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Highlights

•	 Mode I fracture toughness is highly imperative in various rock mechanics applications.
•	 Machine learning models are proposed for accurate prediction of mode I fracture toughness.
•	 The reliability assessment of the empirical equations and proposed models enables the selection of the most suitable 

among them.
•	 The reliability analysis revealed that some of the models assessed are unsuitable for fracture toughness prediction.
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1  Introduction

Accurate measurement of mode I fracture toughness is of 
great importance in rock mechanics applications such as 
slope stability analysis, tunnel excavation and rock fragmen-
tation including blasting and hydraulic fracturing (Whittaker 
et al. 1992; Feng et al. 2017; Roy et al. 2018). According to 
the literature, mode I fracture toughness could be considered 
as a characterization of geomaterials, rock fragmentation 
index and the material property for stability analysis and 
modelling (Franklin et al. 1988; Afrasiabian and Eftekhari 
2022). To measure the mode I fracture toughness, various 
laboratory procedures including the chevron bend and shot 
rod (ISRM 1988), Brazilian disc method (Guo et al. 1993; 
Atkinson et al. 1982; Xu and Fowell 1994) and semicircular 
bend method (Kuruppu et al. 2014; Wang et al. 2021) have 

been developed. Other advanced experimental methods such 
as cracked chevron-notched Brazilian disc (CCNBD), hol-
low centre cracked disc (HCCD), straight notch disk bend 
(SNDB), chevron notch semi-circular bend (CNSCB) and 
single edge crack round bar bending (SECRBB) among oth-
ers have been used to measure the rock fracture toughness in 
different modes (Chang et al. 2002; Amrollahi et al. 2011; 
Pakdaman et al. 2019). However, the laboratory experiment 
for KIC determination is generally too tedious and time 
consuming coupled with the requirement of high level of 
expertise as compared to other mechanical properties such as 
compressive and tensile strengths (Zhixi et al. 1997; Kahra-
man and Altindag 2004; Ke et al. 2008).

Apart from the laboratory means of determining KIC, 
other methods like conventional numerical, analytical and 
empirical methods have been used to predict the KIC (Chen 
et al. 2001; Eftekhari et al. 2015a,b; 2017). The analyti-
cal and numerical methods are said to be one-to-one map-
ping models depicting that detailed geometric and physical 
mechanisms are required which make them rigorous, tedi-
ous, computationally expensive and requiring some assump-
tions (Jing 2003; Sakellariou and Ferentinou 2005; Lawal 
and Kwon 2021). Their results also diverge from the experi-
mental results on some occasions, as their veracity depends 
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on how good the boundary assumptions are (Lawal and 
Kwon 2022). Although the laboratory experiment if con-
ducted properly remains the most reliable or viable means 
of KIC determination, the quick estimation of KIC may be 
needed during the routine design of mines and also many 
laboratories that are void of the KIC equipment may also 
require the estimation of KIC for the design purpose. As a 
result, researchers have developed some empirical models 
for the estimations of KIC (Chang et al. 2002; Zhang 2002; 
Zhixi et al. 1997, etc.). The models are sometimes the cor-
relation between the KIC and physical or mechanical proper-
ties, while those that combined different properties of rocks 
are also available. However, the accuracy of the empirical 
equations is usually low. Machine learning (ML) models 
have also been used for accurate prediction of KIC (Roy et al. 
2018; Afrasiabian and Eftekhari 2022). The major drawback 
of the ML models is the unavailability of the tractable math-
ematical form that can be easily implemented (Afrasiabian 
and Eftekhari 2022). The recently proposed ML model by 
Afrasiabian and Eftekhari (2022) is in the mathematical 
form, but the performance of their model is low.

Despite the availability of different advanced methods for 
the KIC predictions, field engineers seem to prefer empiri-
cal equations to the complex methods without minding the 
accuracy. Although, some empirical equations have shown 
a very high R2 value that is greater than 90%, most impor-
tantly those that were based on the acoustic rock properties 
and density. Hence, it will be important to assess the reli-
ability of the existing empirical equations to assist in quick 
selection of the most suitable one among the scattered equa-
tions, as the reliability of the scattered empirical equations 
for KIC prediction is yet to be evaluated by any researcher. 
Therefore, we assess the reliability of the existing empirical 
models, the proposed MARS- and ANN-based models in 
this study using the experimental database compiled from 
previous studies. This will serve as a guide to the users of 
the scattered equations for KIC predictions in the literature 
and therefore the proposed study is novel and useful in rock 
mechanics applications.

2 � Methodology

2.1 � Data Compilation and Explanation

The adopted datasets are compiled from scattered experi-
mental datasets in the literature. The adopted datasets com-
prised the non-destructive rock properties such as acoustic 
rock properties and rock density together with the KIC. The 
datasets are about forty-three (43) in total as presented in 
Table 1. The P-wave velocity (VP), S-wave velocity (VS) and 
rock density (ρ) are the model-independent variables, while 
KIC is the dependent variable. The correlations between 

these datasets are presented in Fig. 1. The model predictors’ 
correlations with KIC are relatively good based on the con-
fidence ellipses set at 95% confidence interval. This is also 
supported by coefficient of determinations (R2) shown in 
Fig. 1. The correlation between rock density and KIC seems 
to be the weakest as revealed by the big confidence ellipse 
and low R2 value. The correlation between VS and VP is the 
highest, as the size of the confidence ellipse is narrower. 
The bigger the confidence ellipse, the weaker is the correla-
tion. These geomaterial properties, that is, VP, VS and ρ are 
used as the model parameters, as the procedures required in 
determining them are not cumbersome and not destructive.

2.2 � Literature Equations

In this study, some of the available empirical equations for 
the prediction of KIC are extracted from the literature. About 
eighteen (18) equations which considered single independ-
ent variables were obtained, while three multi-independent 
variable equations were also obtained from different litera-
ture (Table 2). However, out of the 18 empirical equations 
and three multi-parameters equations, only about nine (9) 
equations which utilized single parameter were subjected 
to reliability evaluation alongside with the newly proposed 
ML-based models in this study. The reason for excluding 
some of the models in Table 2 is on the bases of the param-
eters used in developing those equations, which are not con-
sidered in some of the obtained dataset for this study. The 
excluded equations comprised at least one destructive rock 
property. The exclusion is imperative to enhance fair com-
parison/evaluation. The models based on non-destructive 
properties also revealed good performance and are more 
realistic in the sense that they can be measured alongside 
with KIC on a single core sample unlike the destructive rock 
properties such as UCS and σt, which require separate rock 
core sample preparation for their determination. This implies 
that more samples will be needed, which is also costly and 
time consuming to prepare separate core samples for KIC 
and other destructive property predictions. There could be 
a slight disparity in the core samples characteristic even if 
obtained from the same rock mass. Hence, the selected non-
destructive properties, apart from the fact that they are not 
difficult to measure, are also more realistic, because the same 
sample used in determining them is also used for the KIC test 
(which is also a destructive rock property).

2.3 � Assessments of Equations

The assessment of the obtained equations in the literature and 
the proposed models in this study was performed using the 
collated data presented in Table 1. To compare the predic-
tions of the assessed models and the measured data points, 
the root mean square error (RMSE), mean absolute error 
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(MAE), coefficient of determination (R2), and p value from 
Mann–Whitney test were adopted. Thereafter, the most 
suitable model is selected. The adopted approach in assess-
ing the most reliable model in this study is similar to that of 

Mohammed et al. (2019). They selected a reliable model for 
UCS prediction in their study. After the selection of a suitable 
model in this study, the selected model(s) is(are) further cor-
related with the measured value.

Table 1   Adopted database for 
the reliability assessment

SN. References KIC (MPa.m0.5) VP (m/s) VS (m/s) ρ (g/cm3)

1 Zhixi et al. (1997) 0.25 1806.2 1443.7 2.318
2 0.27 1869.2 1351.4 2.200
3 0.35 1744.7 1385.1 2.266
4 0.51 2526.9 1702.9 2.568
5 0.45 2054.1 1666.7 2.468
6 0.65 4601.2 2654.9 2.621
7 0.47 2500 1666.7 2.175
8 0.71 2718.1 1947.1 2.368
9 0.75 3142.9 2135.9 2.53
10 0.56 3083.3 1953.1 2.509
11 0.55 4258.9 2453.1 2.622
12 0.8 2948.7 2090.9 2.567
13 0.77 2804.9 1982.8 2.487
14 0.75 2941.2 2127.7 2.459
15 0.63 4163 2455.1 2.653
16 0.72 2825 2260 2.435
17 1.1 4125 2690.2 2.744
18 0.63 3609.4 2357.1 2.526
19 0.6 2620.2 1919 2.535
20 0.51 3288.5 2758.1 2.588
21 0.6 3850.2 2315.5 2.603
22 0.54 3680.3 2100.2 2.597
23 0.36 3120 1700 2.114
24 0.3 1780 2600 2.212
25 1.1 2860 2300 2.579
26 0.78 3410 2010 2.515
27 2 5000 3200 2.5
28 1.2 4000 2900 2.5
29 3.5 5920 3760 2.551
30 3.14 5190 3780 2.3
31 3.19 5980 3800 2.9
32 Muñoz-Ibáñez et al. (2020) 0.4 2634 1818 2.2
33 1.46 3686 2563 2.5
34 1.34 4100 2562 2.6
35 0.12 2920 1510 2.1
36 Chang et al. (2002) 0.73215 3104.453 1883.721 2.56106
37 1.06506 3402.055 1978.056 2.69006
38 1.34793 3731.103 1852.276 2.72131
39 1.00486 4388.074 2510.371 2.62154
40 2.03479 4936.112 2478.926 2.68101
41 1.42916 5624.529 2948.352 2.75054
42 1.79254 6188.289 3042.686 2.84937
43 2.26688 6360.112 3042.686 2.85848
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2.4 � Model Development and Statistical 
Examinations

2.4.1 � MARS

Multivariate adaptive regression spline  (MARS) pro-
posed by Friedman (1991) is a non-parametric regression 
method that enables the capturing of the nonlinear rela-
tionships between the data by assessing the knots in the 
manner similar to the step functions. MARS builds the 
model using the sum of the weighted basis functions. The 
basis function can be of three forms: the constant which 

is always a single term, a hinge function and product of 
two or more hinge functions. The hinge function is of the 
form max(0,x-c) or max(0,c-x) (Lawal et al. 2021) and it 
is very paramount as it is the part that captures the non-
linearity in the data. To build the MARS model, there 
are two stages, the forward and backward stages. Many 
candidate basis functions are generated in pairs in the for-
ward stage. Each of the generated pair of the functions is 
added if it minimizes the overall error of the model. The 
required number of functions that the model generate can 
be controlled with hyperparameters. In the backward stage, 
the generated basis functions are pruned and only those 

Fig. 1   The scattered correlation plots of the datasets
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that add to the performance of the model are allowed to 
remain while others are deleted. The deletion is achieved 
with the generalization cross-validation (GCV) score. The 
key advantage of the MARS model over other machine 
learning approaches is the ability to present its results in 
the form of simple equation. Apart from this, it can be 
developed with limited data sets just like the linear regres-
sion, which the MARS model leveraged on to capture the 
nonlinearity in the data. The proposed MARS model was 
built in the MATLAB with the rock non-destructive prop-
erties as the input, while the KIC was the only targeted 
output. The number of bases function was set to 7 at the 
forward phase, but the number of bases functions of the 
final model was pruned to 5 at the backward phase (Fig. 2). 
The obtained MARS using the piecewise-linear model is 
presented in Eq. (23). 

where 

(23)
MARS

K
IC
=0.93712 + 4.7523BF1 − 1.3373BF2

− 94.7414BF3 + 12.7223BF4,

BF1 = max
(

0,Vn
S
− 0.49481

)

,

BF2 = max
(

0, 0.49481 − Vn
S

)

,

BF3 = max
(

0, 0.51573 − Vn
P

)

,

BF4 = max(0, �n − 0.58375).

Table 2   Obtained literature equations

Eq. no. Material Equations R2 References

1 Sandstone K
IC

= 0.000361V
P
− 0.332 0.92 Zhixi et al. (1997)

2 Sandstone K
IC

= 0.0006147V
s
− 0.5517 0.90 Zhixi et al. (1997)

3 Shale K
IC

= 5.4074 × 10
−5
V
P
+ 0.3876 0.56 Zhixi et al. (1997)

4 Shale K
IC

= 0.0001021V
s
+ 0.3490 0.64 Zhixi et al. (1997)

5 Granite and marble K
IC

= 3.5 × 10
−4
V
P
− 0.18 0.64 Chang et al. (2002)

6 Granite and marble K
IC

= 7.1 × 10
−4
V
S
− 0.29 0.44 Chang et al. (2002)

7 Different rock types K
IC

= 0.45V
P
− 0.58 0.55 Roy et al. (2017)

8 Different rock types K
IC

= 0.9V
S
− 1.06 0.6 Roy et al. (2017)

9 Different rock types K
IC

= 3.21� − 6.95 0.91 Brown and Reddish (1997)
10 Different rock types K

IC
= 0.0037e0.0022� 0.54 Roy et al. (2017)

11 Granite and marble K
IC

= 4.28 × 10
−3
�
c
+ 1.05 0.55 Chang et al. (2002)

12 Granite and marble K
IC

= 6.23 × 10
−3
E + 1.23 0.21 Chang et al. (2002)

13 Granite and marble K
IC

= 2.45SG − 5.19 0.51 Chang et al. (2002)
14 Granite and marble K

IC
= −0.5� + 1.7 0.60 Chang et al. (2002)

15 Different rock types
K
IC

=
(

�
t

6.88

)1∕0.62 0.94 Zhang (2002)

16 Different rock types K
IC

= �
t
+ 2.35

/

9.35 0.62 Whittaker et al. (1992)

17 Different rock types
K
IC

=
(

�
t

8.88

)1∕0.62 0.94 Zhang et al. (1998)

18 Different rock types K
IC

= 0.11�
t
+ 0.23 0.62 Roy et al. (2017)

19 Different rock types K
IC

= 0.024𝜎
c
− 0.48(𝜎

c
< 145MPa)

K
IC

= 0.01𝜎
c
− 0.2(𝜎

c
> 145MPa)

0.69
0.65

Roy et al. (2017)

20 Different rock types K
IC

= 0.09�
t
+ 0.15V

P
+ 0.13V

S
− 0.49 0.83 Roy et al. (2018)

21 Different rock types K
IC

= 0.297 + 0.003�
c
+ 0.023�

t
+ 0.008E 0.74 Afrasiabian and Eftekhari (2022)

22 Different rock types G1 =
(

sin(0.33)∕�
c
× E

)

ln(�
t
× E − 18.8)

G2 = −3.99 − atan[1.28 − �
t
− sin

(

�
t

)

]

G3 =
1

ln(44.37sin(E)+�c−13.99)−8.3

G4 = (sin(E) − E)
(

−6.27 − �
t

)

− (7.59E × cos(E))

K
IC

= G1 − G2 − G3 − G4

0.83 Afrasiabian and Eftekhari (2022)
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2.5 � Artificial Neural Network

ANN can arguably be said to be the most adopted machine 
learning method. It has been used to solve a wide range of 
problems across all the fields of human endeavour. The ANN 
model is adopted in this study, as it has not been widely used 
in predicting the KIC and none of the existing study that uti-
lizes ANN for KIC makes available the implementable code 
for the practical implementation of the ANN model. The 
proposed ANN in this study was developed using the gath-
ered data presented in Table 1. The dataset is enough for the 
development of ANN model, as several ANN models have 
been developed in the past using 27, 30, 34 and 38 datasets 
(Dehghan et al. 2010; Ebrahimi et al. 2015; Akinwekomi 
and Lawal 2021; Aladejare et al. 2022) that are below the 
number of datasets used in this study. The adopted datasets 
are pre-processed through normalization to ensure data uni-
formity and avoid overfitting. The ANN model was imple-
mented in the MATLAB using a self-iterated approach. The 
number of neurons in the input layers are three, which are 
VP, VS and density, while the number of neurons in the out-
put layer is one, which is KIC. The number of neurons in the 
hidden layer was varied between two and ten and the results 
obtained for the training and testing stages with the overall 
performance are presented in Table 3. The network with 
nine neurons in the hidden layer outperformed the others 
and therefore was selected as the optimum network (Fig. 3). 
The weights and biases extracted from the selected network 
are transformed into the implementable MATLAB code as 
presented in Appendix A for easy KIC prediction. 

2.6 � Statistical Analyses and Hypotheses Test

The values of KIC were predicted for the empirical models 
developed based on non-destructive rock properties using 
the mined datasets from the literature (Table 1). Afterwards, 

the RSME, MAE and R2 in Eqs. (24–26) were computed 
for the predicted and measured data points. Thereafter, the 
normality test was conducted on the measured and predicted 
KIC using the MiniTab software. Based on the outcome of 
the normality test, the statistical test was selected. For the 
non-normal datasets, the p value of each empirical equation 
was considered using non-parametric Mann–Whitney test. 
The procedures adopted for the statistical test is as suggested 
by Mohammed et al. (2019) and presented in Fig. 4.

(24)RMSE =

�

∑n

i=1

�

Ymeas − Ypred
�2

n
,

(25)MAE =

∑n

i=1
abs

�

Ymeas − Ypred
�

n
,

Fig. 2   The generalization cross-validation (GCV) score with number 
of basis functions

Table 3   Different simulated ANN structures

*RMSE and mean error (ME) are obtained from MATLAB simula-
tions with normalized overall datasets

Training Testing Overall RMSE* ME

3-2-1 0.93462 0.895565 0.94174 0.15834 0.00857
3-3-1 0.94372 0.922575 0.96649 0.12173 − 0.00765
3-4-1 0.98419 0.971625 0.98079 0.09201 0.00071
3-5-1 0.9858 0.991595 0.98695 0.07596 0.00685
3-6-1 0.99817 0.94532 0.99305 0.05590 − 0.00522
3-7-1 0.99692 0.999305 0.99751 0.03318 0.00116
3-8-1 0.99728 0.99412 0.99557 0.04452 0.00425
3-9-1 0.99892 0.99896 0.99849 0.02584 − 0.00094
3-10-1 0.9978 0.99851 0.99824 0.02790 0.00088

Fig. 3   Selected ANN structure with the performances
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where Ymeas and Ypred are the measured and predicted KIC, 
while Ymeas is the mean of the measured KIC and n is the 
number of data points.

A two-tailed test with 95% confident interval was used 
with test hypothesis assumptions, null hypotheses and 
research hypotheses. For the null hypotheses, Ho meas-
ured and predicted data are identical, while for the research 
hypotheses, Ha measured and predicted data are not identi-
cal. During the statistical analysis, Ho was accepted for p 

(26)R2 = 1 −

∑n

i=1

�

Ymeas − Ypred
�2

∑n

i=1

�

Ymeas − Ymeas

�2
,

value >  = 0.05, and Ho was rejected for p value < 0.05 for 
all tests.

3 � Results and Discussion

The reliability of empirical equations and the proposed 
models was assessed using the adopted database of acous-
tic properties, rock density and KIC to compute the RMSE, 
MAE and R2 between the measured and predicted values as 
presented in Table 4. From Table 4, the minimum RMSE 
and MAE are 0.0437 (for ANN) and 0.0259 (for ANN), 

Fig. 4   Framework of the adopted methodology (after Mohammed et al. 2019)

Table 4   Evaluation criteria for KIC compared to measured data

Models Evaluation criteria

R2 RMSE MAE

ANN 0.997 0.043661 0.0259
MARS 0.884 0.272891 0.186879
Equation (1) 0.6516 0.511615 0.332054
Equation (2) 0.7114 0.536541 0.341465
Equation (3) 0.6516 0.858844 0.517969
Equation (4) 0.7114 0.857621 0.520884
Equation (5) 0.6516 0.519735 0.371721
Equation (6) 0.7114 0.592378 0.522204
Equation (7) 0.6516 0.478385 0.328601
Equation (8) 0.7114 0.442142 0.315287
Equation (9) 0.2233 0.748169 0.553687

Table 5   Mann–Whitney test for the KIC modes compared to meas-
ured data

Models Normality test Normality 
test for error 
distribution

p value from 
Mann–Whitney 
testMeasured Predicted

ANN  < 0.005  < 0.005  < 0.005 0.972
MARS  < 0.005  < 0.005 0.007 0.931
Equation (1)  < 0.005 0.064  < 0.005 0.262
Equation (2)  < 0.005 0.143  < 0.005 0.776
Equation (3)  < 0.005 0.064  < 0.005 0.006
Equation (4)  < 0.005 0.143  < 0.005 0.008
Equation (5)  < 0.005 0.064  < 0.005 0.029
Equation (6)  < 0.005 0.143  < 0.005 0
Equation (7)  < 0.005 0.064  < 0.005 0.204
Equation (8)  < 0.005 0.143 0.011 0.294
Equation (9)  < 0.005 0.035  < 0.005 0.075



6164	 A. I. Lawal, S. Kwon 

1 3

respectively, while their respective maximum values are 
0.8588 (Eq. (3)) and 0.5537 (Eq. (9)), respectively. The 
maximum R2 value was 0.997, obtained for the ANN model, 
while the minimum R2 is 0.2233 obtained for Eq. (9).

For the accuracy assessment of the models, RMSE is 
more suitable than MAE when the distribution of the error 
(that is the difference between the measured and predicted 
values) is normally distributed (Chai and Draxler 2014). 
However, MAE can as well be used where two models have 
similar RMSE values and different MAE values. In this 
study, all the error distributions, as presented in Table 5, 
are not normally distributed, as their p values are less than 
0.05. Therefore, RMSE will be misleading in assessing the 
reliability of the models and hence not considered (Chai and 

Draxler 2014). Also, MAE is not also considered in evaluat-
ing the suitability of the models because of its correlation 
with RMSE. In addition, R2 value is also a weak indicator 
and not considered as well (Willmott and Matsuura 2005). 
The results in Table 4 reveal that RMSE and MAE may give 
misleading assessment, because their values for RMSE and 
MAE are considerably small and all the models are suitable 
for the assessment of KIC, thanks to the detailed statistical 
study conducted to further probe into the effectiveness of 
these equations in KIC predictions.

The statistical outcomes of the measured and predicted 
KIC by ANN, MARS and Eq. (9) are non-normal, while 
that of the predictions by Eqs. (1–8) are normal, as their p 
values are greater than 0.05. The Mann–Whitney test was 
conducted to check the reliability of the models, since both 
measured and predicted or either one of the two is required 
to be non-normally distributed as shown in the chart (Fig. 5). 
The normal probability plot of the measured value is pre-
sented in Fig. 5, while the normal probability values of the 
models are presented in Table 5.

The p values obtained from Mann–Whitney test con-
ducted on the pair of measured and predicted values by the 
models are also presented in Table 5. The minimum and 
maximum p values are 0 and 0.972, respectively. The p val-
ues obtained revealed that out of the models subjected to 
the reliability analysis, ANN, MARS and Eqs. (1, 2, 7, 8, 9), 
have p values greater than 0.05. Since the higher the p value, 
the better is the model based on the conducted test, ANN, 
MARS and Eq. (2) are most suitable for the prediction of 

Fig. 5   Probability plot of the measured KIC

Fig. 6   Correlation between the measured and predicted values of the most reliable models
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KIC and can be used with more confidence, while Eqs. (3, 4, 
5 and 6) should not be used.

The correlation plot of the measured and the predicted 
values using the ANN and MARS models, the most suitable 
models, are shown in Fig. 6. It can be seen that the predic-
tion of the ANN model is actually close to the measured 
values. The histogram of the ANN model is closely related 
to that of the measured data. Similarly, the MARS model 
prediction also revealed a close predictions to the measured 
KIC, but not as that of the ANN model. In fact, the histogram 
of the MARS model differs from that of the measured KIC.

4 � Conclusion

This study assessed the reliability of various empirical mod-
els for KIC predictions alongside with two machine learning 
methods, ANN and MARS models, with practical imple-
mentation insight using the mined data in the literature. To 
achieve this, each of the selected empirical equations based 
on the available data were re-evaluated alongside with the 
two newly proposed ML models. They are then subjected 
to strong statistical tests beyond the usual RMSE, MAE 
and R2 statistical indicators. The normality tests were first 
conducted on the measured data, equations and the error 
in the MiniTab software with two different hypotheses to 
accept or reject the model. The non-parametric statistical 
examination was then used to select the most suitable model. 
The outcomes of the study revealed that ANN, MARS and 
Eq. (2) are found to be the most suitable for the prediction 
of KIC and can be used with more confidence, while Eqs. 
(3, 4, 5 and 6) should not be used. The traditional indicators 
(RMSE, MAE and R2) should be used with caution, as they 
can give misleading information about the models. This type 
of study is highly imperative to ensure that an appropriate 
model is used for rock mechanics application with outmost 
confidence.

Appendix A

MATLAB codes for implementing the ANN model
%Inputs
V_P = input('V_P:');V_S = input('V_S:');rho = input 

('rho:');
%Normalization
V_Pn = 2*(V_P-1744.7)/4615.412–1; V_Sn = (2*(D2-

1351.4)/2448.6)-1; rhon = 2.5*(rho − 2.1)− 1;
%ANN functions
 x1 = −  6 .06366032460768*tanh(0 .89512115

8*V_Pn + 8.167572732*V_Sn + 3.944227813*rhon-
2.58309722218044);

x2 = 4.53201670500747*tanh(0.196052392*V_
Pn  +  2 .600267977*V_Sn  +  9 .176464667*rhon -
5.00433781940571);

x 3   =   2 . 8 8 0 3 0 2 0 0 2 2 0 7 9 6 * t a n h ( 1 . 3 0
9 7 7 4 3 7 7 * V _ P n   +   3 . 3 4 1 3 7 4 8 6 2 * V _ S n -
0.977837086*rhon + 5.1535124737128);

 x 4  =  8 . 0 2 6 9 5 8 6 9 4 4 2 5 2 1 * t a n h ( 2 . 4 0 4 3 1 1 3 2
8*V_Pn + 1.567524559*V_Sn-3.024444841*rhon 
− 1.40852079842265);

 x5 = −2.92338426677153*tanh(3.058872395*V_
Pn + 10.63463327*V_Sn + 0.959284589*rhon + 1.229805
99592424);

 x 6  =  - 0 . 5 4 5 6 3 7 3 5 7 5 9 7 1 2 9 * t a n h ( −   0 . 6
7 9 4 7 8 9 8 2 * V _ P n  +  0 . 3 6 9 3 3 4 1 4 8 * V _ S n -
0.300141158*rhon-0.82346245277411);

  x 7   =   1 . 5 4 0 6 3 4 8 6 4 0 6 5 4 2 * t a n h ( − 3 . 0
4 8 5 9 9 2 6 * V _ P n  - 8 . 3 5 7 2 6 7 2 7 2 * V _ S n -
0.198463676*rhon-3.12285508892506);

 x8 = 2.20382967656225*tanh(−3.026260943*V_Pn-
2.9724508*V_Sn + 8.859728745*rhon + 3.718036624176
4);

x9 = 5.6911107157675*tanh(0.806341017*V_
Pn + 5.510536647*V_Sn + 0.734720571*rhon + 0.588796
585443898);

KIC_ANN_norm = tanh(x1 +  x2 +  x3 +  x4 +  x5 +  x6 +  
x7 +  x8 +  x9 + 1.46999477925268);

KIC_ANN = 1.69*KIC_ANN_norm + 1.81.
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