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Abstract
A quantitative and analytical approach is adopted to estimate two important parameters for coupled hydro-mechanical analysis 
at the scale of a fractured rock mass, namely the equivalent Biot effective stress coefficient � and Skempton pore pressure 
coefficient B . We derive formal expressions that estimate the two equivalent poroelastic coefficients from the properties of 
both the porous intact rock and the discrete fracture network, which includes fractures with different orientation, size, and 
mechanical properties. The coefficients are equivalent in the sense that they allow effectively predicting the volumetric 
deformation of the fluid-saturated fractured rock under an applied load in drained and undrained conditions. The formal 
expressions are validated against results from fully coupled hydro-mechanical simulations on systems with explicit repre-
sentation of deformable fractures and rock blocks. We find that the coefficients are highly anisotropic as they largely vary 
with fracture orientations with respect to the applied stress tensor. For a given set of fracture and rock properties, B increases 
with the ratio of normal to average stress undergone by the fractures, while the opposite occurs for � . Additionally, both � 
and B increase with fracture density, which directly impacts the deformation caused by a load in undrained conditions. 
Because the effective stress variation is proportional to the applied load by 

(

1 − �B

)

, a factor that partly compensates for 
the decrease in equivalent rock stiffness caused by the fractures, a fully saturated fractured rock may deform less than an 
intact rock in undrained conditions, while the opposite occurs in dry conditions.

Highlights

•	 Equivalent Biot and Skempton coefficients for a fractured rock mass are estimated as the ones that define the bulk volu-
metric deformation.

•	 The coefficients depend on the orientations of the fractures and the applied load.
•	 Densely fractured rocks are characterized by larger equivalent coefficients than intact rocks
•	 Disregarding the presence of fractures may incur an incorrect evaluation of the hydro-mechanical response
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Abbreviations
B,B,Br,Bf 	� Generic, equivalent, rock and 

fracture Skempton pore pressure 
coefficient

e	� Fracture average mechanical 
aperture

E	� Intact rock Young’s modulus
K,Kr	� Generic porous material and intact 

rock stiffness, or drained bulk 
modulus

Ks	� Grain stiffness
�,�0, L	� Generic, minimum and maximum 

fracture size
n	� Number of fractures
N	� Direction normal to the fracture 

plane
p, p∗, pr, pf 	� Generic, imposed homogeneous, 

rock and fracture fluid pressure
p32	� Total area of fractures per unit 

volume
Sf 	� Fracture surface area
V ,Vr,Vf ,Vw	� Volume of fractured rock mass, 

intact rock, fracture and fluid in the 
fracture

x, y, z	� Cartesian coordinates
�, �, �r, �f 	� Generic, equivalent, rock and frac-

ture Biot effective stress coefficient
�	� Fluid compressibility
�
r
= Vr

∕Kr	� Rock volume variation for a unitary 
average stress variation

�
f
= Sf∕�

f

N
	� Fracture volume variation for a 

unitary normal stress variation
ΔV ,ΔVr,ΔVf 	� Volume variation of fractured rock 

mass, intact rock and fracture
ΔVw�	� Fluid volume that enters or leaves 

the fracture
ΔVw	� Change of fluid volume associated 

with fluid compressibility
� , �′, �′′	� Volumetric deformation under dry, 

saturated drained and undrained 
conditions

�
f
= �N∕�m	� Parameter that defines the orienta-

tion of the fracture with respect to 
the applied stress

�	� Volumetric fluid content
�N (or � f

N
), �s (or � f

s )	� Fracture normal and shear stiffness
�	� Intact rock Poisson’s ratio
�	� Parameter that controls the fracture 

density per unit volume
�, �′	� Total and effective stress

�m	� Average total stress
�N, �′

N
	� Total and effective stress acting 

normal to the fracture plane
�	� Rock porosity
�	� Parameter that controls the fracture 

size distribution

1  Introduction

The Biot effective stress coefficient, � , introduced by the 
pioneering works of Biot (1941) and Biot and Willis (1957), 
and the Skempton pore pressure coefficient, B, proposed 
by Skempton (1954), are key parameters in studying the 
hydro-mechanical (HM) behavior of fluid-saturated elas-
tic geological media. The product �B defines the effective 
stress variations in response to undrained loading/unload-
ing, which directly impacts the deformation of the porous 
material (Biot 1941; Cheng 2016; Zimmerman 2000). These 
poroelastic coefficients describe the contribution of the fluid 
in subsurface porous and fractured media to maintain the 
mechanical equilibrium against perturbations in stress and 
pore fluid pressure. Fluid in saturated geological media, in 
fact, holds part of the load, thus the deformation caused 
by an applied stress is smaller in saturated materials under 
non-zero pore pressure than in dry materials. This coupled 
hydro-mechanical behavior has profound implications in 
both natural processes, such as glaciation (Vidstrand et al. 
2008), and geotechnical engineering applications, including 
reservoir impoundments, underground excavation/construc-
tion, geo-energy extraction, and deep geological disposal of 
used nuclear fuel (Rutqvist and Stephansson 2003).

Although fractures are ubiquitous in rocks, their explicit 
representation in theoretical or numerical models is chal-
lenging and incurs high computational costs. For practical 
purposes, the assumption of uniform material with poroe-
lastic behavior is extensively adopted in many scientific and 
engineering applications involving large-scale problems in 
underground geological media (e.g., Alghannam and Juanes 
2020; Chang and Segall 2016; Parisio et al. 2019; Pujades 
et al. 2014; Rutqvist et al. 2002; Vilarrasa et al. 2010; see 
also the discussions in Jing 2003; Rutqvist and Stephansson 
2003; Viswanathan et al. 2022). In this context, the assess-
ment of equivalent properties is particularly challenging 
because fractured media are highly heterogeneous and ani-
sotropic, and because sample-scale laboratory tests are not 
able to represent large-scale behavior. While the definition 
of equivalent mechanical properties, e.g., elastic moduli, 
has been extensively discussed (see Grechka and Kachanov 
2006 for a review), the estimation of Biot and Skempton 
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poroelastic coefficients for large-scale fractured rocks has 
received little attention so far.

The Biot effective stress coefficient � defines the parti-
tioning of total stress between the solid skeleton and the pore 
fluid, such that an applied external stress, d� (total stress), 
results in an increase of stress applied to the solid phase, d��

(effective stress), and an increase in fluid pore pressure, dp , 
which are distributed according to the law

Note that the sign convention for stress is such that com-
pressive stress is positive. From the theory of poroelastic-
ity, it can be derived that � corresponds to the amount of 
total stress variation in response to a pressure variation at 
zero deformation, or alternatively, to the amount of pore 
pressure that is necessary to counterbalance the deforma-
tion caused by an applied external stress (e.g., Cheng 2016; 
Coussy 2004; Wang 2000). A distinction between Biot coef-
ficient and the effective stress coefficient is considered in 
cases when inhomogeneities at the scale of the grains lead 
to non-self-similar deformation of solid and pore space (see 
the discussion in Cheng 2021; Müller and Sahay 2016a, b; 
Müller and Sahay 2016a; Sahay 2013). In this case, the Biot 
coefficient is defined as the fluid volume change induced by 
bulk volume changes in drained conditions. However, we 
do not differentiate the two concepts here. The Biot effec-
tive stress coefficient expresses the effects of the microme-
chanical rock characteristics (pore scale) on the behavior at 
the scale of the representative elementary volume (REV), 
which is the largest volume over which variables—in this 
case stress and pore pressure—are constant. The coefficient 
was originally defined for isotropic materials, taking the 
nomenclature of the Biot coefficient or Biot-Willis coeffi-
cient (Biot and Willis 1957; Biot 1941). In this case, the 
most recognized theoretical estimation is defined by (Biot 
and Willis 1957)

K is the porous material stiffness at the REV scale, also 
called drained bulk modulus, which expresses the volumetric 
deformation of the saturated material in response to applied 
stress in dry (zero pore pressure) or drained (constant pore 
pressure) conditions; a test scheme which was introduced 
by Biot and Willis (1957) and referred to as the jacketed 
compressibility test. The drained bulk modulus is depend-
ent on the stress magnitude; it increases with increasing the 
total stress (e.g., Nur and Byerlee 1971). At the pore scale 
(micro-scale), the grain stiffness Ks expresses the deforma-
tion of the mineral solid skeleton to an applied stress at 
constant Terzaghi effective stress conditions, d� − dp = 0 ; 
also introduced by Biot and Willis (1957) and called the 

(1)d� = d��

+ �dp.

(2)� = 1 −
K

Ks

.

unjacketed compressibility test. The grain stiffness does not 
depend on the stress magnitude in the elastic region (e.g., 
Nur and Byerlee 1971). According to Eq. 2, � only depends 
on the intrinsic properties of bulk skeleton and grains, and 
not on the fluid properties.

The Skempton coefficient B (Skempton 1954) also relates 
pressure and stresses, but it defines the pressure variation in 
response to an average total stress variation under undrained 
conditions, e.g., when the volumetric fluid content does not 
change. Therefore, it reflects a condition (undrained) that 
is non-permanent in natural aquifers. The coefficient value 
depends on the hydro-mechanical rock behavior at the bulk 
scale, i.e., both the rock and fluid properties. For isotropic 
materials, it can be shown that B is equal to (Detournay and 
Cheng 1993; Rice and Cleary 1976)

where � represents the fluid compressibility and � is the 
rock porosity.

Both coefficients depend on the ability of the porous 
material to deform under loading. They are approximately 
equal to 1 in highly compressible materials (i.e. soils), 
whereas they are much smaller than 1 in stiff rocks (Detour-
nay and Cheng 1993). However, experimental and numerical 
studies have shown that � and B may span a broad range 
of values, and that besides the effect of the applied stress 
magnitude, macroscale rock heterogeneity and anisotropy 
play an important role (Cheng 1997; Kachanov 1992; Kasani 
and Selvadurai 2023; Lockner and Beeler 2003; Lockner 
and Stanchits 2002; Selvadurai and Suvorov 2020; Tan and 
Konietzky 2014; Wong 2017).

Although Biot and Skempton coefficients were originally 
defined as scalars referring to isotropic materials and hydro-
static stress conditions, the concepts have been successively 
generalized to anisotropic materials undergoing deviatoric 
stress, leading to the definition of either tensorial coefficients 
or scalar coefficients that depend on the applied stress. In 
some cases, the nomenclatures effective stress coefficient 
and pore pressure coefficient have been adopted to differenti-
ate with respect to the traditional formulation for isotropic 
homogeneous materials, while in other cases the nomencla-
tures Biot coefficient and Skempton coefficient have been 
maintained to underline the connection with the physical 
meaning of the two coefficients, as we also do in this work.

Biot (1955) extended the poroelasticity theory to the case 
of anisotropic porous media which was further developed by 
many other scholars (e.g., Carroll 1979; Skempton 1984; 
Cheng 1997). The work of Cheng (1997) includes general 
constitutive laws with 28 independent coefficients, which 
are reduced to 8 under the assumptions of micro-isotropy 
(isotropic mineral composition) and transversely isotropic 

(3)B =

�∕K

�

K
+ �

(

� −

1

Ks

)

,
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materials, which can be assimilated to fractured media. This 
allows deriving expressions for anisotropic Biot and Skemp-
ton tensors, as a function of the component of the anisotropic 
elastic stiffness tensor and the solid constituent stiffness Ks . 
The theory has been later adopted by Wong (2017) to esti-
mate Biot and Skempton tensors in rocks with cracks. The 
assumption of a porosity-free rock matrix, which is also iso-
tropic and homogeneous at the pore scale, implies that the 
rock matrix stiffness coincides with the grain stiffness Ks . 
The anisotropic elastic stiffness tensor for the cracked rock is 
estimated according to the effective elastic tensor proposed 
by Kachanov (1992). It depends on the density and orienta-
tion of cracks, which are assumed as penny-shaped, dilute 
and non-interacting with each other. These theoretical pre-
dictions are validated against already published results from 
laboratory triaxial tests on cracked samples of Berea sand-
stone, showing a not very accurate agreement, the reasons 
residing in the use of effective parameters and in neglecting 
the rock matrix porosity.

Tan and Konietsky (2014) analyze the influence of pore 
cavity shape on the Biot coefficient of fluid-saturated porous 
rocks. They assume a sample of a solid matrix with a single 
pore cavity and analyze the case of three different cavity 
shapes. This structure is considered like a multiphase com-
posite material and they apply the generalized mixture rule 
to express the composite material stiffness as a function of 
the solid matrix stiffness, the porosity (cavity volume over 
total volume) and a shape factor that is empirically derived 
from numerical simulations. They found that � is larger for 
larger porosity, while at equal porosity, � is larger for long 
and narrow cracks, than for spherical cavities. The direction 
of the elliptical cavity with respect to the applied load is key, 
as the cavity deforms more in the direction perpendicular to 
the long axes, meaning higher � . These results are consist-
ent with experimental analysis on laboratory scale samples 
(Selvadurai and Suvorov 2020) and with the assumption that 
� is related to the fraction of the surface over which the 
fluid pressure acts in a given direction (Cheng et al. 2022; 
Gray 2017; Zhao et al. 2021). They extended the procedure 
to samples with a random distribution of cavities and they 
found that elongated cracks have more effect than pores on 
the Biot coefficient.

While the two previous studies consider fractured 
(cracked) rocks at the sample scale, Berryman (2012) 
derives theoretical expressions to estimate � and B for frac-
tured media. The porosity of the rock matrix is neglected, 
and it is also assumed as composed of homogeneous, iso-
tropic grains. Considering poroelasticity laws for anisotropic 
transversely orthotropic media, the effective elastic moduli 
of the solid grains and the fractured rock are estimated 
based on the Reuss average (Reuss 1929), which reflects an 
arithmetic weighted average over the values of the different 
components. Afterwards, the average � and B are estimated 

through Eq. 2 and Eq. 3, respectively. The approach is 
extremely simplified, and it does not consider anisotropy 
effects, nor the volume occupied by the individual compo-
nents, which have all the same weight in the average equa-
tion. Moreover, the porosity is assumed exclusively within 
the fractures, while the matrix is assumed as non-porous. 
Overcoming this latter limitation, Tuncay and Corapcioglu 
(1995) proposed a double porosity approach to derive an 
effective stress principle for saturated porous fractured rock. 
Making use of volume averaging over the rock mass, they 
write the effective stress principle in terms of macroscopic 
stresses and two Biot coefficients, one for the porous rock 
and one for the fractures. While the theory has the value of 
acknowledging the rock porosity and the fraction of volume 
occupied by the fractures, it does not consider the effects of 
fracture orientation. Additionally, the theory is not validated 
by any numerical or laboratory experiment.

More recently, Chen et al. (2020) estimated the Biot coef-
ficient for fractured media composed of a fracture network 
embedded in a non-porous intact rock. Three types of net-
work and several fracture and rock properties are analyzed, 
considering a 2D geometry. They adopt the numerical simu-
lator UDEC (Itasca Consulting Group, 2019), in which frac-
tures are treated as contact interfaces between deformable 
rock blocks, to reproduce the deformation of such geom-
etries in response to applied stress. Two different methods 
are employed to estimate � at the rock mass scale. In the first 
method, the equivalent bulk modulus K is estimated from 
numerical results and directly used to estimate � by means 
of Eq. 2. In the second method, � is indirectly estimated 
from the comparison of the numerically estimated volumet-
ric deformations in response to an applied stress under dry 
( � ) and saturated drained conditions ( �′ ). Comparison of 
the two methods shows that the first one is inappropriate to 
describe the effective stress behavior of the fractured rock 
mass, mostly because the equivalent bulk modulus is highly 
influenced by the shear stiffness (Davy et al. 2018), whereas 
the volumetric deformation, which is strictly related with 
the effective stress concept, is much influenced by the nor-
mal stiffness. Therefore, they adopt the method based on the 
volumetric deformation to empirically derive a theoretical 
model. The study represents the best effort so far to define 
the Biot coefficient for fractured media at the rock mass 
scale. However, it is limited to 2D plane strain geometries, 
and the effect of the fracture orientation on the anisotropic 
� is not contemplated.

Most of the above studies refer to cracked rocks at the 
sample scale, and they assume that the porosity is only 
within the cracks. An established method for estimating Biot 
and Skempton coefficients in fractured media at the scale 
of the rock mass is still missing. Consequently, the effects 
of fracture density, size and orientation on the equivalent 
parameters have not been analyzed.
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In this paper, we investigate the role of the Biot and 
Skempton coefficients at the scale of a three-dimensional 
fractured rock mass from a Discrete Fracture Network 
(DFN) perspective. In the DFN approach, fracture orienta-
tion, size, density and aperture are stochastically generated 
based on field observations or theoretical assumptions. We 
reduce the geomechanical complexity of fractured rocks by 
assuming an idealized medium composed of a homogene-
ous elastic porous rock, which hosts fractures with an elastic 
behavior. Fracture slip failure is neglected because it does 
not belong to the elastic regime in which Biot and Skemp-
ton coefficients are defined. Both the porous rock and the 
fracture surfaces are assumed as ideal Gassmann materials 
with homogeneous grains (Gassmann 1951). Thus, we disre-
gard the effect of micro-structural inhomogeneities to focus 
on that of the heterogeneity at the scale of the rock mass 
induced by the population of fractures. Although simplified, 
this model allows us to analyze the range of variability of 
the poroelastic coefficients with respect to the complexity of 
the fracture network structure and with respect to the prop-
erties of fractured rocks, which are uncertain and difficult 
to quantify.

The paper is organized as follows. First, we define the 
two coefficients for a single fracture, with respect to a load 
applied normally to the fracture plane. Afterwards, we define 
formal expressions for the two coefficients for a fractured rock 
mass, with respect to an average applied stress. Following an 
approach based on the volumetric deformation, the equiva-
lent coefficients are defined as the ones that reflect the rock 
mass deformation in fully saturated conditions. In doing so, we 
consider the contributions of the population of fractures and 
the porous rock matrix. We find that the equivalent Biot and 
Skempton coefficients can be analytically estimated based on 
the geometrical and mechanical properties of the intact rock 
and of each fracture. These analytical expressions are succes-
sively validated against results from coupled hydro-mechanical 
numerical simulations on systems with explicit representation 
of fractures and rock blocks. Finally, we make use of these 

expressions to discuss the sensitivity of the two coefficients to 
the mechanical properties of intact porous rock and fractures, 
and to the fracture network parameters.

2 � Derivation of Formal Expressions 
for Equivalent Biot and Skempton 
Coefficients

2.1 � Model for a Single Fracture

Let a rough fracture with average direction defined by the nor-
mal N and average mechanical aperture e , subject to a generic 
stress state such that the compressive stress acting normal to 
the fracture is �N (Fig. 1). The fracture is assumed as a fluid-
filled void space. Fracture aperture, roughness and stiffness are 
assumed as homogeneous in the fracture plane. Fracture walls 
are composed of an ideal material that is homogeneous at both 
the macro-scale and the micro-scale. The contact between the 
fracture surface results in an elastic mechanical behavior with 
the aperture changing proportionally to the normal stiffness 
�N , such that

Note that this constitutive law is non-linear (e.g., Bandis 
et al. 1983) because the interface stiffness �N increases with 
the effective stress acting normal to the average fracture plane, 
which is defined as

where �f  represents the Biot effective stress coefficient of 
the fracture and p is the fluid pressure inside the fracture, 
considered as homogeneous. Since �f  expresses the amount 
of stress variation in response to a pressure variation at zero 
deformation, it is natural to consider that �f

= 1 for a wide-
open fracture with no roughness, while for a completely 
sealed fracture we expect �f

= 0 , because there is no space 

(4)de = −

d�
�

N

�N

.

(5)�
�

N
= �N − �

f p,

Fig. 1   Conceptual sketch of the different scales of the problem, from 
the fractured rock mass down to the micromechanical characteristics 
through the scale of the single fracture. Fracture roughness is aver-
aged by considering the average fracture aperture, e , while variability 

in the local aperture is disregarded. The stress normal to the average 
fracture orientation, �N , is considered, while variability in the local 
stress normal to the fracture wall, �n , is disregarded
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for fluid and therefore no fluid pressure. In the general case 
of a rough fracture, we expect 𝛼f

< 1 locally, depending 
on the fracture roughness and aperture, which define the 
geometry of the porous cavity. This is in agreement with 
estimations for porous cavities (Tan and Konietzky 2014) 
and rough fractures (Cheng et al. 2022; Xie et al. 2014; Zhao 
et al. 2021), and it is also consistent with the physical con-
cept that the effective stress coefficient depends on the frac-
tion of surface that is in contact with the fluid in a specific 
direction (Gray 2017; Cheng et al. 2022; Zhao et al. 2021). 
Although the fracture walls are rough and in contact, we 
consider that on average the effects of the asperities cancel 
out, and that the contact area of the asperities is small, such 
that there is no significant reduction of the fracture surface 
in contact with the fluid. Therefore, we assume that the Biot 
coefficient of the fracture is �f

= 1 , with the intention of 
focusing on the impacts of the fracture average orientation 
rather than on those of the wall asperities. However, these 
latter may be included by linking the fracture Biot coefficient 
with the fracture roughness, which does not alter the method 
for the estimation of the coefficient at the rock mass scale.

For convenience, we transform the non-linearity of the 
constitutive law (Eq. 4) into a local linearity. We assume 
that �N changes with the initial stress state, but it is constant 
for the small variations of stress and pressure that we apply 
to derive the poroelastic coefficients. This is a reasonable 
assumption since normal stiffness is not significantly modi-
fied by a small reduction of fracture porosity.

Similarly, we define a fracture Skempton coefficient, Bf  , 
which applies in the direction normal to the fracture plane, 
such as the pore pressure variation in the fracture caused by 
the total stress acting normal to the fracture in undrained 
conditions is p = Bf

�N . To derive an expression for the 
fracture Skempton coefficient Bf  , we follow the volumet-
ric approach traditionally adopted for the porous medium 
(Cheng 2021), adapted to consider the fracture capacity of 
deforming, which gives (Appendix A)

In doing so, we only consider the fracture open volume, 
assuming the average aperture for the rough fracture and 
considering that the entire fracture aperture is filled with 
fluid. However, if the fracture is completely sealed, then 
Bf

= 0.
Note that �f  and Bf  for each fracture are exclusively func-

tions of its mechanical properties and open fraction, i.e., 
whether the fracture is open or sealed. However, fracture 
mechanical stiffness intrinsically depends on the remote 
initial stress, and on the roughness and intensity of contact 
between asperities (Bandis et al. 1983; Barton et al. 1985). 
We have defined �f  and Bf  with respect to the direction nor-
mal to the fracture plane. When estimating the equivalent 

(6)Bf
=

(

�e�N + �
f
)

−1
.

Biot and Skempton coefficients for the fractured rock mass, 
the orientation of the fracture with respect to an external 
reference system must be considered, as we explain in the 
next section (Fig. 1).

2.2 � Model for a Fractured Rock Mass

To estimate equivalent Biot and Skempton coefficients for 
a fractured rock mass, � and B , we make the following 
assumptions. Both the fracture and the rock matrix behav-
iors are linearly elastic, and they are subject to a compressive 
stress regime. The intact rock matrix is homogeneous and 
isotropic, and it is characterized by known values of porosity 
� , drained bulk modulus Kr , and grain stiffness Ks , such that 
the Biot and Skempton coefficients of the rock composing 
the matrix, �r and Br, can be estimated according to Eq. 2 
and Eq. 3, respectively. For the fractures, we assume the 
model as detailed in Sect. 2.1, such that each fracture is 
characterized by known values of �f  and Bf  . The mechani-
cal interactions between fractures, as well as between intact 
rock and fractures, are such that stress fluctuations can be 
neglected. No mechanical constraints are applied to the sys-
tem, which is free to deform. The latter assumptions imply 
that the total stress variation is homogeneous in space, and 
equal to the applied stress variation.

Similar to Chen et al. (2020), the formal expressions 
for � and B are derived considering the effects of the two 
coefficients on the volumetric deformation of the fractured 
rock mass in response to an applied stress tensor variation 
� . To do so, volumetric deformations, ΔV∕V  , under dry 
( � ), saturated drained ( �′ ) and saturated undrained condi-
tions ( �′′ ) are considered, which are related by the following 
equivalences

where �m = tr(�)∕3 is the average total stress variation. In 
Eq. 7, p represents an equivalent pressure variation in the 
fractured rock, which is multiplied by � defines the volumet-
ric deformation. Since this equivalent pressure variation is a 
priori unknown, and the field of pressure variation is in gen-
eral heterogeneous, to derive the equivalent Biot coefficient 
we impose a homogeneous pressure variation p∗ over the 
entire rock mass, and from the first equivalence we derive 
(see also Chen et al. 2020)

Similarly, the amount of pressure variation in the frac-
tured rock consequent to a load application in undrained 
conditions is heterogeneous, depending on the rock’s 

(7)
�

�m

=

�
�

�m − �p
=

�
��

(

1 − �B

)

�m

,

(8)� =

� − �
�

�

�m

p∗
.
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hydraulic properties and fracture connectivity. We consider 
the equivalent pressure variation, i.e., B�m , which is respon-
sible for the volumetric deformation. By comparing the first 
and the third terms of Eq. 7, we obtain

For the three hydraulic conditions – dry, drained, und-
rained – the rock mass volume variation, ΔV  , is the sum of 
the volume variation of each component, i.e., fractures and 
intact rock, such that

where the summation term refers to all the fractures in 
the system. Acknowledging the assumption of negligible 
interactions, each component deforms according to its own 
mechanical properties. We define � i as the volume variation 
of each component i for a unitary effective “acting” stress, 
where “acting” refers to the average stress variation for the 
rock, �′

m
, and the normal stress variation for the fractures, 

�
′

N
 . This corresponds to �r = Vr

∕Kr and � f = Sf∕�
f

N
 , for the 

rock and each fracture, respectively, with Vr representing 
the rock volume and Sf  the fracture surface area. Therefore, 
Eq. 10 reads

Substitution of Eq. 11 into Eq. 8 and Eq. 9 allows deriv-
ing an explicit expression for the two equivalent poroelastic 
coefficients as (Appendix B)

�
f  is defined for each fracture as the ratio between the 

component of the applied stress that acts normal to the frac-
ture, �N , and the average applied stress, �m , such as

where the vector � represents the normal to the fracture 
plane. According to this formal derivation, both coefficients 
are defined as weighted averages over the values of the cor-
responding coefficients of each component, with the weight 
represented by � or �� for � and B , respectively. Note that, 
although the coefficients refer to average stresses, 
�
�

m
=

(

1 − �B

)

�m , the term �f  , in the denominator of � and 
in the nominator of B , implies that the coefficients depend 
on the applied stress tensor and on the orientation of the 
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fractures. Fractures sub-parallel to an applied unidirectional 
stress, i.e., �f ≈ 0 , tend to increase � (because they require 
a large fluid pressure acting normally on the fracture walls 
to counterbalance the stress-induced deformation) and to 
reduce B (because the stress-induced pressure variation is 
small, recall the definitions in Sect. 1). The opposite occurs 
with fractures normal to the applied stress variation. Moreo-
ver, � f  depends on the fracture orientation and the initial 
stress state, because � f

N
 depends on the effective stress acting 

normally on the fracture before the application of the stress 
and pressure variations.

3 � Validation of Formal Expressions

The theoretical expressions derived above (Eq. 12) are vali-
dated against results from hydro-mechanical numerical sim-
ulations performed with 3DEC7.0 (Itasca Consulting Group, 
2020), which uses the distinct element method (Cundall 
1988) in three-dimensional domains. A fractured rock mass 
is considered, in which fractures and deformable rock blocks 
are explicitly represented. The volumetric deformation of the 
rock mass to an applied stress is numerically estimated under 
the three conditions defined in Sect. 2.2—dry, drained and 
undrained—which are separately simulated. The equivalent 
poroelastic coefficients are then estimated by comparing the 
total volume variation calculated in each condition, accord-
ing to Eq. 8 and Eq. 9.

The geometry consists of a 1 m side cubic volume com-
prising an intact rock and a set of embedded fractures. These 
latter are represented as planar zero-thickness elements that 
deform according to a linear elastic behavior, defined by 
assigned values of shear stiffness � f

s  and normal stiffness 
�
f

N
 . Three different scenarios of fracture networks are ana-

lyzed. In scenarios 1 and 2 (Figs. 2, 3, 4, 5), the domain 
comprises parallel infinite fractures (extending throughout 
the entire domain) aligned with the y-direction. They are 
divided in two sets of crossing fractures, the first set with 
spacing of 0.2 m and dip orientation equal to 60°, the second 
set with spacing equal to 0.1 m and dip equal to 100° and 
150°, for scenario 1 and scenario 2, respectively. This cor-
responds to an angle between the crossing fractures equal 
to 40° in scenario 1, while it is equal to 90° in scenario 
2. Scenario 3 (Fig. 6) includes a set of randomly distrib-
uted and oriented fractures with finite surface; they are sto-
chastically generated considering uniform distribution of 
location and orientation, constant fracture length equal to 
0.25 m, and percolation parameter equal to 1, which fixes 
the fracture volumetric intensity as p32 = 2.54 m−1 (Bour 
and Davy 1997). Note that, since close and parallel frac-
tures are merged during the generation of the 3DEC block 
geometry, some fractures are larger than 0.25 m. For the 
three scenarios, fracture aperture e is set as equal to 10μ m 
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for all fractures, which are also characterized by equal val-
ues of normal stiffness and shear stiffness, i.e., � f

N
= �N and 

�
f
s = �s∀f . Intact rock obeys a linear elastic behavior defined 

by the Young’s (or elastic) modulus, E , and the Poisson’s 
ratio, �, such that Kr

= E∕(3(1 − 2�)) . For both fractures and 
rock, the Biot coefficient is equal to 1, according to limita-
tions in the simulator settings. Rock porosity � is equal to 
0.1, but for scenarios 1 and 2 we also explore the case in 
which the intact rock is non-porous ( � = 0) , which implies 
that �r

= 0 because there is no fluid in the rock (Figs. 2, 3).
Although � and B are defined with respect to an average 

applied stress, they depend on the direction of load (recall 
Eq. 12). To better understand this behavior, we alternatively 
apply a compressional load along one of the three princi-
pal directions (which gives rise to a deviatoric stress) plus 
a case in which the load is simultaneously applied along 
the three principal directions (which results in hydrostatic 
stress condition). To ensure that the problem is well posed, 
zero-displacement is assigned to three faces of the volume, 
which ideally correspond to symmetry planes. The compres-
sional load is therefore applied as a normal stress to one 
or three external faces of the domain. When the stress is 
only applied to one face of the domain, the other two are 
let free to deform. These boundary conditions apply to the 
three cases (dry, drained, undrained), and they are consistent 

with the assumption that the domain is free from mechanical 
constraints (Sect. 2.2). With respect to the hydraulic con-
ditions, in the dry case both fractures and rock are set as 
non-porous. In the drained case, we apply a constant fixed 
pressure increase p∗ over the entire volume (together with 
the applied load). Finally, in the undrained case, we assume 
that the volume is fluid saturated, and no flow conditions are 
applied to the entire volume. For the three hydraulic cases, 
we impose a compressional load of 1 MPa, while the pore 
pressure imposed in the drained case is equal to 0.5 MPa. 
Although these amounts are conceptually of small magni-
tude, to ensure that small strains and elastic behavior are pre-
served, they are irrelevant in the numerical model because 
we impose linear elastic behavior of both fractures and 
rock matrix. Note also that the applied stress and pressure 
are incremental with respect to a generic initial compres-
sive regime, and the stress variation is such that the regime 
remains unchanged (no tensile regime is generated).

The analysis considers different values of the parame-
tersE , �,�N , which we vary within a range of realistic values 
(Figs. 2, 3, 4, 5, 6). Fracture shear stiffness �s is not relevant 
in our theoretical model, but we analyze the sensitivity to 
this parameter to ensure the validity of our theory (Fig. 7). 
The hydraulic conductivity is also not relevant because we 
consider only static problems (fluid flow is not simulated) 

y
x

z

Fig. 2   Comparison between theoretically (full markers) and numeri-
cally (empty markers) estimated equivalent Biot and Skempton coeffi-
cients, for a non-porous rock hosting two sets of parallel infinite frac-
tures crossing at an angle of 40° (scenario 1), and for different values 

of fracture normal stiffness, �N , and intact rock Poisson’s ratio, � , and 
elastic modulus, E . From left to right: loading in x-direction, y-direc-
tion, z-direction, and hydrostatic loading conditions
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as either a homogeneous pressure or no-flow conditions 
are imposed, in the drained and undrained conditions, 
respectively.

In Figs. 2, 3, 4, 5, 6, 7, the equivalent coefficients esti-
mated by directly adopting Eq. 12 are compared with the 
coefficients estimated from numerical simulations. These 
latter are derived by introducing the total volume varia-
tions estimated for each condition—dry ( � ), drained ( �′ ) 
and undrained ( �′′)—into Eq. 8 and Eq. 9, along with the 
imposed average stress and pressure. Results show a good 
agreement between the theoretical estimations and the 
numerical modeling results under different geometrical 
and parametrical conditions (Figs. 2, 3, 4, 5, 6). In our 
approach, we have neglected the interactions between frac-
tures, as well as the interaction between the fractures and 
the rock, which implies that the total stress is homogene-
ous in the system. This can be untrue because fractures 
crossing each other and of finite size may generate stress 
fluctuations and accumulation at the fracture tips (Gao and 
Harrison 2018). However, results show that these fluc-
tuations have negligible effects on the estimation of the 
poroelastic coefficients under two different values of the 
fracture crossing angle (scenarios 1 and 2) and in the case 
in which the fractures embedded in the rock are of finite 
size (scenario 3). Minor discrepancies are observed in the 

estimation of the Skempton coefficient, especially when 
the intact rock is porous (Figs. 4, 5). They are related to 
numerical instabilities detected in the numerical simula-
tion of the undrained conditions.

Figures. 2, 3, 4, 5, illustrate the variability of the coeffi-
cients with respect to key parameters. First, they are highly 
anisotropic. � is smaller when the load is approximately 
normal to the fractures ( x-load) than when it is almost par-
allel ( z-load) to the fractures, because in the latter case a 
larger pressure is necessary in the fractures to contrast the 
increase in load. In the case in which the uniaxial load is par-
allel to the fractures ( y-load), � tends to values larger than 
1 because the required pressure in the fractures to contrast 
the load virtually tends to infinite. Conversely, the opposite 
behavior is observed for B , i.e., it is larger when the load is 
approximately normal to the fractures ( x-load) than when 
it is almost parallel ( z-load) to the fractures, because in the 
former case a larger pressure increase is observed in the 
fractures in response to undrained loading. In the case in 
which the uniaxial load is parallel to the fractures ( y-load), 
B tends to small values because the pressure variation in 
the fractures in response to undrained loading tends to 0. 
Note that the values of B larger than 1 are an artifact due to 
the definition of the coefficient with respect to the average 
applied stress, e.g., �m = �x∕3.

y
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Fig. 3   Comparison between theoretically (full markers) and numeri-
cally (empty markers) estimated equivalent Biot and Skempton coeffi-
cients, for a non-porous rock hosting two sets of parallel infinite frac-
tures crossing at an angle of 90° (scenario 2), and for different values 

of fracture normal stiffness, �N , and intact rock Poisson’s ratio, � , and 
elastic modulus, E . From left to right: loading in x-direction, y-direc-
tion, z-direction, and hydrostatic loading conditions
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Second, more deformable fractures (smaller normal 
stiffness) embedded in porous rock yield smaller � and 
larger B when the load is almost normal to the fractures 
( x-load), because more deformable fractures have a major 
impact on the equivalent behavior (the fracture weight � f  
is larger in the weighted averages of Eq. 12), which tends 
to move the values far from those of the intact porous rock 
( �r and Br ) and toward those of the fractures ( �f  and Bf  ), 
corrected by the coefficient �f  . Consequently, the opposite 
occurs when the load is parallel or almost parallel to the 
fractures, i.e., larger � and smaller B are observed when 
the fractures are more deformable (Figs. 4, 5). Neverthe-
less, if the intact rock is not porous, the sensitivity of � 
to fracture normal stiffness under a load almost normal to 
the fractures ( x-load) is reversed. In this case, indeed, � 
is larger for smaller normal stiffness (compare Figs. 2 and 
3 with Figs 4 and 5, respectively) because the equivalent 
behavior is not determined by a weighted average, but it is 
proportionally impacted by the larger values of � f  (Eq. 12). 
This reflects that more deformable fractures need larger 
pressures than less deformable fractures to counterbalance 
the deformation induced by the load in a non-porous rock. 
Note also that in the case of non-porous rock, B is only 
slightly sensitive to the fracture normal stiffness, which 
corresponds to the sensitivity of the fracture Skempton 

coefficient Bf  . In fact, if the rock is not porous, the pres-
sure variation in response to undrained load only occurs 
in the fractures, and the equivalent coefficient is B = Bf

�
f .

Third, when the load is applied approximately normal to 
the fractures ( x-load), � is slightly smaller for stiffer porous 
rocks, while B is slighter larger, except when the fracture 
normal stiffness is very large. Similar to what observed 
above, these behaviors express the larger contribution of 
the porous rock on the equivalent behavior when the rock is 
softer, corresponding to larger rock weight �r in the weighted 
averages of Eq. 12. As above, the behavior is reversed when 
the load is applied parallel or almost parallel to the frac-
tures. If the rock is not porous, as also observed above, the 
variability of � with rock stiffness is reversed for the case 
of x-load, because stiffer rocks increase the overall stiff-
ness requiring smaller pressures in the fractures to contrast 
the deformation induced by the load. This is also shown by 
setting �r

= 0 in Eq. 12, and considering that larger rock 
stiffness corresponds to smaller �r , which directly impact � . 
Because the non-porous rock has no impact on the equiva-
lent Skempton coefficient, B is completely insensitive to it. 
Finally, the effect of the Poisson’s ratio is negligible.

Results for a set of randomly distributed and oriented 
fractures with finite surface (Fig. 6) exhibit a less pro-
nounced sensitivity of � to both fracture and intact rock 
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Fig. 4   Comparison between theoretically (full markers) and numeri-
cally (empty markers) estimated equivalent Biot and Skempton coef-
ficients, for a porous rock hosting two sets of parallel infinite fractures 
crossing at an angle of 40° (scenario 1), and for different values of 

fracture normal stiffness, �N , and intact rock Poisson’s ratio, � , and 
elastic modulus, E . From left to right: loading in x-direction, y-direc-
tion, z-direction, and hydrostatic loading conditions
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stiffness, with respect to what observed above for the sce-
narios with parallel fractures. This apparently surprising 
result is the consequence of the small fracture density 
assumed in the case example (percolation parameter equal 

to 1), which is due to numerical limitations in the hydro-
mechanical simulator. As we will analyze more in detail 
in the next section, the impact of fracture density on � is 
smaller than on B . In other words, large fracture density 
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Fig. 5   Comparison between theoretically (full markers) and numeri-
cally (empty markers) estimated equivalent Biot and Skempton coef-
ficients, for a porous rock hosting two sets of parallel infinite fractures 
crossing at an angle of 90° (scenario 2), and for different values of 

fracture normal stiffness, �N , and intact rock Poisson’s ratio, � , and 
elastic modulus, E . From left to right: loading in x-direction, y-direc-
tion, z-direction, and hydrostatic loading conditions
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Fig. 6   Comparison between theoretically (full markers) and numeri-
cally (empty markers) estimated equivalent Biot and Skempton coef-
ficients, for a porous rock hosting randomly generated finite fractures 
(scenario 3), and for different values of fracture normal stiffness, �N , 

and elastic modulus of intact rock, E . The intact rock Poisson’s ratio, 
� , is equal to 0.25. Only the case of loading in y-direction is shown. 
The response to loading in other directions is similar, due to the uni-
form distribution of the orientation of the random set of fractures



8918	 S. De Simone et al.

1 3

is required to get values of � different from those of the 
intact rock, while this does not happen for B . Because 
the fractures do not play a relevant impact on � , this lat-
ter is not only almost insensitive to the fracture stiffness, 
but it is also insensitive to the rock stiffness. In fact, the 
equivalent behavior is not the result of a volumetric bal-
ance between deformation of rock and fractures, but it is 
essentially determined by rock parameters, i.d., �r

= 1 in 
the example here. Conversely, B is more affected by rock 
and fracture stiffness, because they impact both rock and 
fracture contribution in the weighted average through �r 
and � f  , and their values of Skempton coefficient Br and Bf .

4 � Sensitivity Analysis

Results of the previous section already provided some 
insights into the variability of the equivalent poroelastic 
coefficients. Based on these observations, in this section 
we further investigate the role of fracture orientation and 
properties, and we also analyze the impact of the intact rock 
porosity, fracture intensity and fracture size. We perform this 
analysis in two steps. In the first part, we consider systems 
with parallel fractures to better explore the effects of the 
fracture orientation. In the second one, we consider a DFN 
with randomly oriented fractures and we concentrate on the 
effects of the fracture size distribution.

4.1 � Sensitivity to Rock Porosity and to Fracture 
Orientation, Density and Mechanical Properties 
Considering DFNs With Parallel Fractures

Let a set of parallel fractures with different sizes. We analyze 
the cases in which the fracture set orientation with respect to 
a unidirectional applied load forms angles of 0°, 45° or 90°, 
corresponding to values of the coefficient �f  (Eq. 13) equal 
to 0, 1.5 or 3, respectively. For the sake of simplicity, in this 

section we also assume that all fractures are characterized 
by the same values of aperture, e , and normal stiffness, �N , 
for which we consider different scenarios of values. Under 
these conditions, the expressions of Eq. 12 can be modified 
as the terms � f

N
 , �f  , �f  and Bf  go out of the summation opera-

tor, which can be replaced by introducing the geometrical 
metrics p32 =

1

V

∑

f S
f  (total area of fractures per unit volume 

(Dershowitz and Herda 1992))

We thus explore the sensitivity to fracture intensity by 
considering different values of p32 . Note that, because all 
the fractures have the same orientation and properties, we 
perform this analysis regardless of the statistical distribution 
of the fracture size, which, however, directly impacts the p32. 
In the next section, we illustrate the effects of the fracture 
size distribution.

Differently from the previous section, where the intact 
rock Biot coefficient �r was either 0 (for the case of non-
porous rock) or 1 (for the case of porous rock), here we 
acknowledge the well-recognized proportionality between 
rock porosity and �r (Nguyen et al. 2018; Selvadurai 2021). 
In particular, we adopt the relationship proposed by Hashin 
and Shtrikman (1963), which reads

Results from this analysis (Figs. 8 and 9)show that the 
presence of fractures increases � and B with respect to the 
values of the intact rock, and both coefficients increase with 
increasing p32 . This trend is not unexpected because both 
Biot and Skempton coefficients are larger in softer rocks 
(recall also Eq. 2 and Eq. 3 for isotropic materials), and 
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Fig. 7   Comparison between 
theoretically (full markers) and 
numerically (empty markers) 
estimated equivalent Biot and 
Skempton coefficients, for a 
non-porous rock hosting paral-
lel infinite fractures crossing 
with an angle of 40°, and for 
different values of fracture 
normal and shear stiffness, �N 
and �s . The case of loading in 
x-direction is shown
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rock mechanical compliance increases with fracture den-
sity because fractures weaken the system (Davy et al. 2018; 
Grechka and Kachanov 2006; Kachanov 1992). Note that in 
the case that the fracture is parallel to the load ( � = 0),  B is 
almost 0, so we do not focus on the sensitivity to p32 for this 
case. For larger porosity of the intact rock, � is larger due 
to the proportionality between �r and  � (Eq. 15), while B 
is smaller because Br decreases with � (recall Eq. 3). With 

respect to the orientation, B increases with� , i.e., the largest 
value is met when the load is normal to the fractures, while 
� appears to be almost insensitive to � (Fig. 8). However, � 
decreases with� , when the fractures are more deformable 
(compare the values for x-load and y-load when kN is small 
in Figs. 2 to 5). Another impact of fracture stiffness kN on 
both � and B is that these parameters decrease by increasing 

Fig. 8   Sensitivity of the 
equivalent Biot and Skempton 
coefficients to fracture density 
( p32 ) and to intact rock porosity 
( � ). The analysis considers a 
vertical load applied to a porous 
rock, with E = 60 GPa and �
=0.25, hosting a set of parallel 
fractures with equal e = 10� m, 
�N = 5000 GPa/m, and orienta-
tion, for which three values of 
� are analyzed. Colors refer to 
different values of � . The red 
dashed vertical line defines the 
case with p32 = 0 , correspond-
ing to intact rock with no 
fractures

Fig. 9   Sensitivity of the equivalent Biot and Skempton coefficients to 
fracture density ( p32 ), aperture, e , and normal stiffness, �N . The anal-
ysis considers a vertical load applied to a porous rock, with E = 60 
GPa and �=0.25, hosting a set of parallel fractures with equal e, �N , 

and orientation, for which the value of � is equal to 1.5. The red 
dashed vertical line defines the case with p32 = 0 , corresponding to 
intact rock with no fractures
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kN (Fig. 9). The behavior of � appears in contradiction with 
results of Figs. 4 and 5, where smaller � were observed 
for more deformable fractures (smaller normal stiffness) 
embedded in porous rock. However, more deformable frac-
tures correspond to major fracture impact on the equivalent 
behavior rather than smaller or larger values of  � . In fact, 
if the fracture stiffness is smaller, the fracture weight � f  is 
larger in the weighted averages of Eq. 12, which tends to 
move the values far from those of the intact porous rock ( �r 
and Br ) and closer to those of the fractures ( �f  and Bf  ) cor-
rected by the coefficient �f .

For equal values of kN , B decreases with increasing aper-
ture e , while � is not affected by this factor, as also shown in 
the first of Eq. 12 or Eq. 14. Although the fracture Skempton 
coefficient, Bf  , does not change if the product kN ⋅ e is kept 
constant (Eq. 6), the equivalent coefficient B does change, 
and it is more sensitive to variations in kN than to variation 
in e of the same order (Fig. 9), because kN intervenes in the 
weighting factor � f  (Eq. 12 or Eq. 14).

4.2 � Sensitivity to Fracture Size Distribution 
Considering DFNs with Randomly Oriented 
Fractures

The purpose of the analysis here is to illustrate the role of 
the fracture size statistical distribution on p32 , which in turn 
directly impacts the equivalent poroelastic coefficients, as 
shown in the previous section. To focus on this aspect, we 
assume that the population of fractures is randomly oriented 
following a uniform distribution, which means that the 
effects of the fracture orientation with respect to the applied 
load are negligible. Thus, we can assume an average value 
equal to 1 for the parameter �f  for any unidirectional load.

According to the observations for natural geological 
media (Bonnet et al. 2001; Davy 1993), we sample the 
fracture sizes from a power-law distribution of the type 
n(�) = ��

−� , where n is the number of fractures with a cer-
tain size � , which represents the fracture diameter, and � is a 
parameter that controls the fracture density per unit volume. 
We explore the case in which � is equal to 3 and 4, and 
we consider the size � ranging between a minimum value 
�0 and a maximum value L . For the latter we assume it as 
equal to the lateral dimension of the rock mass, i.e., L = 1 m 
considering a unitary rock volume. We set the parameter � 
such that the maximum p32 in both scaling models is equal 
to 10 m−1. For the lower cut-off value, �0 , we analyze the 
results under different values ranging between 1 mm and 
1 m, which greatly affects p32.

Indeed, p32 increases with decreasing �0 at a rate con-
trolled by the scaling factor � .  If � = 4, then 
p32 = ∫ L

�0

�∕4�2n(�) ∝ L−1 − �
−1

0
 , while if � = 3 , then 

p32 ∝ ln(L∕�0) (Fig. 10). From the estimates of p32 , the 

coefficients are analytically calculated from Eq. 14, by 
assuming �f = 1 . We observe that both poroelastic coeffi-
cients increase as �0 decreases, corresponding to the increase 
of p32 . The increasing rate is larger when � is equal to 4 than 
when it is equal to 3.

We compare the analytical estimates with the ones 
obtained by applying Eq. 12 on stochastically generated 
DFNs created by means of DFN.Lab (Le Goc et al. 2019). 
Direct analytical estimation and stochastic estimations 

Fig. 10   From top to bottom: Equivalent Biot coefficient, equivalent 
Skempton coefficient, and fracture area per unit volume p32 for dif-
ferent values of the smallest fracture size in the DFN,�0 , under two 
different scalings of the power law distribution of the fracture size, � . 
Lines represent results derived analytically from Eq. 14, by assuming 
�
f
= 1 and the values of p32 derived as described in the text. Markers 

represent the results obtained by stochastically generating DFN and 
applying Eq. 12. Results refer to porous rock properties E = 60 GPa, 
� = 0.01 and �=0.25, while fracture properties are homogeneous and 
such that e = 10� m and �N = 1000 GPa/m
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slightly differ, especially for large values of �0 , because the 
assumption of uniformly distributed orientations breaks 
when the number of fractures is small (compare the markers 
and the lines in Fig. 10). The impact is larger in the estima-
tions of the Skempton coefficient, which is more sensitive 
to the fracture orientation, as shown in the previous section.

5 � Discussion and Conclusions

We have derived simple expressions that allow estimating 
equivalent Biot and Skempton coefficients for a saturated 
fractured rock mass from the properties of the porous intact 
rock and fracture network that it comprises. To this end, 
we have first established a meaning for equivalent as cor-
responding to the volumetric deformation. This definition 
is applied to define an equivalent pressure variation in the 
system, where the pressure variation is heterogeneous and 
depends on the fracture connectivity and on the hydrau-
lic properties of fractures and intact rock. This concept of 
equivalent is also applied to the Biot and Skempton coef-
ficients, which are therefore the ones that effectively predict 
the volumetric deformation of the rock mass in response to 
an applied stress. This approach provides coefficients that 
describe the HM behavior of a fractured rock mass better 
than if effective compliances representative of the rock mass 
(e..g., Davy et al. 2018; Kachanov 1992; Min and Jing 2003) 
are introduced in Eq. 2 and Eq. 3, as already shown by Chen 
et al. (2020). In fact, we derive anisotropic expressions of 
the coefficients that depend on the fracture orientation with 
respect to the applied load, and on their capacity of changing 
their volume (or aperture), which depends on fracture nor-
mal stiffness. Effective compliance of fractured rock is much 
affected by fracture shear stiffness (Davy et al. 2018), which 
instead does not affect the variation of the fracture aperture. 
It is important to emphasize that the two coefficients depend 
not only on the characteristics of the fractured rock but also 
on the initial stress tensor and the applied stress variation.

Given that the presence of deformable fractures weak-
ens the system in the direction orthogonal to the fractures, 
both the equivalent Biot and Skempton coefficients 
increase with fracture density and with their normal com-
pressibility (Eq. 14, Fig. 8 and Fig. 9). This agrees with 
experimental observations that the coefficients are gener-
ally larger in soft rocks than in stiff ones (Kasani and Sel-
vadurai 2023), and that they are larger in cracked rocks 
than in intact rocks (Selvadurai and Suvorov 2020). The 
implication is not negligible. Let’s consider an external 
load/unload applied to the system, coinciding with a vari-
ation of total stress. In dry conditions, a fractured rock 
deforms more than an intact rock, as fractures increase the 

equivalent rock compliance. However, in saturated und-
rained conditions, the resulting effective stresses are much 
smaller in a fractured rock than in an intact rock, because 
the fluid in the fractures bears most of the load, i.e., 
�
�

m
=

(

1 − �B

)

�m . Consequently, under the same applied 
external load and initial conditions, a fractured rock may 
deform less than an intact rock, depending on the relative 
impact of fractures on the equivalent rock compliance and 
on the factor ( 1 − �B ). Clearly, deformations in a fractured 
rock are smaller if the fractures are fluid-filled than when 
they are dry (Berryman 2012).

A natural question arises about the behavior in saturated 
drained conditions. The time of applicability of the und-
rained conditions depends on the hydraulic characteristic 
time of the system, which is strictly related to the hydraulic 
diffusivity. In conditions where porosity and hydraulic con-
ductivity are much lower in the matrix than in the fractures, 
we expect large differences in pressure change times for frac-
tures connected to boundary conditions and those that are 
not. The time of applicability of the undrained conditions 
therefore depends on the characteristics of the fracture net-
work, in particular its connectivity (Bour and Davy 1997; 
Maillot et al. 2016), but also on the scale of the rock mass 
with respect to a potential outlet for the stress-induced pres-
sure change to dissipate. Because there are fractures that are 
hydraulically disconnected from the main cluster, residual 
pressure variation will persist in those fractures, meaning 
that the term �B does not vanish in the long-term. A long-
term �B could be estimated if only the disconnected frac-
tures are included in the summation terms of Eq. 12.

The expressions proposed in this work build on the 
assumption that the properties of intact rock and embed-
ded fracture network are known. While intact rock proper-
ties may be estimated by laboratory experiments on rock 
samples, the information on the fracture network is often 
lacking and uncertainties arise from parameters that are 
not yet constrained by measurements. By using the derived 
expressions, we have shown the range of variability of 
the two coefficients with respect to the principal fracture 
parameters. Fracture aperture e slightly affects the equiva-
lent Skempton coefficient because it affects the fracture 
Skempton coefficient Bf  , while the equivalent Biot coef-
ficient is insensitive to this parameter (see Eq. 12). An 
additional uncertainty comes from the mechanical prop-
erties, i.e., normal stiffness �N . Estimates from laboratory 
tests on fractured samples are not representative of large 
fractures. The range of uncertainty can be wide, and it may 
sensibly affect the value of both equivalent coefficients 
(Fig. 9). Moreover, both �N and e are generally affected 
by the initial stress regime acting on the fracture (Bandis 
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et al. 1983; Barton et al. 1985), which may be uncertain 
as well. The fraction of open/sealed fractures is another 
important parameter because sealed fractures do not con-
tain fluid.

The size of the fractured rock mass is also a critical issue. 
Although the coefficients are formally independent of the rock 
mass volume (it cancels out in Eq. 12), they can suffer from 
scale effects because the estimation of the geometrical and 
mechanical properties of fracture networks may be affected 
by the size of the observed domain. Defining a representative 
elementary volume (REV) for the Biot and Skempton coef-
ficients of fractured rocks (a minimum volume of sampling 
domain beyond which the coefficients remains mostly con-
stant) is however beyond the scope of this work.

The fracture network geometrical characteristics (fracture 
density, size, aperture) are in general inferred from bore-
hole observations and assuming a statistical distribution 
for the fracture size. We have shown the sensitivity of the 
poroelastic coefficients to the uncertainty in the exponent of 
the power law distribution, � , and in the size of the small-
est fracture, �0 . Overestimating the smallest fracture size 
means underestimating the poroelastic coefficients, with an 
error that increases with the power law exponent. On the 
other hand, underestimating the power law exponent leads 
to overestimation of the poroelastic coefficients. The expo-
nent of the power law distribution and the size of the small-
est fracture exclusively impact the fracture surface area per 
unit volume, p32 , which ultimately governs the poroelastic 
coefficients. In other words, two fractured rocks with the 
same value of p32 are characterized by the same poroelastic 
coefficients, regardless of the values of � and �0 . It should 
be emphasized that this behavior only occurs if the fracture 
aperture and normal stiffness are homogeneous, as we have 
assumed in the sensitivity analysis for simplicity. However, 
fracture aperture and normal stiffness are in general cor-
related with the fracture size (de Dreuzy et al. 2002; Wor-
thington and Lubbe 2007). It remains unknown whether the 
role of � and �0 is different if size-dependent aperture and 
normal stiffness are considered, which will be the focus of 
future work. Note that Eq. 14 is not valid in the case of 
heterogeneous fracture aperture and normal stiffness, while 
Eq. 12 holds.

Similarly, we have analyzed the ideal case with one set of 
parallel fractures or uniformly distributed fracture orienta-
tions. Future work will analyze the variability of the Biot and 
Skempton coefficients for more realistic fracture networks 
with different sets of fracture orientations, stress-dependent 
fracture stiffness, and scaling relationships linking fracture 
size, aperture and stiffness.

Appendix A: Skempton Coefficient 
for a Single Fracture

We derive a formal expression for the fracture Skempton 
coefficient, Bf  , by means of a volumetric approach. The frac-
ture volume variation coincides with the deformation in the 
direction normal to the fracture, while the shear deformation 
does not cause any volume variation. Considering a unit 
area of fracture, the fracture volumetric deformation, � , is 
expressed in terms of variation of aperture, e , such as

Note that we only consider the fracture void volume, 
while we disregard the solid volume surrounding the open 
fracture, which corresponds to assuming fracture porosity 
equal to 1. This implies that at undisturbed conditions the 
fracture (pore) volume Vf  and the fluid volume Vw are equal, 
i.e., Vf

= Vw , because of the fully saturated conditions. How-
ever, their stress-induced variations are different because 
there is a fluid volume change due to the fluid that enters 
or leaves the reference fracture volume, ΔV �

w
 (positive for 

entering), and a change of volume of the original fluid mass 
in the pores associated with fluid compressibility, ΔVw , such 
that the fracture (porous) volume variation is

The variation of the volumetric fluid content � is therefore

which, according with the hypothesis and equations above, 
can be written as

After substituting the constitutive equation (Eq. 4), it 
reads

which after imposition of the undrained conditions, i.e., 
d� = 0 , gives the expression for the fracture Skempton coef-
ficient as given in Eq. 6.

Appendix B: Derivation of Equivalent 
Coefficients for a Fractured Rock Mass

Equation 11 can be rewritten considering Eq. 5, which gives

(16)� =

ΔVf

Vf
=

de

e
.

(17)ΔVf
= ΔVw + ΔV �

w
.

(18)d� =

ΔV �

w

Vf
,

(19)d� =

de

e
+ �dp.

(20)d� = −

1

ekN
d�N +

(

� +

�
f

ekN

)

dp,
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where �f�m = �N , while pr and pf  refer to the pressure in 
the rock and in the fracture, respectively. To derive the 
volumetric deformations ( ΔV∕V  ) under dry, drained and 
undrained conditions, we set the pressure terms as zero 
( pr = pf = 0), fixed imposed ( pr = pf = p

∗ ), and stress-
induced ( pr = Br

�m , pf = Bf
�N ), respectively. This opera-

tion allows writing

Substitution of these expressions into Eq. 8 and Eq. 9 
gives the equivalent coefficients as in Eq. 12.
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