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Abstract
The accurate evaluation of polyaxial rock strength is important in the mining, geomechanics, and geoengineering fields. In 
this research, hybrid meta models based on the boosting additive regression (AR) combined with three machine learning 
(ML) methods   are developed for polyaxial rock strength predicting. The ML algorithms used include Gaussian process 
regression  (GP), random tree (RT), and M5P methods. Polyaxial tests for 14 different rocks from published literature are 
used for assessing these data-oriented based strength criteria. The input variables are minor principal stress and intermediate 
principal stress data. The modeling is evaluated by coefficient of determination ( R2 ), root mean square error (RMSE), and 
mean absolute error (MAE) statistical metrics. Results indicated that the hybrid AR-RT model performed superior predic-
tion results ( R2 = 1, RMSE = 0 MPa, and MAE = 0 MPa) in the training phase and ( R2 = 0.987, RMSE = 29.771 MPa, and 
MAE = 22.517 MPa) in the testing phase. The findings of this study indicate that boosting-based additive regression algo-
rithm enhanced developed hybrid models’ performances. Moreover, AR-RT and RT demonstrate promising results and are 
feasible for modeling polyaxial rock strength prediction. The RT and M5P models visualize variables and their thresholds in 
a simple and interpretable way. Also, sensitivity analysis indicates that input intermediate principal stress is the most effective 
parameter on the output polyaxial rock strength. Finally, successful implementation of the probabilistic and interpretable tree-
based regressions can capture uncertainty of the model and be an alternative to complicated conventional strength criteria.

Highlights

•	 Study proposes hybrid approach for estimating polyaxial failure strength using probabilistic- and three-based boosting 
additive regression.

•	 Hybrid AR-RT model performs better than other models for predicting polyaxial rock failure strength.
•	 Major principal strength is estimated based on rock type, minor and intermediate principal stresses, using 14 different 

rocks including igneous, metamorphic, and sedimentary rocks.
•	 Sensitivity analysis indicates that σ3 and rock type significantly impact polyaxial rock strength prediction, while σ2 has 

a minor impact.

Keywords  Rock strength model · Polyaxial stresses · Intermediate principal stress · Data-oriented process · Machine 
learning · Meta model

1  Introduction

The estimation of polyaxial rock strength is of great impor-
tance in the mining, geomechanics, and geoengineering 
areas due to its increasing application in great depth projects 
such as wellbore stability and storage caverns or in order to 
make excavation or hydrofracturing. Furthermore, as engi-
neering depth increases, the true triaxial stress condition 
( �1 > �2 > �3 ) becomes more general. Moreover, there is a 
growing body of experimental evidence (Mogi 1967, 1971a, 
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b; 2007; Takahashi and Koide 1989; Chang and Haimson 
2000; Haimson and Rudnicki 2010; Sriapai et al. 2013; Feng 
et al. 2016; 2019; Ma and Haimson 2016) to illustrate that 
the intermediate principal stress ( �2 ) is a significant con-
tributor to their compressive strength, deformability, failure 
types, and fault angle of rocks. However, different rock types 
exhibit varying degrees of �2 dependency.

A number of theoretical and empirical failure crite-
ria have been proposed to model geomaterial strength in 
the last century, among which Mohr–Coulomb, Hoek and 
Brown, Lade–Duncan, Wiebols and Cook, Mogi, and 
Drucker–Prager criteria are widely adopted and well-known 
failure criteria. Cohesion, friction angle, hardness parameter 
( m of Hoek–Brown criterion), and uniaxial strength are basic 
constants to define these criteria. These well-known expres-
sions have been developed and modified or unified by this 
time. In addition to smoothness and convexity problems, 
in the process of developing failure criteria, determining 
strength parameters that best-fit the whole sets of experi-
mental data is a challenge to achieve the precise form of a 
failure equation (Lee et al. 2012). In general, the generalized 
theoretical and mathematical modeling of realistic nonlinear 
rock behaviour under different multiaxial stresses is a dif-
ficult task, which also needs further constants, constrains, 
and assumptions. Despite the existence of several strength 
criteria, developing a universal strength criterion capable of 
describing the behavior of different materials subject to ani-
sotropic stress conditions is of great interest (Li et al. 2021; 
Fathipour-Azar 2022b). Comparisons of some of these fail-
ure criteria were made by Colmenares and Zoback (2002), 
Zhang (2008), Benz and Schwab (2008), You (2009), Rafiai 
(2011), Priest (2010, 2012), Zhang et al. (2010), Lee et al. 
(2012), Jiang and Xie (2012), Sriapai et al. (2013), Liolios 
and Exadaktylos (2013), Rukhaiyar and Samadhiya (2017b), 
Bahrami et al. (2017), Jiang (2018), Ma et al. (2020), and 
Feng et al. (2020). It has been revealed that the performance 
of a failure criterion to polyaxial strength data is affected by 
both the type of failure criterion and the varying �2-depend-
ence of the rock (Ma et al. 2020). Because of the consider-
able differences between hard and soft rocks, different failure 
criteria may be used (e.g., soft rocks (Wang and Liu 2021) 
and hard rocks (Feng et al. 2020)). Strength models have 
been built under circumstances such as for specific rock type 
and stresses (Sheorey 1997; Yu et al. 2002; Rafiai and Jafari 
2011; Rafiai et al. 2013; Moshrefi et al. 2018; Gao 2018; 
Fathipour-Azar 2022b), while data-oriented machine learn-
ing (ML) methods are flexible. ML as a statistical modeling 
technique identifies hidden and unknown implicit patterns 
and relation between independent and dependent param-
eters of a given experimental database without any explicit 
description. Generalization (applicability to different rocks 
and stress conditions) and accuracy are key factors for rock 
failure criteria assessment.

In the field of rock mechanics, several studies have inves-
tigated the effectiveness of using ML techniques to predict 
the failure strength of intact rocks under polyaxial and tri-
axial stress conditions. Some of these studies include Rafiai 
and Jafari (2011), Rafiai et al. (2013), Kaunda (2014), Zhu 
et al. (2015), Rukhaiyar and Samadhiya (2017a), Moshrefi 
et al. (2018), and Fathipour-Azar (2022b).

Rafiai and Jafari (2011) and Rafiai et al. (2013) devel-
oped artificial neural network (ANN)-based failure criteria 
for different rocks under triaxial and polyaxial conditions. 
These criteria were compared with traditional failure crite-
ria proposed by Bieniawski and Yudhbir, Hoek and Brown, 
modified Weibols and Cook, and Rafiai, and showed bet-
ter efficiency. Similarly, Kaunda (2014) used ANN to study 
the effect of intermediate principal stress on the strength of 
intact rock for five different rock types.

Zhu et  al. (2015) used least squares support vector 
machines (LSSVM) to establish a criterion for rock failure 
and compared it with Mohr–Coulomb and Hoek–Brown 
criteria. Rukhaiyar and Samadhiya (2017a) used ANN to 
predict the polyaxial strength of intact sandstone rock types 
and found it to be more accurate than five conventional pol-
yaxial criteria namely modified Wiebols and Cook, Mogi-
Coulomb, modified Lade, 3D version of Hoek–Brown, and 
modified Mohr–Coulomb criteria for testing dataset.

Moshrefi et al. (2018) compared ANN, SVM, and mul-
tiple regression models to predict the triaxial and polyaxial 
strength of shale rock types. They found that ANN predicted 
strength with minimum root mean squared error compared to 
Drucker-Prager and Mogi-Coulomb failure criteria. Fathip-
our-Azar (2022b) proposed an interpretable multivariate 
adaptive regression splines-based polyaxial rock failure 
strength with R2 = 0.98 and used multiple linear regres-
sion, SVM, random forest, extreme gradient boosting, and 
K-nearest neighbors methods to predict major principal 
stress ( �1 ) at the failure of intact rock material under the 
polyaxial stress condition. In general, using ML techniques 
displayed superior performance accuracy and generalization 
ability in predicting the failure strength of different intact 
rocks subject to polyaxial conditions compared with conven-
tional failure criteria in the form of such as Drucker–Prager, 
modified Weibols and Cook, and Mogi-Coulomb criteria.

To our knowledge, there is not an effort in the literature 
consisting of probabilistic and interpretable tree based-ML 
methods, namely the Gaussian process regression model 
(GP), random tree (RT), and M5P algorithms, to predict fail-
ure strength (major principal stress at failure) in polyaxial 
empirical and computational failure models for rocks. One 
of the advantages of using the GP model is its probabilistic 
nature, which allows the model to define the space of func-
tions that relate inputs to outputs by specifying the mean and 
covariance functions of the process. By doing so, the GP 
provides a more informative and flexible representation of 
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the underlying data distribution than deterministic models, 
and allows for uncertainty quantification in both the predic-
tions and the model parameters. Tree-based models provides 
a more transparent way to predict rock failure strength for 
different rock types. The advantage of tree-based approach 
lies in its interpretability, which enables the investigation 
of how the algorithm uses the selected inputs and help 
in understanding the contribution of each input variable 
to the output, which can be valuable in rock engineering 
applications.

This study explores this gap in the current literature by 
implementing not only with GP, RT, and M5P algorithms 
but also by using a hybrid approach based on boosting addi-
tive regression and these three ML methods as an alternative 
way to the commonly used black box models (e.g., ANN) 
or conventional models to predict failure strength (major 
principal stress) from rock type, minor principal stress, and 
intermediate principal stress data. The advantage of using a 
hybrid approach based on boosting additive regression and 
these three ML methods is that it can combine the strengths 
of different models and improve the accuracy of the pre-
dictions. Boosting additive regression can enhance the per-
formance of the GP and tree-based models by combining 
them in an ensemble method that focuses on the strengths 
of each model. The hybrid approach can also reduce overfit-
ting and increase the generalization of the model, allowing 
it to be applied to a wider range of rock types. The proposed 
approaches also offer the advantage of generalization as it 
can be applied to a wide range of rock types, unlike the con-
ventional approaches that are often designed for each spe-
cific rock type separately. The validation and comparison of 
developed failure models were performed using coefficient 
of determination ( R2 ), root mean square error (RMSE), and 
mean absolute error (MAE) statistical metrics. Moreover, 
a sensitivity analysis was also performed and discussed to 
evaluate the effects of the input parameters on the polyaxial 
rock strength modelling process.

2 � Data Mining Algorithms

Data mining is an approach that employs data-oriented tech-
niques to find unknown and complex patterns and relation-
ships within the data. In this study, ML techniques, namely 
Gaussian process regression model (GP), random tree (RT), 
M5P, and additive regression (AR) models are implemented 
to predict major principal stress of rock at failure. The per-
formances of different models were assessed based on cal-
culating the error indices of the RMSE and MAE. RMSE is 
used to measure the differences between predicted values by 
the models and the actual values. MAE is a quantity used to 
measure how close predictions are to the actual values. R2 is 
also used to evaluate the correlation between the actual and 

predicted values. The three statistical RMSE, MAE, and R2 
formulas that are utilized to compare the performances of 
developed models are as follows:

where tk and yk are target and output of developed models 
for the kth output, respectively. t is the average of targets of 
models and N is the total number of events considered. The 
models that minimized the two error measures beside the 
optimum of R2 is selected as the best ones.

2.1 � Gaussian Process Regression Model

Gaussian process (GP) regression is a nonparametric Bayes-
ian method to regression issues (Rasmussen and Williams 
2006; Wang 2020). Because of the kernel functions, GP 
regression is very efficient in modeling nonlinear data.

Consider a training dataset of D =
{
xi, yi

}n

i=1
 , where 

X ∈ RD∗n represents the input data (design matrix) and 
y ∈ Rn is the corresponding output vector. In this study, rock 
type, minor principal stress, and intermediate principal stress 
are input variables for predicting failure strength (major 
principal stress). The GP regression output is major princi-
pal stress. Therefore, x =

[
rock type, �3, �2

]
 and y = [�1] . In 

GP regression, it is assumed that the output can be expressed 
as follows (Rasmussen and Williams 2006; Ebden 2015):

where � ∼ N(0, �2
n
) ∈ R is the equal noise variance for all 

xi samples.
The GP method considers n observations in 

y =
{
y1,⋯ , yn

}
 vector as a single point instance of a mul-

tivariate Gaussian distribution. This Gaussian distribution 
can also be assumed to have the mean of zeros. The covari-
ance function defines the relationship of one observation to 
another.

A covariance function k(x, x�) describes a relationship 
between observations and is often defined by "exponential 
squares" in GP method to approximate function, which is 
as follows:

(1)RMSE =

�∑N

k=1

�
tk − yk

�2
N

(2)MAE =
1

N

∑N

k=1
||tk − yk

||

(3)R2 = 1 −

∑N

k=1

�
tk − yk

�2
∑N

k=1

�
tk − t

�2 ,

(4)y = f (x) + �,
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where �2
f
 denotes the maximum allowable covariance. It is 

worth noting that k
(
x, x

′) equals to the maximum allowable 
covariance only when x and x′ are so close to each other; 
thus, f (x) is approximately equal to f

(
x
′) . Besides, l indi-

cates the kernel function's length. Furthermore, �
(
x, x

′) is 
the Kronecker delta function, which has the following 
definition:

In terms of the training dataset, final aim of the learn-
ing process is to predict the output value of y ∗ for a new 
input pattern. To accomplish this, three covariance matrices 
should be developed as follows:

The data sample can be represented as a sample of a mul-
tivariate Gaussian distribution based on the Gaussian distri-
bution assumptions, as follows:

where T  is matrix transpose. Since y∗||y is developed from a 
multivariate Gaussian distribution with the mean of K∗K

−1y 
and the variance of K∗∗ − K∗K

−1KT
∗
 , the estimated mean and 

variance of the predicted output y∗ are stated as follows:

Following the determination of kernel function hyperpa-
rameters, Bayesian inference can find model parameters such 
as x and �n . Following training, the GP model can be used 
to predict unknown values based on known input values.

It is important to select a suitable covariance or kernel 
function since it has a direct impact on predictive efficiency. 
In the study, two different (Gaussian or Radial basis ker-
nel and Pearson VII kernel function (PUK)) widely used 
and well-understood kernel functions were selected for GP 
model development and to provide a good baseline for com-
parison. These two kernels have been shown to perform well 
in a variety of applications (Fathipour-Azar 2021a, b; 2022a, 
b, c, d, e).

(5)k
(
x, x�

)
= �2

f
× exp

[
−
(
x − x�

)2
2l2

]
+ �2

n
�
(
x, x�

)
,

(6)�ij = 1 if i = j and �ij = 0 if i ≠ j

(7)

K =

⎡⎢⎢⎢⎣

k
�
x1, x1

�
k
�
x2, x1

� k
�
x1, x2

�
k
�
x2, x2

� ⋯

⋯

k
�
x1, xn

�
k
�
x2, xn

�
⋮

k
�
xn, x1

� ⋮

k
�
xn, x2

� ⋱

⋯

⋮

k
�
xn, xn

�

⎤⎥⎥⎥⎦
K∗ =

�
k
�
x∗, x1

�
k
�
x∗, x2

�
⋯ k

�
x∗, xn

��
K∗∗ = k

�
x∗, x∗

�

(8)
[
y

y∗

]
∼ N

(
0,

[
K KT

∗

K∗ K∗∗

])
,

(9)
E
(
y∗
)
= K∗K

−1y

var
(
y∗
)
= K∗∗ − K∗K

−1KT
∗

where � , � , and � are kernels parameters (also known as 
hyper-parameters). In this study, the data are normalized 
before fitting a GP using the following equation:

where dnorm is the normalized data, di represents the experi-
mental value of value for i th data point, and dmax and dmin 
show the maximum and minimum values of the data, 
respectively.

2.2 � Random Tree (RT) Model

A decision tree constructs classification or regression mod-
els in the framework of a tree structure. RT uses a bagging 
idea to splits a random data set into sub-spaces for construct-
ing a decision tree. Therefore, RT is generally built by a 
stochastic process and assigning the best among the sub-
spaces of randomly selected attributes at that node. Since 
the features are chosen at random, all trees in the group have 
an equal chance of being sampled (Witten and Frank 2005).

2.3 � M5P Model

The M5P tree is a reconstruction of Quinlan's M5 algorithm 
(Quinlan 1992). This technique is based on a binary decision 
tree that assigns a series of linear regression functions at the 
leaf (terminal) node, which helps in estimating continuous 
numerical parameters. This model uses two steps to fit the 
model tree. In the first step, the data are split into subsets and 
form a decision tree. The splitting of decision tree is based 
on treating the standard deviation of class values reaching 
a node. It measures the error at the nodes and evaluates the 
expected reduction in error as a result of testing each param-
eter at the node. The Standard Deviation Reduction (SDR) 
is calculated as follows:

where N is a set of examples that reach the node. Ni is ith 
outcome of subset of examples of potential set, and sd is the 
standard deviation. Due to the splitting process, the standard 
deviation of child node will be less than that of the parent 
node (Quinlan 1992). After evaluating all possible splits, 
M5P tree chooses the one that maximises the error reduc-
tions. This process of splitting the data may overgrow the 

(10)kRBF
(
x, xi

)
= e−�x−x

2
i

(11)

kPUK
�
x, xi

�
=

�
1∕

�
1 +

�
2
√
x − xi

2
√
2(1∕�) − 1∕�

�2
���

,

(12)dnorm =
di − dmin

dmax − dmin
,

(13)SDR = sd(N) −
∑ ||Ni

||
|N| sd

(
Ni

)
,
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tree which may cause over fitting. To overcome this overfit-
ting, the next step, the overgrown tree is pruned and then 
the pruned sub-trees are replaced with linear regression 
functions.

2.4 � Additive Regression (AR)

In order to improve the performance of the above mentioned 
(i.e., GP, RT, and M5P) basic regression base approaches, 
additive regression (AR) as an implementation of gradient 
boosting ensemble learning technique is used (Friedman 
2002). In this algorithm, each iteration applies a new base 
model to the residuals from the previous one. The predic-
tions of each base model are added together to make a final 
estimation.

3 � Dataset for Models

Polyaxial tests dataset for fourteen different rocks including 
Aghajari sandstone; Jahrom Dolomite; Soltanieh Granite; 
Pabdeh Shale; Asmari Limestone; Karaj Trachyte; Karaj 
Andesite; Naqade Amphibolite; Jolfa Marble; Hormoz 
Salt; Mahalat Granodiorite; Shourijeh Siltstone; Shahr-e 
babak Hornfels; Chaldoran Metapelite rocks’ results were 
taken from published literature (Bahrami et al. 2017) are 
used for assessing data-oriented strength criteria. Scatter 

plot of variables with correlation and diagonal frequency 
histograms is presented in Fig. 1. Scatter plots below and on 
the left of the diagonal (lower triangle) show the relation-
ships failure strength (major principal stress), minor princi-
pal stress, intermediate principal stress, and rock type. Val-
ues above and on the right of the diagonal (upper triangle) 
show the coefficient of determination between variables. The 
diagonal graphs show the frequency histograms and density 
plots of the corresponding variable. A total of 480 samples 
were used for the predictive modeling, out of which, 80% 
were randomly selected for the training of models and the 
remainder 20% for testing developed models in estimating 
major principal stress based on minor and intermediate prin-
cipal stresses. The statistical parameters of the training and 
testing datasets are presented in Table 1.

4 � Results

In the present study, data-oriented surrogate models are first 
developed and compared to predict polyaxial rock strength. 
To improve the performance of these basic regression base 
approaches, AR as an implementation of boosting approach 
is used.

Grid search optimization is applied to tune hyperparam-
eters of ML models. Grid search trains a ML model with 
each combination of possible values of hyperparameters and 

Fig. 1   Scatter plots (lower diag-
onal), h istograms (diagonal), 
and coefficient of determina-
tion (upper diagonal) between 
failure strength (major principal 
stress), minor principal stress, 
intermediate principal stress, 
and rock type
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assesses its performance using a predefined measure. For the 
GP regression based on the RBF kernel, the optimum values 
for � and � are determined 0.001 and 3 respectively. The opti-
mal hyper-parameters of the GP model based on the PUK 
kernel are � = 0.001 , � = 0.1 , and � = 4 , which provide bet-
ter performance values. In case of the RT model, 3 randomly 
chosen attribute is determined as optimal parameter. For the 
M5P model, minimum 8 instances at a leaf node are used.

The calculated performance indices ( R2 , RMSE, MAE) 
for developed data-oriented models in the training and test-
ing phases are shown in Fig. 2. Comparison of results pre-
sents that the AR-RT outperforms other developed models 
for the training and testing periods, indicating improved 
performance in terms of the highest R2 (1) and the lowest 
RMSE (0 MPa) and MAE (0 MPa) in the training phase and 
the highest R2 (0.987) and the lowest RMSE (29.771 MPa) 
and MAE (22.517 MPa) in the training phase. According to 
the statistical indices presented in Fig. 2, using AR based on 
boosting enhanced the model’s performance. This improve-
ment is more noticeable in AR-M5P model compared to 
M5P model in the training and testing phases.

The M5P model tree-based polyaxial rock strength regres-
sion tree structure is shown in Fig. 3. As can be observed, 21 
linear models (LMs) or rules have been constructed based 
on conditional statements. In this diagram, boxes signify ter-
minal leaf nodes with labels within, whilst ellipses indicate 
other nodes with a symbol inside alluding to the split feature. 
The splitting rules are indicated on the corresponding paths. 
For each leaf of the tree, more information is presented in 
brackets. For instance, LM 1 contains 26 instances, with a 
4.206% error in that leaf. It is obvious that the accumulation 
of number of instances in each leaf equals 384, the number 
of the training dataset. The LMs for all situations obtained 
by the M5P model are given in Table 2.

Figure 4 presents the variation in predicted values of 
major principal stress using different surrogate modeling 
techniques in comparison with experimental values of major 
principal stress.

Although according to Fig. 2, AR-RT, AR-GP-PUK, GP-
PUK, and RT models demonstrated high performances in 
terms of high accuracy and low error, Figs. 2 and 4 show that 
the AR-RT, RT, and the AR-M5P strength models are closer 
to the experimental value than other models in the testing 
phase in comparison to other evolved models.

Figure  5 presents cumulative distribution functions 
(CDFs) of the observed and predicted major principal stress, 
�1 (MPa) using the models developed for training and testing 
datasets, respectively. In Fig. 5, the CDFs of estimated �1 
from AR-RT, AR-GP-PUK, GP-PUK, and RT models are 
the same as of measured �1 . This agreement suggests that 
the information contained in the estimated �1 using these 
developed models is consistent with that obtained from 
the measured �1 . Although the CDFs of the estimated �1 
obtained from other developed models are also close to that 
of measured �1 and follows the pattern and trend of the CDF 
of measured �1 , small errors and deviations could be seen 
between these models and measured �1 . This further con-
firms the statistical results of the estimated �1 (Figs. 2 and 
4), indicating that RT, hybrid AR-RT, and hybrid AR-M5P 
models provide better estimates than other models.

The cumulative distribution function (CDF) versus rela-
tive error was provided in Fig. 6 for all the developed ML-
based failure criteria. According to Fig. 6a, AR-RT, AR-
GP-PUK, and GP-PUK-based failure criteria have 100% 
probability that error in prediction will be 0 in the train-
ing data, respectively. These results are in consistency with 
Fig. 5a. In the testing phase (Fig. 5b), the probability will be 
more than 70% of predicting error within 10% for AR-RT, 
RT, AR-M5P, and AR-GP-PUK-based failure criterion. 
Therefore, AR-RT based failure criterion demonstrates a 
higher degree of confidence and accordingly is effective for 
strength prediction.

Overall error prediction distribution of developed models in 
training and testing phase is shown in the violin plot in Fig. 7. 
The negative and positive prediction error values indicate 
the developed models’ over- and under-estimation behavior, 
respectively. In this figure, the prediction error of AR-RT is 
lower than the rest models in the training and testing phases. 
Approximately similar prediction errors could be seen for RT 
in the training and testing phases. According to this figure, AR-
GP-PUK has 0 error in training phase; however, the noticeable 
error is seen in the testing phase.

A Taylor diagram (Taylor 2001) is a graphical represen-
tation of comparing various model outcomes to measured 
data. The standard deviation, RMSE, and R between different 
models and measurements are depicted in this diagram. This 
diagram is plotted for major principal stress in Fig. 8. The 

Table 1   Statistics analysis of the training and testing datasets

Rock type �
3
(MPa) �

2
(MPa) �

1
(MPa)

Training data Min 1 5.000 5.000 31.000
(n = 384) Max 14 140.000 360.000 1155.000

Median 6.000 40.000 100.000 397.000
Mean 6.490 46.862 117.076 427.849
Std.dev 3.993 30.141 78.674 252.667
Coef.var 0.615 0.643 0.672 0.591

Testing data Min 1 5.000 10.000 64.000
(n = 96) Max 14 140.000 360.000 1089.000

Median 6.000 40.000 100.000 341.000
Mean 6.604 43.438 112.344 405.073
Std.dev 4.043 31.383 77.402 250.270
Coef.var 0.612 0.722 0.689 0.618
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location of each model in the diagram indicates how closely 
the predicted pattern matches with measurements. According 
to these figures, due to the distance of developed models points 
to the measured point, developed AR-RT model is generally 
promising method in estimating shear strength properties.

The efficacy of the proposed data-oriented models was 
also compared with each other and against several well-
known failure criteria over the literature including the 
Mohr–Coulomb (MC); Hoek–Brown (HB); Modified Lade 
(ML); Drucker-Prager (DP); Linear Mogi 1971a, b; Modi-
fied Wiebols and Cook (MWC); 3D Hoek–Brown (3D HB); 
Bieniawski-Yudhbir (BY); Hoek–Brown-Matsuoka-Nakai 
(HBMN); Modified Mohr–Coulomb (MMC) in uniaxial 
compressive strength (UCS) prediction of fourteen rocks as 
depicted in Fig. 9. Data-oriented based strength models are 
generally robust modeling techniques that also predict UCS 
in consistency with those of well-established criteria from 
best fit to experimental data. As a result, ML approaches 

are able to capture the nonlinearity of the polyaxial strength 
response of rock.

5 � Sensitivity Analysis

Sensitivity analysis was performed to identify the most 
effective input parameter for predicting polyaxial rock 
strength using the established models. By eliminating one 
input parameter in each case and determining its effect on 
polyaxial rock strength using R2 and RMSE performance 
metrics. Figure 10 shows that the prediction of polyaxial 
rock strength is mainly influenced by �3 and rock type, with 
�2 having the least significant impact on the strength.

Fig. 2   Coefficient of determination, root mean square error (RMSE), and mean absolute error (MAE) for developed data-oriented models for the 
training (blue) and test (orange) data
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6 � Discussion

The accurate determination of rock strength subject to vari-
ous loading conditions and given circumstances is pivotal 
for a wide range of geoengineering applications (Zhang et al. 
2010; Haimson and Bobet 2012; Lee et al. 2012; Burghardt 
2018; Wang and Liu 2021; Bao and Burghardt 2022), and 
various empirical, mathematical, and theoretical strength 
criteria have been proposed for strength prediction in geo-
engineering practice. However, finding the most appropriate 
criterion for a given situation remains challenging (Ulusay 
and Hudson 2012), and failure models based on experimen-
tal results of one specific type of geomaterial are not appli-
cable to other types of geomaterials. In geoengineering prac-
tice, all failure criteria need to be modified by trial and error 
(Wang and Liu 2021). In addition, defining the real behavior 
of geomaterials under different stress circumstances is dif-
ficult due to the complexity of the materials. Conventional 
failure models require assumptions, and the number of mate-
rial parameters that need to be determined increases as the 
complexity of models increases, which restricts their practi-
cal application in engineering (Gao 2018).

ML-based failure models have emerged as a promising 
approach to address these challenges. ML-based models 

can process large amounts of data and learn complex 
model functions from input and output training experi-
mental datasets without any assumption and physical back-
ground. This allows abstract information or theoretically 
unknown behaviour to be represented. Moreover, the ML 
models can be improved by retraining them with new data, 
and the established models and learned information can be 
stored (Fathipour-Azar and Torabi 2014; Fathipour-Azar 
et al. 2017, 2020; Gao 2018; Zhang et al. 2020; Fathipour-
Azar 2021a, b; 2022a, b, c, d, e, f; 2023a, b).

In this study, the efficiency of probabilistic (i.e., GP) 
and tree-based (i.e., RT and M5P) ML algorithms is dem-
onstrated first in predicting failure strength of rock under 
polyaxial conditions. The GP is a nonparametric kernel-
based Bayesian method that computes posterior predictive 
distributions for new test inputs and allows the quantifica-
tion of uncertainty in model estimations. While Bayesian 
analysis is a general framework for statistical inference 
that combines prior knowledge with new data to estimate 
parameters and quantify uncertainties (e.g., Burghardt 
2018; Bao and Burghardt 2022), GP is a specific method 
for modeling functions as Gaussian processes. Nonlin-
ear regression can also be performed using regression 
trees. The RT and M5P algorithms use regression trees 

Table 2   LMs for the established 
polyaxial rock strength 
regression tree

Model Major principal stress

LM 1 �
1
 = 5.4162 * case + 2.6245 * �

3
 + 0.7192 * �

2
 + 116.7938

LM 2 �
1
 = − 16.2449 * case + 2.6745 * �

3
 + 1.2729 * �

2
 + 

258.9396
LM 3 �

1
 = − 23.9832 * case + 1.1703 * �

3
 + 1.1819 * �

2
 + 287.968

LM 4 �
1
 = − 0.2735 * case + 0.3738 * �

3
 + 1.2534 * �

2
 + 258.6236

LM 5 �
1
 = − 1.2549 * case + 0.3738 * �

3
 + 1.2102 * �

2
 + 262.9619

LM 6 �
1
 = − 5.1402 * case + 0.3738 * �

3
 + 0.9393 * �

2
 + 321.8361

LM 7 �
1
 = − 12.441 * case + 1.3992 * �

3
 + 1.6735 * �

2
 + 161.1316

LM 8 �
1
 = − 9.9874 * case + 1.5694 * �

3
 + 0.9285 * �

2
 + 138.7323

LM 9 �
1
 = − 14.7647 * case + 4.9306 * �

3
 + 0.8298 * �

2
 + 

259.5712
LM 10 �

1
 = 132.8357 * case + 1.6231 * �

3
 + 0.7704 * �

2
 + 38.574

LM 11 �
1
 = 160.3732 * case + 1.6231 * �

3
 + 0.7917 * �

2
 + 45.7097

LM 12 �
1
 = 96.1821 * case + 2.5663 * �

3
 + 0.6832 * �

2
 + 180.3261

LM 13 �
1
 = 106.3449 * case + 3.8256 * �

3
 + 0.7151 * �

2
 + 152.2977

LM 14 �
1
 = 9.9591 * case + 1.6889 * �

3
 + 1.2055 * �

2
 + 129.5728

LM 15 �
1
 = 6.9618 * case + 1.6889 * �

3
 + 0.8266 * �

2
 + 215.119

LM 16 �
1
 = − 2.0302 * case + 3.4111 * �

3
 + 1.2162 * �

2
 + 108.9094

LM 17 �
1
 = − 2.0302 * case + 1.7352 * �

3
 + 0.6079 * �

2
 + 291.6083

LM 18 �
1
 = − 10.1946 * case + 1.7352 * �

3
 + 0.6079 * �

2
 + 

402.9084
LM 19 �

1
 = − 79.7185 * case + 2.6322 * �

3
 + 0.5984 * �

2
 + 680.203

LM 20 �
1
 = − 26.4672 * case + 3.8306 * �

3
 + 0.6866 * �

2
 + 

447.2554
LM 21 �

1
 = − 18.4589 * case + 3.3536 * �

3
 + 0.4127 * �

2
 + 

401.5477
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Fig. 4   Experimental and pre-
dicted values of major principal 
stress and its corresponding 
scatter plots during the testing 
phase of the applied intelligence 
predictive models. a GP-RBF, 
b GP-PUK, c RT, d M5P, e 
AR-GP-RBF, f AR-GP-PUK, g 
AR-RT, and h AR-M5P models

(c)  RT (d)  M5P

(e)  AR-GP-RBF (f)  AR-GP-PUK

(g)  AR-RT (h)  AR-M5P

(a)  GP-RBF (b)  GP-PUK
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to partition the space into smaller parts and apply simple 
models to each of them. While the M5P regression tree 
has a lower predictive performance than that of the other 
ML algorithms in this study (Fig. 2), RT and M5P models 
provide an intuitive visualization and explicit description 
of how inputs affect the output, which is beneficial in engi-
neering practices (Fig. 3 and Table 2).

Finally, boosting-based AR is used to enhance efficiency 
of the GP, RT, and M5P algorithms in terms of high accu-
racy and low error. According to the findings of this study, 
the prediction strength and performance of individual 

algorithms could be enhanced by hybrid algorithms for this 
dataset (Figs. 2, 4, 5, 6, 7 and 8). This is due to the adaptabil-
ity and structural compatibility of AR with different models. 
This improvement is more noticeable in M5P model results 
with the results of hybrid AR-M5P model. The study shows 
that the accuracy and performance of the ML models are 
dependent on the type of algorithm used, and hybrid models 
that combine multiple algorithms can improve the predictive 
accuracy.

Comparison with well-known failure criteria over the 
literature showed that the developed ML-based strength 

(a) Training phase (b) Testing phase

Fig. 5   Cumulative distribution function of the observed and predicted major principal stress, �
1
 (MPa) using the models developed for a training 

and b testing datasets

(a) Training phase (b) Testing phase

Fig. 6   Cumulative distribution function of ML-based polyaxial rock failure criteria; a training and b testing phases
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models were able to predict UCS in consistency with those 
of well-established criteria from best fit to experimental 
data. This highlights the effectiveness of data-oriented 
modeling techniques in capturing the nonlinearity of the 
polyaxial strength response of rock.

The sensitivity analysis revealed that predicting polyaxial 
rock strength is primarily influenced by �3 and rock type, fol-
lowed by �2 with a less significant impact. This indicates that 
the microstructure and properties of the rock are important 
factors in determining its strength under polyaxial loading 
conditions.

Properties of rock vary with rock type. In this context, 
a wide variety of data using 14 rocks from different types 
of rocks including igneous, metamorphic, and sedimentary 

rocks are employed as database of simulations, to dem-
onstrate the efficiency of the ML algorithms. �3 and �2 
ranges from 5 to 140 MPa and 5 to 360 MPa, respectively 
(Table 1 and Fig. 1). The findings of this study contribute 
to the field of rock mechanics by providing insights into the 
factors that influence polyaxial rock strength and demon-
strating the effectiveness and potential of these individual 
or hybrid ML-based techniques in improving the accuracy 
and reliability of rock strength predictions, which can have 
important applications in the design and construction of rock 
engineering structures. The integration of various regres-
sion models through boosting can enhance the accuracy and 
robustness of predictions while preventing overfitting. Addi-
tionally, Bayesian analysis can be applied to a wider range of 

(a) Training phase (b) Testing phase

Fig. 7   Violin plot for error prediction using the models developed for a training and b testing datasets

(a) Training phase (b) Testing phase

Fig. 8   Taylor diagram indicating models’ performances in a training and b testing phases
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problems beyond function modeling (e.g., Burghardt 2018; 
Bao and Burghardt 2022). These methods can aid in making 
informed-site decisions in a variety of subsurface engineer-
ing applications.

Further research is needed to investigate the generaliza-
tion of the developed models to other rock types and testing 
conditions and to evaluate their effectiveness in practical 
applications. Moreover, a larger dataset with more explana-
tory data variables could be analyzed to improve the model’s 
precision and reliability in future research.

7 � Conclusion

Data-oriented models for predicting polyaxial rock 
strength can be valuable methods in actual projects. In 
this study,  hybrid additive regression combined with 

three ML algorithms is utilized to estimate polyaxial rock 
strength and capture nonlinear patterns. The ML algo-
rithms employed include Gaussian process regression (GP) 
with two kernels, random tree (RT), and M5P methods. 
Three parameters (rock type, minor, intermediate, and 
major principal stress) are used from the 480 polyaxial 
rock experiments from published research to construct the 
data-oriented surrogate models. The AR-RT performed 
superior to the other individual and hybrid models in the 
training and testing datasets. The efficiency of the hybrid 
models to individual developed models is demonstrated in 
terms of high accuracy and low error. The hybrid AR-RT 
model with R2 = 1, RMSE = 0 MPa, and MAE = 0 MPa in 
training period and R2 = 0.987, RMSE = 29.771 MPa, and 
MAE = 22.517 MPa in testing period could be regarded to 
be excellent polyaxial rock strength surrogate model. The 

Fig. 9   Comparison of developed data-oriented models and some 
well-known criteria. Note: Mohr–Coulomb (MC); Hoek–Brown 
(HB); Modified Lade (ML); Drucker-Prager (DP); Linear Mogi 

1971a, b; Modified Wiebols and Cook (MWC); 3D Hoek–Brown 
(3D HB); Bieniawski-Yudhbir (BY); Hoek–Brown-Matsuoka-Nakai 
(HBMN); Modified Mohr–Coulomb (MMC)

Fig. 10   Sensitivity analysis to determine the impact of each variable on the polyaxial rock strength
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results of the sensitivity analysis indicate that �3 and rock 
type are the most important parameters for measuring the 
polyaxial strength failure of the rock.

Data availabilty  Enquiries about data availability should be directed 
to the authors. The datasets used during the current study areavailable 
at https://​doi.​org/​10.​1016/j.​petrol.​2017.​09.​065.
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