be carried out. Since the line seg-
ment between a vertex (x, y, z) and the corresponding vertex 
(x�, y�, z�) after projection is in parallel with the normal vector 
n, a proportional relationship can be derived as

Alternatively, Eq. (6) can be reformulated as

where (xi, yi, zi) are the coordinates of an arbitrary vertex on 
the i-th fracture polygon, and (x�

i
, y�

i
, z�

i
) are the coordinates 

of the companion vertex after projection. The parameter t 
can be computed as (Strang 2016)

After processing all vertices following Eqs. (6) to (8), a 
new matrix H1 that represents the coordinates of the pro-
jected vertices can be obtained as

After that, the optimized fracture plane in a 3D space can 
be further converted to the xoy plane. This conversion starts 
from computing the parameters � and � as follows when c < 0 
and n = (− a, − b, − c):

To represent the coordinates in the polar coordinate sys-
tem, the parameters � and � are further converted into α and 
β as follows:

(5)n = V
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0

0

1

⎤
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Figure 2 illustrates the conversion of the coordinates. 
First, based on Fig. 2(a), the 2D fracture plane in a 3D 
space is first rotated with respect to the z-axis by a degree 
of α in the anti-clockwise direction, and a new matrix H′

1
 

can be obtained as

At the end of this operation, the normal vector n of the 
converted 2D fracture plane is on the xoz plane. In the 
next step, the resulting plane is rotated with respect to 
the y-axis by a degree of β in the clockwise direction, and 
another matrix H′′

1
 can be obtained as

Finally, the resulting normal vector n coincides with 
the z-axis, implying that the converted 2D fracture plane 

(11)

⎧⎪⎪⎨⎪⎪⎩

𝛼 =

⎧
⎪⎨⎪⎩

2π − 𝜃 (a ≥ 0, b ≥ 0)

−𝜃 (a ≥ 0, b < 0)

π − 𝜃(a < 0, b < 0 or a < 0, b ≥ 0)

𝛽 = 𝛿

(12)H
′

1
=

⎡
⎢⎢⎣

cos � − sin � 0

sin � cos � 0

0 0 1

⎤
⎥⎥⎦
H

T

1

(13)H
′′

1
=

⎡
⎢⎢⎣

cos � 0 − sin �

0 1 0

sin � 0 cos �

⎤
⎥⎥⎦
H

′

1

is on the xoy plane. After these two rounds of coordinate 
transformation, the values corresponding to the z-axis in 
the matrix H′′

1
 are deterministic and known. The corre-

sponding row in H′′

1
 can be removed without affecting the 

subsequent calculations, and a simplified matrix H2 that 
represents the final coordinates of the vertices on the xoy 
plane can be expressed as

In the last step, the final coordinates of the vertices are 
sorted sequentially in the clockwise or anti-clockwise direc-
tions as A1 (x1, y1), A2 (x1, y1), …, An (xn, yn), and the Shoe-
lace theorem is employed to calculate the area, SP, of frac-
ture plane as follows (Stewart 2015):

2.2 � Determination of the Optimal Ellipse 
Parameters

The objective of the proposed framework is to realistically 
depict the rock fractures using ellipses. As shown in Fig. 3, 
the process starts with aligning the center of a fracture poly-
gon with the center of an ellipse with the same area. In this 

(14)H2 =
⎡

⎢

⎢

⎣

x′′1 x′′2 … x′′n

y′′1 y′′2 … y′′n

⎤

⎥

⎥

⎦

(15)SP =
1

2

||||||

n−1∑
i=1

(xiyi+1 − yixi+1) − (x1yn − y1xn)

||||||

Fig. 2   Illustrations of the coordinate transformation from the three-dimensional discontinous planes to the two-dimensionl discontinous planes
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step, the model parameters that determine the geometry of 
the ellipse include: the length of major axis e, the length 
of minor axis f, the ratio of major axis to minor axis k, the 
semi-latus rectum g and the rotation angle γ. Specifically, 
the rotation angle γ is the angle between the semi-major axis 
above the x-axis and the positive x-axis in an anti-clockwise 
direction, see Fig. 3(b), and has a value between 0 and π. 
Mathematically, the values of e, f and g can be calculated 
as follows:

where SE is the area of the ellipse. Following the notations 
explained earlier, the centroid coordinates 

(
x′
m
, y′

m

)
 of the 

converted fracture plane can also be calculated using Eqs. 
(1) or (2).

To realistically resemble the shape of a real fracture 
plane, the centroid of an ellipse is first aligned with the cen-
troid of the fracture polygon as shown in Fig. 3. After the 
matrix H2 obtained through Eq. (14) is processed by remov-
ing its centroid coordinates, a new matrix H3 that represents 
the coordinates of the vertices with respect to the origin of 
the xoy plane can be obtained as

(16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e =

�
4kSE

π

f =
e

k

g =
1

2

√
e2 − f 2

A computer graphics-based method is then proposed to 
calculate the union and intersection areas of the fracture 
polygon and fitted ellipse, which are necessary steps to 
obtain an optimal ellipse. The proposed method can effec-
tively alleviate the low computational efficiency of the point 
radial method proposed by Guo et al. (2020). The key steps 
and equations associated with the computer graphics-based 
method are summarized as follows:

(1)	 Calculate the area, SP, of the fracture polygon using 
Eq. (15).

(2)	 Represent the fracture polygon and fitted ellipse in the 
same coordinate space and digitize both objects. Note 
that digitization is equivalent to dividing an ellipse or 
a polygon using grids with unit area. The number of 
pixels of the digitized ellipse is then denoted as SE, 
which represents the area of the ellipse (Marschner and 
Shirley 2015).

(3)	 Overlay the ellipse with the fracture polygon and count 
the number of pixels in the union area, SU, of the frac-
ture polygon and fitted ellipse.

(4)	 Calculate the intersection area, Scoin, of the fracture 
polygon and fitted ellipse as follows:

(17)H3 =
⎡

⎢

⎢

⎣

x′′1 − x′m x′′2 − x′m … x′′n − x′m

y′′1 − y′m y′′2 − y′m … y′′n − y′m

⎤

⎥

⎥

⎦

Fig. 3   Fitting of a real facture polygon using an ellipse with an arbitrary rotation angle γ 
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Note that numerical errors may also occur in using the 
computer graphics-based method when some pixels on the 
polygon boundary cannot be digitized completely. This is 
because the number of pixels must be an integer. Neverthe-
less, an adaptive grid-based search is adopted to iteratively 
sample all possible values of model parameters k and γ. By 
this means, the fitting results obtained from the computer 
graphics-based method can still be consistent with those 
obtained from the point radial method. In addition, for the 
ease of implementation, the ellipse is often approximated 
using the polygon with a sufficiently large number of verti-
ces, and the coordinates of the vertices can be obtained as

To determine the optimal ellipse, Intersection over Union 
(IoU), which represents the ratio of the intersection area 
to the union area between the fracture polygon and fitted 
ellipse, is used and evaluated as

(18)Scoin = SP + SE − SU

(19)

{
x = (e cos � cos � − f sin � sin �)∕2

y = (e cos � sin � + f sin � sin �)∕2

(20)IoU =
Scoin

SU

According to Marschner and Shirley (2015), a threshold 
IoU value of 0.5 is typically used. An optimal ellipse should 
correspond to an IoU value larger than the threshold value.

As mentioned earlier, the adaptive grid-based search is 
employed to sample all possible values of k and γ. First, 
based on a grid resolution of 0.5 and 1° for the two parame-
ters, respectively, the IoU values of all combinations of these 
two parameters are calculated. After that, the refined search 
is centred at the combination of model parameters associated 
with the largest IoU value, denoted as k0 and γ0. Specifically, 
within the search domain, i.e., (k0 ± 1) and (γ0 ± 5°), based 
on a refined grid resolution of 0.05 and 0.5°, the IoU values 
underlying all combinations of model parameters are calcu-
lated. Finally, the ellipse model parameters correspond to 
the one combination associated with the largest IoU value 
are determined. The process of fitting the optimal elliptical 
disc is shown in Fig. 4.

2.3 � Construction of Optimal Ellipses

The procedures outlined in the previous section are then 
repeated for all rock fracture planes, and the statistical dis-
tributions of the major axis length e, ratio of major axis to 
minor axis k and rotation angle γ can be obtained. In addi-
tion, using the field measurements at the rock outcrops, the 
statistical distributions of dip direction κ and dip angle φ can 
also be determined. The remaining model parameters, such 

Fig. 4   Step-by-step illustration of the optimal elliptic disc fitting process
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as the centroid coordinates of the ellipse (xm, ym, zm), follow 
a uniform distribution, as reported in Baecher (1983).

After performing the MCS, random samples of the model 
parameters, such as e, k, γ, κ, φ and (xm, ym, zm), are gener-
ated. Based on the equation of a 2D ellipse, the equation of 
the corresponding 3D ellipse can be derived. The conversion 
of these coordinates to the 3D space can be performed using 
the normal vector n and the major axis given a coordinate 
matrix N on the ellipse as defined in the 2D space by

Referring to Fig. 5a, assuming that the x-axis points 
towards the north direction, the ellipse is first rotated by a 
degree of γ in the anti-clockwise direction around the z-axis, 

(21)N =

⎡
⎢⎢⎣

e cos �∕2

f sin �∕2

0

⎤
⎥⎥⎦

and the resulting coordinate matrix N1 after the rotation can 
be evaluated as

Next, with reference to Fig. 5b, the ellipse is rotated by a 
degree of φ in the anti-clockwise direction around the y-axis 
to arrive at another coordinate matrix N2 as follows:

(22)N1 =

⎡
⎢⎢⎣

cos � − sin � 0

sin � cos � 0

0 0 1

⎤
⎥⎥⎦
N

(23)N2 =

⎡
⎢⎢⎣

cos� 0 sin�

0 1 0

− sin� 0 cos�

⎤
⎥⎥⎦
N1

Fig. 5   Illustrations of the coordinate transformation from the two-dimensional ellipse to the corresponding ellipse in the three-dimensional space
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Last, following Fig. 5c, the ellipse is rotated around the 
z-axis by a degree of κ in the clockwise direction to arrive at 
the final coordinate matrix N3 as follows:

After these three rounds of coordinate transformation, 
the 2D ellipse can be transformed into a 3D space, and its 
transformation equations can be derived as

As described in Eq. (25), each combination of the ran-
domly generated samples, such as e, k, γ, κ, φ, and (xm, 
ym, zm), corresponds to a unique ellipse in the 3D space. 
To simulate the DFN of a 3D rock block with a size of 
L1 × L2 × L3, it is necessary to first calculate the number of 
fracture planes, D, based on their densities of occurrence 
(i.e., discontinuity densities). This results in D ellipses that 
together simulate the DFN of a rock block.

3 � Integration of the UED Model in 3DEC

3DEC is a highly advanced 3D numerical simulation soft-
ware designed for advanced geotechnical analysis (Itasca 
Consulting Group 2016). Utilizing the discrete element 
method, the software is particularly well-suited for simulat-
ing discontinuous media, such as jointed rock masses, incor-
porating both continuum and non-continuum mechanics 
(e.g., Firpo et al. 2011; Bui et al. 2017; Espada et al. 2018). 
Although 3DEC has the capability to construct the 3D DFN 
models using the MCS, the current commercial version of 
the software is developed based on the conventional Baecher 
disc model. To overcome the limitations of the current com-
mercial release of 3DEC, the present study leverages Python 
to introduce a subroutine to integrate the UED model into 
3DEC. The aim is to construct the 3D DFNs using the UED 
model. The procedures that involve eight steps are summa-
rized as follows:

(1)	 Generate random samples of ellipse model parameters 
through the MCS, which results in the construction 
of the corresponding ellipses on a 2D plane, and con-
vert all 2D ellipses into 3D companion ellipses using 
Eq. (25).

(24)N3 =

⎡
⎢⎢⎣

cos � sin � 0

− sin � cos � 0

0 0 1

⎤
⎥⎥⎦
N2

(25)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = xm + e cos �(cos � cos� cos � + sin � sin �)∕2
−f sin �(sin � cos� cos � − cos � sin �)∕2

y = ym + e cos �(− cos � cos� sin � + sin � cos �)∕2
+f sin �(sin � cos� sin � + cos � cos �)∕2

z = zm + (−e cos � cos � sin� + f sin � sin � sin�)∕2

(2)	 Partition each ellipse into 20 segments with an equal 
radial angle using the “range” function in Python, and 
export the coordinates of the 20 vertices in the Carte-
sian coordinate system as a “DFN.txt” file. Use a poly-
gon with a substantial number of vertices to approxi-
mate an ellipse in 3DEC since curves cannot be directly 
generated in 3DEC. This motivates the partition of all 
ellipses into 20 segments.

(3)	 Generate a set “s” in 3DEC to store the coordinates of 
the 3D ellipses using the “geometry set s” command.

(4)	 Use the “call” command available in 3DEC to load the 
“DFN.txt” file before executing the “geom poly posi-
tion” command to construct the ellipses. Note that each 
MCS sample corresponds to an ellipse in the 3D space 
in 3DEC.

(5)	 Assign all 3D ellipses with the DFN properties using 
the “DFN gimport geometry s” command, resulting in 
a complete 3D DFN model.

(6)	 Construct an intact rock mass model in the studied 
domain, followed by defining a slope surface and a 
slope base using the “Jset” command. Hide or delete 
the main slope body and external rock masses using the 
“hide range group” or “delete range group” commands, 
respectively, and obtain the rock masses defining the 
slope model domain. Then, draw two lines to define the 
slope surface and the slope base following the “seek” 
command.

(7)	 Merge the DFN with the intact rock slope using the 
“Jset DFN” command in 3DEC, leading to a jointed 
rock slope model.

(8)	 Assign the fracture planes and rock masses with 
the corresponding mechanical properties using the 
“Change DFN” command. Specifically, the fracture 
planes follow non-continuum mechanics while the rock 
masses not belonging to the fracture planes follow con-
tinuum mechanics. This command can also remove the 
duplicate of fracture planes and rock masses generated 
during the merging process and ensure that partial pen-
etration of elliptical fractures in the neighboring blocks 
can be considered in the numerical analysis.

4 � Discrete Element‑Based Strength 
Reduction Technique

The stability of the 3D jointed rock slopes constructed 
in the previous section is evaluated using the discrete 
element-based strength reduction technique embedded 
in the “solve fos” command in 3DEC (e.g., Firpo et al. 
2011; Espada et al. 2018; Liu et al. 2021). This technique, 
commonly used in the slope stability analysis, involves 
reducing the strength of the rock mass, such as cohesion, 
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friction angle, normal stiffness and shear stiffness, and 
iteratively evaluating the slope stability until it becomes 
disturbed. Cohesion and friction angle are known to be 
critical strength parameters for slope stability analy-
sis. Therefore, following Espada et al. (2018) and Wang 
et al. (2020), this study considers these two parameters 
in the analysis, reducing them according to the following 
equations:

where C and ϕ represent, respectively, the cohesion and 
friction angle; Fs represents the reduction factor; C′ and �′ 
represent, respectively, the reduced cohesion and reduced 
friction angle. It is important to note that the reduction in 
the friction angle is based on the tangent of ϕ. When the sta-
bility of the slope is disturbed, the Fs is the factor of safety 
of the slope. However, there are several ways to evaluate 
whether the slope stability is disturbed. The criterion used 
in the present study is summarized as follows: If the slope 
system transitions from a static state to a dynamic state, this 
is an indication of slope instability. When this occurs, the 
plastic flow occurs in the materials, causing the discrete ele-
ment method to be unable to maintain the equilibrium of 
slope system and constitutive law, resulting in divergence 
in the calculations (e.g., Bui et al. 2017; Wang et al. 2020). 
In all subsequent analyses, a maximum of 10,000 iterations 
are used to evaluate the factor of safety, and an unbalanced 
force ratio of 10–4 is used to ensure the results with satisfac-
tory accuracy.

(26)

⎧
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C� =
C

Fs

�� = arctan

�
tan�

Fs

�

5 � Illustrative Example

In this section, based on field measurements of a jointed 
rock slope in Zhejiang Province, China as well as three 
sets of simulated data, the effectiveness of the UED model 
in creating the DFNs of jointed rock masses and conduct-
ing the 3D discrete element analysis of slope stability is 
investigated. In addition, the effects of UED model param-
eters, including the ratio of major axis to minor axis, 
rotation angle, and discontinuity density on the stability 
of rock slope are also evaluated. Figure 6 shows the 3D 
slope model under study. To supplement the sparse field 
measurements, the statistics of the physical and mechani-
cal properties of the rock masses and discontinuities 
reported in Lei and Wang (2006) and Jiang et al. (2021) 
are adopted, which are summarized in Tables 1 and 2, 
respectively.

5.1 � Analysis Based on the Field Measured Data 
of Discontinuities

Referring the site investigation data and relevant studies, 
the jointed rock slope mainly consists of limestones. Based 
on the remote sensing images collected using a widely 
used unmanned aerial vehicle, Phantom 4 RTK, made 
by DJI Technology, 90 visible natural fractures that are 
approximately parallel to the slope are identified at the 
rock outcrops in Zheng et al. (2022). Each rock fracture 
contains 3–7 vertices. The discontinuity density is 0.6 
trace/m3.

The procedures explained in Sect. 2.2 are then used to 
process these 90 measured samples. Based on the area, SP, 
of each fracture plane, the model parameters of the cor-
responding optimal ellipse, e, k and γ, are calculated. Tak-
ing the 9th rock fracture P9 as an example, a step-by-step 

Fig. 6   Three-dimensional geometric model of a rock slope in Zheji-
ang Province, China (Unit: m)

Table 1   Physical and mechanical properties of the rock mass

Parameter Unit 
weight 
(kN/m3)

Bulk 
modulus 
(GPa)

Shear 
modulus 
(GPa)

Cohesion 
(kPa)

Friction 
angle 
(°)

Value 20 1 0.3 200 50

Table 2   Mechanical properties of the discontinuity

Parameter Normal 
stiffness 
(GPa/m)

Shear 
stiffness 
(GPa/m)

Cohesion 
(kPa)

Friction angle 
(°)

Value 20 2 5 25
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illustration about the construction of an optimal ellipse 
based on real rock fracture data is presented as below:

(1) Extract the coordinates of four vertices of P9 as follows:

(2) Check and find that P9 is a convex polygon and compute 
the centroid coordinates of P9 using Eq. (1) as (24.36, 12.34, 
20523.28).

(3) Compute the matrix H0 that expresses the coordinates 
of the four vertices with respect to the centroid of P9 using 
Eq. (3) as follows:

(4) Compute the unitary matrix V through the singular value 
decomposition of the matrix H0 using Eq. (4) as follows:

(5) Compute the normal vector n of the projected plane in a 
3D space using Eq. (5) as follows:

(6) Project the coordinates of the four vertices of P9 onto 
the plane in a 2D space using Eqs. (6) to (8), and obtain the 
matrix H1 that represents the coordinates of the projected 
four vertices as follows:

(7) Compute the values of α and β using Eqs. (10) and (11) 
as α = 0.505 and β = 1.131.

(27)

⎧
⎪⎪⎨⎪⎪⎩

V1 ∶ (11.99, 21.37, 20555.58)

V2 ∶ (45.76, 13.24, 20484.54)

V3 ∶ (38.38, 0.15, 20484.63)

V4 ∶ (1.38, 14.58, 20568.35)

(28)H0 =

⎡⎢⎢⎢⎣

−12.365

21.315

14.025

−22.975

9.305

0.905

−12.185

2.245

32.305

−38.735

−38.645

45.075

⎤⎥⎥⎥⎦

(29)V =

⎡⎢⎢⎣

0.41697

−0.12123

−0.90080

−0.44604

−0.89082

−0.08658

0.79195

−0.43789

0.42552

⎤⎥⎥⎦

(30)n =[0.79195, −0.43789, 0.42552]

(31)

H1 =

⎡⎢⎢⎣

11.992

21.369

20555.581

45.669

13.241

20484.539

38.381

0.149

20484.631

1.378

14.581

20568.349

⎤⎥⎥⎦

(8) Compute the matrix H2 that represents the final coordi-
nates of the four vertices on the xoy plane through the two 
rounds of coordinate transformation using Eqs. (12) to (14) 
as follows:

(9) Compute the area of the fracture polygon on the xoy 
plane using Eq. (15) as Sp = 0.1063 m2.

(10) Compute the matrix H3 that represents the coordinates 
of the four vertices with respect to the origin of the xoy plane 
using Eq. (17) as follows:

(11) Fit the fracture polygon on the xoy plane using an 
ellipse and set initial ranges for the ellipse model param-
eters (k and γ). Compute the values of SU and Scoin using 
the computer graphics-based method and IoU values using 
Eq. (20) for all combinations of k and γ in the first iteration 
of the grid-based sampling as shown in Eq. (34) and obtain 
the optimal combination of k and γ as k0 = 7.5 and γ0 = 7.0°.

(12) Update the ranges for k and γ, perform the second iter-
ation of the grid-based sampling for k and γ as shown in 
Eq. (35), and obtain the final optimal combination of k and 
γ as k0 = 7.4 and γ0 = 7.0°.

(13) Obtain the corresponding IoU value as 0.806 and 
compute the length of major axis e = 1.001 m, the length 
of minor axis f = 0.135  m, and the semi-latus rectum 
g = 0.992 m using Eq. (16) based on SE = SP.

(32)

H2 =

[
−18601.709

24.503

−18523.205

33.688

−18523.306

18.703

−18615.818

13.427

]

(33)H3 =

[
−35.700

1.923

42.805

11.108

42.704

−3.877

−49.809

−9.153

]

(34)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k = 1.0, � = 0◦, S
U
= 1875, S

coin
= 518, IoU = 0.276

⋯

k = 7.0, � = 7.0◦, S
U
= 1339, S

coin
= 1058, IoU = 0.790

k = 7.5, � = 7.0◦, S
U
= 1320, S

coin
= 1061, IoU = 0.804

⋯

(35)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k = 6.5, � = 2.0◦, S
U
= 1662, S

coin
= 697, IoU = 0.419

⋯

k = 7.35, � = 7.0◦, S
U
= 1331, S

coin
= 1058, IoU = 0.795

k = 7.40, � = 7.0◦, S
U
= 1312, S

coin
= 1058, IoU = 0.806

⋯
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The technique proposed by Jiang et al. (2023a) is then 
employed for sample augmentation with the original 90 
measured samples. A further 4800 samples of e, k and γ 
are obtained and plotted alongside the original 90 meas-
ured samples in Fig. 7. Note that the additional 4800 sam-
ples are determined by multiplying the discontinuity den-
sity (0.6 trace/m3) with the volume (20 × 20 × 20 m3) of 
the rock block. The figure shows that the statistics of the 
additional 4800 samples resemble those of the original 90 
measured samples. In addition, 4800 values of dip direction 
and dip angle are also sampled following a Fisher distribu-
tion according to the method reported in Kemeny and Post 
(2003) based on the statistics as shown in Table 3.

Figure 8 shows a 3D DFN with a size of 20 m × 20 m × 20 
m generated in 3DEC using the UED model and 4800 sam-
ples. To show the diagram of the discretization process of 
rock blocks for a rock slope using 3DEC, the corresponding 
3D jointed rock slope model is constructed following the 
procedures outlined in Sect. 3, as shown in Fig. 9. Note that 
Fig. 9 should not be interpreted as to reflect the actual cut-
ting situation of a rock slope because only full penetration 
of structural planes is considered in 3DEC. Then, the factor 
of safety of the slope calculated using the discrete element-
based strength reduction technique is 2.55. Figure 10, which 
displays the contour of horizontal displacement at the cross-
section of x = 8 m, shows that the maximum displacement 
occurs near the slope surface. It is worth highlighting the 

Fig. 7   Comparison of the histogram of measured and simulated samples of ellipse model parameters
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horizontal displacement field shown in Fig. 10 corresponds 
to the iteration results just before the slope fails.

Additionally, the accuracy of (i) the Baecher disc model, 
(ii) a non-optimal elliptical disc model, and (iii) the optimal 
elliptical disc model (UED model) for fitting the 90 measured 
samples is further compared. The means of the optimal ellip-
tical disc model parameters (i.e., k = 2.46 and γ = 112.1°) are 
taken as the values of the non-optimal elliptical disc model 
parameters. Figures 11a and b show, respectively, the normal-
ized frequencies of IoU value and the IoU values obtained 
from fitting the 90 measured samples using these three mod-
els. As observed from Fig. 11, the IoU values of the optimal 
elliptical disc model generally cluster between 0.8 and 0.9. All 
data exceed the threshold IoU value of 0.5 and are significantly 
larger than those of the Baecher disc and non-optimal ellipti-
cal disc models. The results indicate that the optimal elliptical 
disc model has the best fitting accuracy. In contrast, the fitting 
accuracy of the Baecher disc model is poor, especially for slen-
der fractures because the estimated IoU values are generally 
distributed between 0.3 and 0.7 and exceed the threshold value 
of 0.5 only for 70% of the cases (63 cases). The non-optimal 
elliptical disc model cannot accurately represent the spatial 
distribution of fractures in most cases because the estimated 
IoU values exceed the threshold value of 0.5 only for 43.3% 
of the cases (39 cases).

Table 3   Statistics of the azimuth and UED model parameters

Random parameters Mean value Standard deviation Probability distribution Remarks

Dip direction � (°) 90 / Fisher distribution Fisher constant = 14.7
Dip angle � (°) 33 /
Ratio of major axis to minor axis k 2.460 1.154 Empirical distribution Figure 7a
Rotation angle � (°) 112.1 55.679 Empirical distribution Figure 7b
Length of major axis e (m) 0.500 0.282 Empirical distribution Figure 7c
Centroid coordinates (m) (10, 10, 10) 5.774 Uniform distribution Upper limit (20, 20, 20)

Lower limit (0, 0, 0)

Fig. 8   Three-dimensional DFN constructed using the UED model

Fig. 9   Three-dimensional jointed rock slope model constructed using 
the UED model

Fig. 10   Contour of horizontal displacement at the cross-section 
(x = 8 m) of the jointed rock slope
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5.2 � Analysis Based on the Simulated Data 
of Discontinuities

5.2.1 � Case Descriptions

This section presents the implementation of the UED model 
in the conjunction with three sets of simulated data of dis-
continuities to investigate the effects of ellipse model param-
eters, including the ratio of major axis to minor axis and 
rotation angle, on the characteristics of the resulting DFNs 
and stability of jointed rock slope. The results associated 
with the UED model are further compared with those associ-
ated with the conventional Baecher disc model. In the subse-
quent parts of this paper, the three sets of analyses using the 
UED model are referred to as Group 1, Group 2 and Group 
3. Specifically, Group 1 is used to study the sensitivity of 
slope stability to the UED model parameters. Groups 2 and 
3 are assigned with fixed values of discontinuity character-
istics. In addition, the total area of the ellipses representing 
all fracture planes is set to 4 m2 for all these three groups, 
and the length of major axis is constant across all groups. In 
this regard, the size of the ellipses is controlled by adjusting 
the ratio of major axis to minor axis, according to Eq. (16). 
Lastly, the discontinuity density is set as 0.1 trace/m3 herein.

The statistics of the azimuth and UED model parameters 
for these three groups of discontinuities, which follow a nor-
mal distribution, are shown in Tables 4 and 5, respectively. 
Table 4 reveal that Group 1 assumes that the dip direction is 
in parallel with the slope surface, which intuitively results in 
a low factor of safety as the slip surface of slope is likely to 
form along the dip direction. With reference to Tables 6 and 7, 

Group 1 includes twelve cases for sensitivity analysis. Cases 
1 to 7 vary the mean of the ratio of major axis to minor axis 
while keeping its coefficient of variation and the total area of 
ellipses constant. In these cases, the mean and standard devia-
tion of the rotation angle equal 90° and 5°, respectively. Cases 
8 to 12 fix the standard deviation of the rotation angle at 5° 
while varying the mean from 0° to 150°. In these cases, the 
mean and standard deviation of the ratio of major axis to minor 
axis are 5.0 and 1.0, respectively. For comparison purposes, 

Fig. 11   Histograms of IoU Value and IoU Values obtained from fitting the 90 measured samples using three different models

Table 4   Statistics of the azimuth of the three groups of discontinui-
ties

Discontinu-
ity set

Mean of the 
dip angle 
(°)

Standard 
deviation 
of the dip 
angle (°)

Mean of the 
dip direc-
tion (°)

Standard 
deviation 
of the dip 
direction (°)

Group 1 45 5 90 5
Group 2 60 5 210 5
Group 3 30 5 30 5

Table 5   Statistics of the UED model parameters for Group 2 and 
Group 3

Discontinu-
ity set

Mean of 
the rotation 
angle (°)

Standard 
deviation of 
the rotation 
angle (°)

Mean of 
the ratio of 
major axis 
to minor 
axis

Standard 
deviation of 
the ratio of 
major axis to 
minor axis

Group 2 90 5 5.0 1.0
Group 3 90 5 5.0 1.0
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a companion case, Case 13, is designed based on the Baecher 
disc model, with the total area of the circular discs being the 
same as the total area (i.e., 4 m2) of the ellipses in Groups 1, 
2 and 3. Based on the information presented in Tables 4, 5, 6, 

7 and the procedures outlined in Sect. 3, the MCS is utilized 
to construct the jointed rock slope model in 3DEC for all the 
cases in these three groups and the case based on the Baecher 
disc model. The factor of safety of the slope is calculated for 
each case using the discrete element-based strength reduction 
technique in 3DEC. The comparative study results of these 
calculations are discussed in the next section.

5.2.2 � Comparative Study Results

Figures 12a and b show the variations of the factor of safety 
of the slope with the ratio of major axis to minor axis and 
the rotation angle, respectively. The results obtained from the 
Baecher disc model are also plotted for comparison. Since the 
Baecher disc model does not involve the ratio of major axis 
to minor axis and rotation angle, a straight line is observed in 
Fig. 12. It is evident from the figures that the slope stability 

Table 6   Sensitivity analysis 
cases involving the ratio of 
major axis to minor axis in 
Group 1

Model number Mean of the ratio of 
major axis to minor axis

Standard deviation of the ratio 
of major axis to minor axis

Distribution of the ratio 
of major axis to minor 
axis

Case 1 5.0 1.0 Normal
Case 2 7.5 1.5 Normal
Case 3 10.0 2.0 Normal
Case 4 12.5 2.5 Normal
Case 5 15.0 3.0 Normal
Case 6 17.5 3.5 Normal
Case 7 20.0 4.0 Normal

Table 7   Sensitivity analysis cases involving the rotation angle in 
Group 1

Model number Mean of the 
rotation angle 
(°)

Standard devia-
tion of the rotation 
angle (°)

Distribution 
of the rotation 
angle

Case 8 0 5 Normal
Case 9 30 5 Normal
Case 10 60 5 Normal
Case 1 90 5 Normal
Case 11 120 5 Normal
Case 12 150 5 Normal

Fig. 12   Variations of the factor of slope safety with the means of UED model parameters
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can be significantly affected by the ratio of major axis to 
minor axis and rotation angle. In addition, the effects are not 
necessarily monotonic. With reference to Fig. 12a, the rela-
tionship between the factor of safety and the ratio of major 
axis to minor axis follows a U-shape curve, with the factor 
of safety declining as the ratio increases and then bouncing 
backing once the ratio exceeds 15. With reference to Fig. 12b, 
a sine-shape curve can be used to describe the relationship 
between the factor of safety and the rotation angle. In con-
trast, the conventional Baecher disc model does not account 
for the effects of the ratio of major axis to minor axis and 
rotation angle, which could potentially result in inaccurate 
representation of jointed rock masses and slope stability 

analysis results. Figure 12a highlighted that the results from 
the conventional Baecher disc model consistently overesti-
mates the slope stability, potentially leading to inadequate 
slope reinforcement designs. Figures 13, 14, 15 further com-
pare the three-dimensional DFN models, jointed rock slopes 
and the contour of horizontal displacement at the cross-sec-
tion of x = 5 m based on the UED model and the cross-section 
of x = 10 m based on the Baecher disc model. These figures 
evidently demonstrate that the UED model, which is a more 
flexible and generalized model, can produce more realistic 
stability evaluations of jointed rock slope due to its ability to 
represent the discontinuities with realistic fracture topology.

Fig. 13   Comparison of the three-dimensional DFNs constructed using the UED model and Baecher disc model

Fig. 14   Comparison of the three-dimensional jointed rock slopes constructed using the UED model and Baecher disc model
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With the advantages of the UED model over the conven-
tional Baecher disc model demonstrated, the effect of discon-
tinuity density on the slope stability is further investigated. 
Ten DFN models with the discontinuity densities ranging from 
0.1 to 1.0 trace/m3, are generated. For all the ten cases, the dip 
direction is parallel with the slope surface. Other parameters 
are kept the same as those listed in Tables 1, 2, 3, 4. It is also 
worth noting that except the DFN model with a density of 0.1 
trace/m3, which is generated using the MCS, other nine DFN 
models are generated through adding extra fracture surfaces 
to the DFN model underlying the preceding density. Figure 16 
shows the effects of discontinuity density on the slope stability 
for the UED model and Baecher disc model.

To better understand the impact of the ratio of major axis 
to minor axis, rotation angle and discontinuity density on the 
slope stability, a key block model with three stratigraphic 
units is created because the stability of a rock slope is criti-
cally dependent on the size of the sliding surface of the key 
block. The results are expected to explain the varying trends 
shown in Fig. 12. Figure 17 shows the schematic diagram of 
the constructed key block in the rock slope. The top surface 
is established based on the Group 2 model, while the sliding 
surface follows the Group 1 model and the two side surfaces 
are inherited from the Group 3 model. The stability coefficient 
of the key block can be evaluated as

(36)

K =
mg cos � tan� + CA

mg sin �

=
tan�

tan �
+

CA

�gAh sin �

=
tan�

tan �
+

C

�gf (A) sin �

where m is the mass of the block (kg); C is the cohesion of 
the structural surface (kPa); ϕ is the friction angle of the 
structural surface (o); � is the dip angle of the sliding surface 
(o); A is the area of the sliding surface (m2); � is the density 
of rock mass (kg/m3); h is the average height of the key block 
(m), which is a function of the area of the sliding surface 
[i.e., h = f (A) ]. In this regard, a larger value of A results in 
a larger value of f(A), which subsequently results in a lower 
value of K, indicating a large likelihood of instability.

The varying trends observed in Fig.  12 can now be 
explained with reference to Eq. (36) and Fig. 18. On one 
hand, the associated sliding area of the key block decreases 
as the ratio of major axis to minor axis in the UED model 

Fig. 15   Comparison of the contours of horizontal displacement of slope based on the UED model and Baecher disc model

Fig. 16   Variations of the factor of slope safety with the discontinuity 
density
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increases, as shown in Fig. 18a, improving the slope stabil-
ity. On the other hand, a large ratio of major axis to minor 
axis also leads to an increase in the width of the fracture 
plane, which results in more sliding blocks in the DFN and 
reduces the stability of the slope. As such, when the mean of 
the ratio of major axis to minor axis is small, the effects of 
more sliding blocks are more significant, causing a decrease 
in the slope stability as the ratio of major axis to minor axis 
increases. When the mean of the ratio of major axis to minor 
axis is large, the decrease in the sliding area becomes more 
dominant, leading to an increase in the slope stability with 
increasing the ratio of major axis to minor axis. Additionally, 
the relationship between the sliding area A and rotation angle 
follows a sine-shape curve in reference to Fig. 18b. Given 

that the factor of safety is inversely related to the sliding area 
of the key block based on Eq. (36), the relationship between 
the factor of safety and rotation angle also follows the sine-
shape curve, as observed in Fig. 12b.

The varying trend observed in Fig. 16 can also be simi-
larly explained. Since the dip direction is in parallel with the 
slope surface, and the dip angle is larger than the friction 
angle ϕ of the structural surface, it is reasonable to consider 
the blocks cut through by the structural surface as the slid-
ing blocks. When the discontinuity density increases, the 
interruptions within the structural surface increase, reducing 
the sliding area and thus improving the slope stability fol-
lowing Eq. (36). Referring to the results of the UED model 
shown in Fig. 19, which illustrates the relationship between 
the volume of the maximum sliding block (key block) with 
respect to the discontinuity density, when the discontinuity 
density increases from 0.1 to 0.3 trace/m3, the volume of 
the maximum sliding block decreases. As such, the slope 
becomes more stable (i.e., factor of safety increases). When 
the volume of the maximum sliding block increases between 
the discontinuity density of 0.3 to 0.4 trace/m3, the factor 
of safety reverses the trend accordingly. When the volume 
of the maximum sliding block remains largely constant 
between the discontinuity density of 0.4 to 0.7 trace/m3, 
the factor of safety also remains largely unchanged. Finally, 
when the volume of the maximum sliding block decreases 
again between the discontinuity density of 0.8 to 1.0 trace/
m3, the factor of safety immediately increases accordingly. 
These observations are also in line with the conclusion in 
the block theory that “the factor of safety generally decreases 

Fig. 17   Schematic diagram of a key block model

Fig. 18   Variations of the area of sliding surface for the key block with respect to the means of characteristic parameters of UED model
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with the increase of the volume of blocks with similar 
shapes”as stated by Zhang (2004).

6 � Discussions

The UED model is a quite useful tool in understanding the 
behavior and characteristics of jointed rock slopes in various 
conditions, such as static, dynamic, and seepage conditions. 
Unlike the Baecher disc model, which lacks the capability 
to represent realistic characteristics of jointed rock masses, 
the UED model can provide more accurate slope stability 
analysis results since it accurately represents the character-
istics of jointed rock masses. Although the UED model is 
viable, and subroutines have been developed to integrate the 
UED model into 3DEC, the current study only considered 
a single lithology unit in a rock slope, as the complex pro-
cedures of 3DEC to pre-process the generated DFN model 
made it challenging to analyze the jointed rock slopes with 
complex geological conditions. To extend the application of 
the developed framework in engineering practice, there are 
several key conditions:

(1)	 Construct the geometric model of the jointed rock slope 
and group the slope bodies using Midas or Rhino soft-
ware according to their lithology units before import-
ing the model to 3DEC. Then, assign the properties 
of the lithology units to the corresponding slope body 
by executing the “prop mat” command. In this way, a 
jointed rock slope model involving different lithology 
units can be neatly constructed.

(2)	 A persistence metric should be defined to restrain the 
probability of discontinuity along the fracture path in 

3DEC after uniformly distributing the rock bridges over 
fracture planes and generating the discrete fractures 
using the “jset” command. In this way, the effects of 
rock bridges can be effectively accounted for.

(3)	 In addition to borehole data, it is also crucial to col-
lect more measured data visible at the rock outcrops 
to improve the accuracy of the relevant statistical esti-
mates. Human inputs and artificial intelligence are also 
necessary to further refine the jointed rock slope model 
for achieving the improved prediction accuracy (Jiang 
et al. 2023b).

7 � Conclusions

In this study, a framework is proposed for the stability analy-
sis of jointed rock slopes using a three-dimensional DFNs 
constructed based on the UED model. The constructed 
DFNs are successfully integrated into 3DEC for discrete ele-
ment analysis of the stability of jointed rock slopes. Details 
of the implementation procedures are outlined in this paper. 
A 3D jointed rock slope in Zhejiang Province, China is used 
to illustrate the effectiveness of the proposed framework. In 
addition, the effects of the UED model parameters (includ-
ing ratio of major axis to minor axis and rotation angle) and 
discontinuity density on the stability of jointed rock slopes 
are investigated. The advantages of the UED model over the 
Baecher disc model are also demonstrated. The main conclu-
sions and findings are summarized as follows:

(1)	 Python subroutines are successfully developed to incor-
porate the UED model in 3DEC, allowing the creation 
of a realistic and accurate 3D DFN model. Further-
more, the DFN constructed based on the UED model 
is successfully integrated into a 3D slope model, gen-
erating a complete jointed rock slope. Based on these, 
the proposed framework effectively simplifies the 3D 
stability analysis of jointed rock slopes with the aid of 
the discrete element-based strength reduction technique 
in 3DEC.

(2)	 In contrast to the conventional Baecher disc model, the 
UED model is a more flexible and generalized model 
that is capable of generating realistic fractures with 
arbitrary shapes based on a small amount of field meas-
ured data. It is also better at representing the random 
distribution of the discontinuities in the rock masses. 
These features make the generated slope model resem-
bles the realistic characteristics of jointed rock slopes, 
providing the improved stability evaluations of jointed 
rock slopes.

(3)	 The results of parametric sensitivity analyses show 
that the stability of jointed rock slopes is influenced 
by the ratio of major axis to minor axis, rotation angle 

Fig. 19   Variations of the volume of the maximum sliding block with 
respect to the discontinuity density
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and discontinuity density in a complex manner. The 
relationship between the slope stability and the ratio 
of major axis to minor axis follows a convex U-shape 
relationship while a sine-shape curve can be observed 
to describe the effects of the rotation angle and discon-
tinuity density on the slope stability. The results are 
rigorously explained from a mechanical point of view 
based on a key block model.
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