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Abstract
Based on the DP (Drucker–Prager) yield criterion, a new semi-analytical method for hydraulic–mechanical coupling in cir-
cular tunnels is proposed which takes into account the evolution of the permeability coefficient by incorporating it into the 
seepage equation. The definite condition is supplemented through the method of equal flow at the elastic–plastic junction. 
Constitutive equation and yield criterion are expressed by effective stress. When the pore water pressure drops to zero, the 
solution presented in this paper can degenerate into the classical Lamé solution in elastic region, and the solution obtained 
after yielding is consistent with the Drucker–Prage’s solution. The numerical simulation method is used to verify the proposed 
solution, and then, the sensitivity of the strength parameters is discussed. The results show that the radius of the plastic zone 
decreases with increasing cohesion C and internal friction angle φ°, and the decreasing tendency is more sensitive at lower 
cohesion and internal friction angle. Higher initial yield stresses are easily obtained by increasing the values of these two 
parameters appropriately. The solution presented in this paper is not applicable when the internal friction angle is greater 
than 40°. Considering the intermediate principal stress, the solution presented in this paper shows a higher initial yield in-situ 
stress than that of MC (Mohr–Coulomb) and Hoek–Brown (HB) materials. Compared with the solution of DP criterion, the 
solution in the current work has a larger range of plastic region, and is more obvious in high in-situ stress area. In addition, 
the initial yield stress also increases linearly with the head loss.

Highlights

•	 A new closed semi-analytical solution of hydraulic–mechanical coupling in circular tunnel is proposed using equivalent 
permeability coefficient.

•	 The hydraulic–mechanical coupling equation takes into account the action of intermediate principal stresses.
•	 The solution proposed in this paper can degenerate into the classical Lamé solution when pore water pressure is equal to 

zero.
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�	� Biot coefficient
P	� Pore water pressure
C	� Cohesion
�	� Internal friction angle
n	� Pore volume
n0	� Initial pore volume
�	� Pore outflow water

Subscripts
0, y, R	� Effective stress variable value at r = tunnel 

periphery, elastoplastic interface, and outer 
boundary

(e), (p)	� Elastic region function/variable, plastic zone 
function/variable

r, �, z	� Direction of radial, tangential, and axial

1  Introduction

When the underground engineering below the groundwa-
ter table, the engineering is not only affected by the in-site 
stress, but also affected by the seepage force (De Caro et al. 
2020; Li et al. 2022a; Wang et al. 2022a). Vice versa, engi-
neering disturbance will cause mechanical response of sur-
rounding rock and change the initial seepage field. In the 
above hydraulic–mechanical coupling process, the defor-
mation and failure of the surrounding rock depend on the 
effective stress (Fransson and Viola 2021; Zhao et al. 2021; 
Wang et al. 2022b). The study of the hydraulic–mechanical 
coupling of underground tunnel is of guiding significance for 
the stability evaluation, support design, and cut-off/drainage 
design of the tunnel.

The analytical solutions of seepage and mechanics in the 
surrounding rock of circular tunnel have been studied exten-
sively. Kolymbas and Wagner (2007) deduced the analytical 
solution of groundwater stable entry into tunnel by means 
of conformal mapping. Detournay and Cheng (1988) ana-
lyzed various coupled pore-elastic processes caused by ver-
tical drilling in saturated formations under non-hydrostatic 
geostresses. Plastic failure of tunnel caused by high ground 
stress has attracted the attention of abundant scholars. Shin 
et al. (2011) studied the elastoplastic mechanical behavior of 
the tunnel caused by seepage with the MC failure criterion. 
Taking the seepage force as the volume force to evaluate 
the influence of pore water pressure on the stability of sur-
rounding rock has been carried out in MC criterion (Bobet 
2010; Lee et al. 2007; Shin et al. 2010) and HB materials 
(Fahimifar and Zareifard 2009; Sharan 2005; Zareifard and 
Fahimifar 2014) According to the plane strength theory, the 
intermediate principal stress is ignored in the above studies, 
and the calculation results of stress tend to be conservative.

Deep-buried circular tunnel is usually accompanied 
by high ground stress, which will cause the yield failure 

at the periphery of the tunnel. To simplify the process of 
fluid–structure coupling modeling, stress superposition or 
the seepage equation of fixed state is considered. To simplify 
the process of groundwater hydraulic–mechanical coupling 
modeling, stress superposition method (Wang and Dusseault 
1994) or the specific seepage equation (Zhang et al. 2019) 
is considered. Zareifard and Fahimifar (2014) deduced the 
elastoplastic solution of a circular tunnel under steady flow 
by assuming a constant permeability coefficient. Related to 
the change of effective stress, the deformation and failure of 
surrounding rock change the permeability which is consist-
ent with the experimental results of previous study (Chen 
et al. 2007; Wang et al. 2013; Xu and Yang 2016; Yang 
et al. 2015; Zhao et al. 2022; Zhang et al. 2023). Fahimi-
far and Zareifard (2013) deduced the distribution of strain-
dependent permeability. According to the method of perme-
ability proportion fraction, Dong et al. (2019) generalized 
the evolution law of permeability coefficient in elastic zone 
and plastic zone, so as to establish the hydraulic–mechanical 
coupling model. When the permeability coefficient changes 
along the seepage path, the flow velocity often depends on 
the part with the lowest permeability. However, in the previ-
ous studies, this detail is often ignored, which may lead to a 
larger calculation result.

In this paper, the permeability coefficient is a non-con-
stant parameter in the calculation of coupling. According to 
the deformation characteristics, the permeability coefficient 
evolution model and the seepage model in the elastic and 
plastic zone are established, respectively. Based on the con-
servation of fluid mass and the physical relation between the 
equivalent permeability coefficient and the head loss, a new 
closed solution for circular tunnel with fluid–structure cou-
pling was proposed. Considering the effect of intermediate 
principal stress, the hydraulic–mechanical coupling model 
with DP criterion is derived. Finally, the derived stress solu-
tion is verified by numerical simulation method.

2 � Background Study and General Theory

2.1 � General Theory and Assumptions

In this study, the mechanical problem of a circular under-
ground tunnel is identified as a two-dimensional plane strain 
model. Surrounding rock in the range of inner diameter r0 to 
outer diameter rR is assumed to be homogeneous isotropic 
and the plastic volume is considered incompressible. The 
assumption of incompressibility of the plastic volume is used 
to simplify the effect of plastic strain on the change in pore vol-
ume and thus obtain a solvable differential equation. Such an 
assumption would neglect the contribution of plastic strain to 
pore alteration after yielding of the surrounding rock. Changes 
in porosity are thought to be exponential to permeability. The 



6547A New Close‑Form Solution for Elastoplastic Seepage‑Induced Stresses to Circular Tunnel with…

1 3

intermediate principal stress can be represented by two other 
stress components in the plane, so that the stress differential 
equation satisfying the DP failure criterion has an analytical 
solution. The outer boundary is subjected to uniform in-situ 
stress �R and pore water pressure PR . Axial stress is considered 
to be the intermediate value between radial stress and tangen-
tial stress. The effective stress is applied in DP yield criterion 
to determine the plastic zone range and stress distribution of 
surrounding rock. The DP yield criterion expressed by effec-
tive stress can be expressed as follows:

where I′
1
 and J′

2
 are the first invariants of stress tensor and the 

second invariants of deviatoric tensor of stress expressed by 
effective stress, respectively, which are defined as follows:

Effective stress is defined as follows:

where α is the Biot coefficient, which generally depends on 
the volume modulus of surrounding rock and solid granu-
lar material (in this solution, α is regarded as a constant); 
P is pore water pressure; the subscripts θ, r, and z refer to 
the tangential, radial, and axial directions, respectively. For 
example, �r represents radial stress. In DP yield criteria, β 
and K are strength parameters related to friction angle and 
cohesion, which are defined as follows (Kabwe et al. 2020):

where φ is the internal friction angle and C is the cohesion 
force. In the case of the assumption of plasticity incompress-
ible, the plastic incompressible plane strain model has the 
following relation:

2.2 � Governing Equations

The schematic diagram of stress of a deeply buried tunnel in a 
saturated formation is shown in Fig. 1. In the figure, subscript 

(1)F

(
I�
1
,

√
J�
2

)
=

√
J�
2
− �I�

1
− K = 0,

(2)I�
1
= ��

r
+ ��

�
+ ��

z

(3)J�
2
=

1

6

[(
��
r
− ��

�

)2
+
(
��
�
− ��

z

)2
+
(
��
z
− ��

r

)2]
.

(4)��
�
= �� − �P ��

r
= �r − �P ��

z
= �z − �P,

(5)K =
6C cos�√
3(3 − sin�)

(6)� =
6 sin�√

3(3 − sin�)
,

(7)�z =
�r + ��

2
.

r is the distance to the center of the circle, and the subscripts 
0, y, and R represent the periphery, the elastoplastic interface, 
and the outer boundary, respectively. The rock skeleton is con-
sidered to be elastically compressible and is specified to be 
positive for compression and negative for tension. Assuming 
that the pore water pressure only bears positive stresses and 
has no effect on shear stresses, the constitutive equations can 
be expressed by the following equation:

where λ and G are the Lamé constants, and �r , �� , and �v are 
the radial, tangential, and volume strain, respectively. The 
volumetric strain and geometric equations and the equilib-
rium equation in the plane strain axisymmetric problem have 
the following form:

where u is radial displacement.

(8)
{

�r = ��v + 2G�r + �P

�� = ��v + 2G�� + �P
,

(9)�r =
�u

�r
, �� =

u

r

(10)�v = �r + �� =
�u

�r
+

u

r
=

1

r

�(ru)

�r

(11)
��r

�r
+

�r − ��

r
= 0,

Fig. 1   Hydraulic–mechanical calculation model of a circular tunnel
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2.3 � Basic Problems of Hydraulic–Mechanical 
Coupling

The key point of hydraulic–mechanical coupling is to estab-
lish the dynamic mathematical model of pore volume n and 
permeability coefficient k. To solve seepage problems in 
circular cavity, previous studies mainly treat the seepage 
force of a fixed potential as a volume force (Fahimifar and 
Zareifard 2013; Li et al. 2022b). This obviously ignores the 
effect of rock compression on permeability. Assuming that 
water is incompressible, the change in volume of the rock 
ΔV equals the change in pore volume Δn , and also equals the 
water content of the outflow ϑ. The change in water content 
has the following expression (Biot 1941):

In an isotropic homogeneous porous elastic medium, 
the permeability is a function of the pore volume. Xu et al. 
(2000) presented an exponential relationship between the 
permeability coefficients k and pore volume n

where a is an empirical constant and k0 is the initial intrinsic 
permeability. Substituting Eq. (12) into Eq. (13) yields the 
following equation, which is the basis for solving the non-
linear seepage and flow coupling problem later:

The nonlinear Darcy seepage equation and the continuity 
equation have the following forms:

where ρ denotes water density which is assumed as incom-
pressible (i.e., ρ is a constant). The continuous equation of 
stable seepage for two-dimensional axisymmetric incom-
pressible fluid can be simplified as follows:

Substituting the constitutive Eq. (8) into the equilibrium 
Eq. (11), obtains the equilibrium equation with pore pres-
sure. To solve the equilibrium equation, the basic differential 
equation for solving stress can be obtained using Eq. (10)

(12)ΔV = Δn = � =
P

Q
− ��v.

(13)k(n) = k0e
an = K0e

aΔn, K0 = k0e
�n0 ,

(14)k(n) = K0e
a
(

P

Q
−��v

)
.

(15)q = k(n)
�P

�r

(16)∇

(
�k(n)

�P

�r

)
= n0

�P

�t
+

1

Q

�(�P)

�t
− �

�
(
��v

)
�t

,

(17)
1

r

d

dr

[
rk(n)

dP

dr

]
= 0.

Equations (17) and (18) are the basic differential equa-
tions of seepage and mechanics. Obviously, they are coupled 
and cannot be solved separately. After obtaining the dis-
placement u and pore water pressure P, the stress and strain 
can be solved by solving the geometric equation and consti-
tutive equation. When the stress exceeds the yield strength 
of the surrounding rock, a plastic yield zone is generated 
first at the periphery of the tunnel. For the case of plastic 
damage, the fixed solution conditions are more demanding 
and the boundary conditions on the elastic-plasticity need 
to be considered. The percolation conditions and mechani-
cal behavior of the plastic zone are altered, and these are 
discussed in the next section.

2.4 � Boundary Conditions

The tangential and radial stresses at the outer boundary are 
equal to the in-situ stress �R . At the inner boundary, the sup-
port force is �0 = 0 . A constant head boundary is set at outer 
boundaries, water flowing inwards from the outer boundary. 
The radial stress and pore water pressure are continuous at 
the junction of the elastoplastic region. Thus, the boundary 
conditions can be expressed as follows:

2.5 � Hydraulic Problem

Carrying out one integral calculation of Eq. (18) and com-
bining with the definition of the pore volume increment in 
Eq. (12) yield

where C1 is the integration constant, which can be obtained 
using the boundary conditions at rR

The total volume strain of the plastic zone is 
�v = �(e)

v
+ �

(p)
v  . Due to the assumption of plasticity incom-

pressible, the plastic strain has no effect on the change of 
pore volume. For a completely plastic material, �(e)

v
= const 

after yielding. Substituting Eqs. (20) and (21) into Eq. (13) 
yields

(18)
d

dr

{
1

r

d(ru)

dr

}
= −

�

� + 2G

dP

dr
.

(19)

⎧⎪⎨⎪⎩

�r = �� = �R , P = PR

�
r = rR

�
�r = �(e)

r
= �

(p)
r = �y , P = Py

�
r = ry

�
�r = �0 = 0, P = P0 = 0

�
r = r0

� .

(20)Δn =

(
1

Q
+

�

� + 2G

)
P + �C1,

(21)C1 =
�R − �PR

� + G
+

�

� + 2G
PR.
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Equation (22) is substituted into Eq. (17) to obtain the 
seepage differential equation in the elastic zone

Similar to the plastic zone, the equations for permeabil-
ity coefficient and the differential equations seepage can be 
obtained as

where A1 = a
(

1

Q
+

�

�+2G

)
, A2 =

�

Q
 . From the above deriva-

tion process, for the elastic and plastic seepage equations 
under steady-flow conditions, the difference lies mainly in 
the different permeability coefficients. The pore volume 
change in the elastic zone is affected by volume strain and 
pore water pressure, while that in the plastic zone is only 
affected by pore water pressure. The permeability coefficient 
k is continuous in the elastic zone and the plastic zone with 
an inflection point at r elastic–plastic junction. In general, 
the closer to the periphery of the tunnel, the more rock strain 
before plastic yielding, resulting in a lower permeability 
coefficient.

3 � Solution of Nonlinear Flow Coupling 
Problem Based on DP Criterion

3.1 � Stress Solution

The stresses in the elastic zone are solved by integrating 
Eq. (18) twice

where C2 and C3 are the integration constants, and ry indi-
cates the radius of the plastic area, r` is a integration vari-
able. Bringing the boundary conditions at the outer bound-
ary rR and the elastoplastic junction ry into the geometric 
equations and the intrinsic equations, yields

(22)k(e)(n) = K0e

[
a
(

1

Q
+

�

�+2G

)
P+�

(
�R−�PR

�+G
+

�

�+2G
PR

)]
.

(23)
1

r

d

dr

[
reA1P

(e) dP(e)

dr

]
= 0.

(24)k(p)(r) = K0e
a
[
P
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+��

(e)
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]
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1

r

d

dr

[
reA2P

(p) dP(p)

dr

]
= 0,

(26)

u(e)(r) = −
�
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1

r ∫
r
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P(e)(r�)r�dr� +
C2

2

(
r +
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y

r

)
+

ry

r
C3,

(27)
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1

(� + G)

[
�RR
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2
y

R2 − r2
y

−
2�G

� + 2G

1

R2 − r2
y
∫

R

ry

P(e)(r�)r�dr�

]
,

where

Equations (29) and (30) are the elastic solutions of the 
radial and tangential stresses. It is worth mentioning that 
the first term on the right-hand side of both equations is 
related to the pore water pressure, and the elastic solu-
tions degenerate to the classical Lamé solution when the 
pore water pressure P is kept constant equal to 0.

Plastic deformation occurs when the stress in the sur-
rounding rock meets the yield condition of Eq. (1). The 
simple transformation of yield conditions is made by com-
bining Eqs. (1)–(7)

Substituting Eq.  (31) into the equilibrium Eq.  (11) 
yields the differential equation for solving the plastic stress

Integrating the above equation once and making M =
6�

1+3�
 

yields

The constant of integration C4 can be eliminated using 
the inner boundary condition

(28)C3 = C2

[
1 +

�

2G

]
ry −

�yry

2G
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.

(31)�r − �� = −
6�

1 + 3�

(
�r − �P(p) +

K

3�

)
.

(32)
d�r

dr
−

6�

1 + 3�

(
�r − �P(p) +

K

3�

)
1

r
= 0.

(33)

�(p)
r
(r) =
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∫

(
−
M

3�
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Then, Eq. (33) can be expressed as

Considering the yield condition Eq. (31), one can obtain 
the tangential stress in the plastic zone

3.2 � Hydraulic Solution

The basic differential equations for seepage in the elastic 
and plastic zones have been discussed above, and this sec-
tion further solves these differential equations. The solu-
tion of the equation for seepage in the elastic zone requires 
integrating Eq. (23) twice and then eliminating the integra-
tion constants using the first and second terms of Eq. (19) 
(boundary conditions outside the elastic zone and bound-
ary conditions inside the elastic zone). Similarly, Eq. (25) 
is integrated twice, and then, the integration constants are 
eliminated using the second and third terms of Eq. (19) 
(boundary conditions outside the plastic zone and bound-
ary conditions inside the plastic zone).

The seepage equation in the elastic region can be obtained

Similarly, the seepage equation in the plastic zone is

Because the second term of Eq. (19) is applied in the 
solution of both Eqs. (37) and (38), it is obvious to obtain 
the conclusion that the pore water pressure is equal at the 
junction of the elastic and plastic zones. Since the pore water 
pressure P is indicated here to be identical, additional condi-
tions need to be found to seal the coupled system.

3.3 � Coupled Equations

After solving seepage equation in the elastoplastic region, 
the pore water pressure P in the stress Eqs. (29), (30), (35), 

(34)C4 =
�0

rM
0

.

(35)

�(p)
r
(r) =

[
−�M ∫

r

r0

P(p)
r
r}(−M−1)dr� −

K

3�

(
r−M − r−M

0

)
+

�0

rM
0

]
⋅ rM .

(36)�
(p)

�
(r) = �y(1 +M) +M

(
K

3�
− �Py

)
.

(37)P(e)(r) =
1

A1

ln

⎛⎜⎜⎝
eA1PR − eA1Py

ln
R

ry

ln
r

ry
+ eA1Py

⎞⎟⎟⎠
.

(38)P(p)(r) =
1

A2

ln

⎛⎜⎜⎝
eA2Py − eA2P0

ln
ry

r0

ln
r

r0
+ eA2Py

⎞⎟⎟⎠
.

and (36) has a specific expression. In solving the stress equa-
tion for the plastic zone, only the inner boundary conditions 
are used, so here the following relationship can be obtained 
using the condition that the radial and tangential stresses at 
ry are equal:

The two equations above have three unknown parameters 
ry , �y , and Py . Obviously, the system of equations is not closed. 
However, the boundary condition at ry for pore water P has 
already been used in the solution of the seepage equation.

Figure 2 shows the alternating aquifers in the seepage path, 
each with independent permeability coefficients. In this case, 
the water flow is equal in each aquifer, the hydraulic slope of 
each aquifer is different, and the total hydraulic slope is equal 
to the sum of the head loss of each aquifer

If an equivalent homogeneous aquifer is used to replace the 
“strung” aquifer, this homogeneous aquifer has an equivalent 
permeability coefficient of ke

If the aquifer is sufficiently thin and the permeability coef-
ficients of adjacent aquifers are gradually transformed, the 
equivalent permeability coefficient can be expressed as

(39)

�y =

[
−�M ∫

ry

r0

P(p)(r�)r�(−M−1)dr� −
K

3�

(
r−M
y

− r−M
0

)
+

�0

rM
0

]
⋅ rM

y

(40)�
(e)

�

(
ry
)
= �y(1 +M) +M

(
K

3�
− �Py

)
.

(41)Q = kiA
ΔPi�g

Li
, ΔPi =

LiQ

kiA�g
.

(42)ke =

∑n

i=1
kiLi∑n

i=1
Li

.

Fig. 2   “Strung” aquifer seepage model
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Figure 3 shows the relationship of permeability coefficient 
k with radius r. The surrounding rock is assumed to be a uni-
formly homogeneous porous elastic medium, and the pore 
volume changes with stress and pore water pressure. The seep-
age behavior no longer satisfies the linear Darcy’s law. In the 
previous analysis, it was concluded that k is continuous over 
the elastic and plastic regions, respectively, and equal at ry . 
Similarly, the elastic zone equivalent permeability coefficient 
and the plastic zone equivalent permeability coefficient can be 
defined as follows:

According to the law of mass conservation, the flow rate 
at the elastic–plastic junction is equal, so that the following 
relationship can be obtained by:

Equation (45) is now supplemented with the relational 
equation on Py and ry . The closed system of coupled equa-
tions can be formed by combining Eqs. (39) and (40). Since 
it contains transcendental equations, this system of equa-
tions cannot be solved directly and needs to be solved with 
the help of numerical methods. After solving ry,Py , and �y , 
the corresponding solutions are obtained by substituting the 
stress equation and the seepage equation.

(43)ke =
1

M ∫
L

0

K(l)dl.

(44)

k(e)
e

=
1

R − ry ∫
R

ry

eA1P
(e)

dr, k(p)
e

=
1

ry − r0 ∫
ry

r0

eA2P
(p)

dr.

(45)
k(e)
e

k
(p)
e

=
ΔP(e)

ΔL(e)
⋅

ΔL(p)

ΔP(p)
=

PR − Py

R − ry
⋅

ry − r0

Py − P0

.

When the stress at r0 reaches the yield condition, we have

Substituting Eq. (30) into Eq. (46), the in-situ stress at the 
beginning of yield can be obtained by:

4 � Model Verification

4.1 � Comparison with Numerical Simulation Test 
Results

In this part, FLAC3D were adopted to conduct numeri-
cal tests with the DP failure criterion. The convergence 
of the numerical results was discussed as follows. Since 
the numerical model is a planar axisymmetric model, the 
number of circumferential grids has little effect on the test 
results, so the sensitivity analysis can be carried out only 
using the radial grids. The model with different numbers of 
radial meshes N is calculated to investigate the effect of the 
discretization number. The number of steps at each compu-
tational convergence is recorded, and the unbalanced forces 
rate is used to mark the convergence. The iteration error 
en is estimated by calculating the average stress difference. 
The results of the grid sensitivity analysis are recorded in 
Table 1.

Figure 4 shows how the iteration error gradually con-
verges as the number of grids increases, with the party 

(46)�� =
2K

1 − 3�
.

(47)�R =

{

K
1 − 3�

− 2G
� + 2G

[

P0 −
2

R2 − r20 ∫

R

r0
P(e)(r′)r′dr′

]}

R2 − r20
R2 .

Fig. 3   Circular continuous aquifer seepage model

Table 1   Results of the grid sensitivity analysis

N Step Unbalance force rate en

20 5623 9.99E−06 –
30 6592 1.00E−05 0.01738
40 8379 1.00E−05 0.00769
50 10,106 9.99E−06 0.00526
60 12,034 9.98E−06 0.00392
70 13,991 9.99E−06 0.00279
80 16,121 9.98E−06 0.00229
90 18,335 9.99E−06 0.00196
100 20,585 1.00E−05 0.00155
110 22,656 9.99E−06 0.00104
120 25,055 1.00E−05 9.94E−04
130 27,097 1.00E−05 8.66E−04
140 29,220 1.00E−05 8.38E−04
150 31,370 9.99E−06 8.25E−04
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en = 2 × 10−3 iteration error starting to converge. Taking 
into account of the computational accuracy and computa-
tional cost, the radial grid number of 80 was chosen for this 
experiment.

The numerical model generated 80 × 20 × 4 ‘cshell zone’, 
and applied 30 and 60 MPa normal stress on the outer 
boundary, and initialized pore pressure and boundary condi-
tion by Eq. (19). The nodal displacements perpendicular to 
the plane direction were fixed to simulate a plane strain 
model. The inner boundary of the tunnel is 10 m and the 
outer boundary is 40 m. Calculated model with friction 
angle φ = 25°, cohesion C = 6 MPa, and shear modulus 
G = 2.5 × 103 MPa. DP criterion parameter qv = 2 sin (�)√

3(3−sin (�))

,ks = 6C cos�√
3(3−sin (�))

 . The numerical model, plastic-elastic dis-
tribution, and colored stress patterns are shown in Fig. 5.

Figure 6 shows the stress distribution of surrounding rock 
obtained from simulation tests and the calculated results 
under the conditions of 30 MPa and 60 MPa in-situ stress σR. 
As can be seen from the figure, the simulated and calculated 
radial stress results are basically the same, no matter in the 
elastic zone or the plastic zone, while the simulated tangen-
tial stress results in the plastic zone are slightly higher than 
that of calculated tangential stress. Under the condition of 
σR = 30 MPa, the two obtained results are almost the same. 
Under the condition of σR = 60 MPa, the plastic zone radius 
of simulated tests is slightly smaller than that of calculated 
results. In general, the theoretical calculation results of this 
paper are in good agreement with the numerical test results.

Based on the comparative analysis results of Sects. 4.1 
and 4.2, we can preliminarily believe that the theoretical 
derivation in this paper is reasonable and correct.

4.2 � Comparison with the Solution Without 
Considering the Seepage Effect

The stress distribution diagram of DP and this work is shown 
in Fig. 7. Both the low and the high in-situ stress show simi-
lar feature. In the plastic zone, the stress distribution under 
the two yield criteria is basically the same, but the solution 
in this paper shows a larger range of the plastic zone. In the 
elastic zone, the tangential stress curves of the two solutions 
are basically parallel. In addition, the radial stress given in 
this paper is also higher than the solution of DP, but different 
from tangential stress, the difference of radial stress is the 
smallest at ry , gradually increases with the increase of radius, 
and reaches the maximum at rR . This is positively correlated 
with the distribution of pore water pressure. These differ-
ences are magnified in areas of high in-situ stress.

Based on the comparative analysis results of Sects. 4.1 
and 4.2, we can preliminarily believe that the theoretical 
derivation in this paper is reasonable and correct.

5 � Example Analysis

In this part, we make some examples to study the influ-
ence of different parameters on the results, and give the 
following calculation parameters. The inner diameter of 
the tunnel r0 = 10 m; R = 4 × r0 , the friction angle in the 
zone φ = 25°, the cohesion C = 6 MPa, the Biot coefficient 
α = 0.3, the Lamé constant λ = 1.445, the shear modu-
lus G = 2.5 × 103 MPa, and the empirical constant a = 1, 
Q = 1536 × 103.

(1) The relationship between the in-situ stress and the 
radius rate of the plastic zone under the same conditions for 
the four yielding criteria is shown in Fig. 8. Pore water pres-
sure of 10 MPa is applied at the outer boundary. There are 
some differences in the performance of the initial yield stress 
and the growth rate of the plastic zone radius. As this work 
is carried out based on DP criterion, the calculation results 
are highly familiar to the DP algorithm. However, under the 
action of pore water pressure, in the solution of current 
work, the increase of plastic zone radius shows a higher sen-
sitivity to the growth of in-situ stress. It can be seen from the 
figure that DP, HB, and the solution in this paper have simi-
lar slopes, while Kastner’s solution is more sensitive to high 
ground stress. In addition, due to the intermediate principal 
stress considered by both DP and this work, the obtained 
results have higher initial yield stress than HB and Kastner’s 
solutions. In the HB criterion parameters m = 10 and s = 1; 
the same parameters are used in the calculation procedure 
of the DP criterion for uncoupled seepage action as in this 
study. The solution in this study has an inner boundary water 

Fig. 4   Iterative error distribution
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Fig. 5   FLAC3D computational model and results
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pressure P0 = 0 . The parameter N =
1+sin (�)

1−sin (�)
 , S =

2 sin (�)

1−sin (�)
 in 

Kastner’s solution.
(2) The relationship between primary rock stress, inter-

nal friction angle φ, and outer boundary pore water pres-
sure PR at yielding condition is shown in Fig. 9. The figure 
further explains the relationship between the solution in 
this paper and the solution of DP. The curves are obtained 
by taking 0, 20, 40, 60, and 80 MPa pore water pressure at 

rR . This seepage force caused by pressure potential energy 
is the main difference between the work in this paper and 
the DP solution. In the case of PR = 0 , the obtained curve 
is the same to that of DP curve. It can be seen from the 
analysis results that a higher PR value requires a higher 
yield stress under the same conditions.

In addition, the internal friction angle has a posi-
tive effect on the stability of surrounding rock when φ 
is less than 40°, and a negative effect on the stability of 

Fig. 6   Comparison of stress distribution between FLAC3D and current work

Fig. 7   Comparison of stress distribution between DP and current work
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surrounding rock when φ is over 45°, showing the charac-
teristics of tensile failure.

In the range of 40° < φ < 45°, σR has a high sensitivity 
to φ. Therefore, the solution proposed in this paper is more 
reasonable when the internal friction φ < 40°.

(3) The sensitivity analysis between the radius rate of 
the plastic zone and the internal friction angle of surround-
ing rock is shown in Fig. 10. According to the proposed 
criterion, the radius of the plastic zone shows a higher sen-
sitivity at low friction angles, and this sensitivity is more 
obvious at high stress regions. And the solution presented 
in this paper shows higher sensitivity. With the increase of 
in-situ stress, the solution presented in this paper presents 
a larger range of plastic zone than that presented in the 

solution of DP. This phenomenon is most obvious at low 
angles and tends to be equal with the increase of angles.

(4) Figure 11 shows the relationship between cohesion 
C and the radius rate of the plastic zone. Similar to the 
influence of the internal friction angle φ, the radius of the 
plastic zone shows a high sensitivity when the cohesion 
is low (mainly when C < 1 MPa). Similarly, due to the 
effect of pore water pressure, the solution in this paper 
shows a higher plastic zone range than that of DP, and 
this enhancement diminishes with increasing cohesion C. 
No matter the DP criterion or the solution in this paper, 
it can be seen that the influence of in-situ stress on the 
plastic radius is linear, which is different from the study 
of internal friction angle φ.

Fig. 8   Influence of confining pressure on radius of plastic zone

Fig. 9.   In-situ stress at initial yield

Fig. 10   Relation between internal friction angle and radius of plastic 
zone

Fig. 11   Relationship between cohesion and radius of plastic zone
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(5) Figure 12 shows the distribution of permeability 
under different in-situ rock stress �R and different water pres-
sure PR . In this example, k0 = 1 × 10–14 m2, n0 = 0.2, inner 
boundary water head and pressure are set as zero. The outer 
boundary is applied with water pressure and stress. The dis-
tribution of permeability is related to the location of the elas-
toplastic interface and shows different patterns in different 
areas. Due to the effect of compressive stress, the closer to 
the hole, the lower the permeability. The permeability curve 
has a faster rate of decline in the elastic zone than that in the 
plastic zone due to the assumption of incompressibility of 
the plastic volume. In the plastic zone, the volume strain is 
constant; only the water pressure acts on the volume change 
of the pores, so that the permeability coefficient decreases 
slowly. Figure 12a shows a gradual decrease in permeability 
as �R increases, with the permeability curves nearly paral-
lel to each other. Figure 12b shows that the permeability 
decreases as the PR increases and the slope of the perme-
ability curve increases. Comparison of Fig. 12a, b leads to 
the conclusion that the in-situ rock stress �R is the main fac-
tor influencing the magnitude of the average permeability 
and the outer boundary water pressure PR is the main factor 
influencing the distribution of permeability along the pen-
etration path.

6 � Conclusions

Based on DP criterion and effective stress principle, an elas-
toplastic fluid–solid model of annular cavity with steady 
flow is proposed. The model considers the dynamic evo-
lution of the permeability coefficient in the fluid–structure 
coupling and gives the evolution equations of the permeabil-
ity coefficient in the elastic and plastic zones and the seepage 

equations. In addition, the physical equation of equivalent 
permeability coefficient and water head difference is consid-
ered. By comparing the analytical solution of DP with the 
numerical simulation of water-rich surrounding rock, the 
correctness of the proposed solution is verified.

With the increase of primary rock stress, the plastic radius 
increases significantly, and the solution presented in this 
paper shows a faster rate of increase than the solution of 
DP. Due to the consideration of the influence of intermedi-
ate principal stress, the solution presented in this paper and 
the solution of DP require higher ground stress to make the 
surrounding rock yield. The increase of pore water pressure 
leads to a higher yield stress of surrounding rock. However, 
when the pore water pressure decreases gradually and the 
region is zero, the solution of the elastic region deforms to 
the classical Lamé solution, while the solution of the plastic 
region is consistent with the solution of DP.
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