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Abstract
This study communicates a novel seismic stability assessment of rock slopes based on the concept of the limiting slope face 
(LSF) combined with the method of stress characteristics (MSC) and the modified pseudo-dynamic (MPD) approach. The 
slope geometry with a target factor of safety (FS) of 1.0 is derived, precluding the need for any preordained slip surfaces 
in the analysis. Subsequently, the derived LSF in cognition with the morphological aspects indeed acts as a self-guided 
stability index for rock slopes. Besides, a realistic characterization of the dynamic properties of input earthquake motions 
satisfying the zero stress boundary conditions is apprehended through the coherent utilization of the MPD approach. The 
generalized Hoek–Brown (GHB) strength criterion is engaged to capture the factual non-linearity present in the rock strength. 
Compared to the reported investigations, the present results indicate that the developed curvilinear LSFs are steeper than the 
traditional linear slopes commonly encountered in the conventional practice. A parametric study accounting for the effect 
of different influential parameters on the behavior of LSFs is performed in view of various prospective design challenges 
in rock engineering. With a rise in the horizontal seismic acceleration coefficient (kh) from 0.1 to 0.3, a nearly threefold 
increase in the magnitude of the major principal stress orientation (ψ) at the slope crest but along the slope can be observed. 
Such enhancement in ψ indicates significantly flat LSF. A sudden rise in the magnitude of ψ can also be observed at the 
fundamental frequencies of seismic waves due to resonance. However, at kh = 0.1, such aptness declines by 54% at the first 
fundamental frequency of the shear wave as the rock mass damping increases from 5 to 15%. Thus, the present approach 
attributes to a rational way for seismic design and stability assessment of rock slopes. Several real-life case studies adopting 
the current LSF concept further exhibit the accuracy, rationality, and robustness of the proposed methodology.

Highlights

• Concept of limiting slope face is introduced for the seismic performance of rock slopes.
• Analysis is performed using an integrated framework of generalized Hoek-Brown criterion, method of stress characteristics 

and modified pseudo-dynamic approach.
• An adaptive collapse mechanism is investigated in response to varying seismic wave characteristics and rock mass 

parameters.
• A comprehensive review of other prevailing analytical seismic approaches is provided.
• Rationality of the results is ensured through validation with different published case studies.

Keywords Earthquakes · Generalized Hoek–Brown criterion · Limiting slope face · Method of stress characteristics · 
Modified pseudo-dynamic approach · Rock slopes
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α  Horizontal inclination of a linear slope
αh  Non-dimensional horizontal seismic acceleration 

normalized with respect to g
αv  Non-dimensional vertical seismic acceleration 

normalized with respect to g
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βa  A parameter as defined in Eq. (9)
γ  Unit weight of the rock mass
δ  A parameter as defined in Eq. (23)
ζa  A parameter as defined in Eq. (9)
θ  Angle made by the major principal stress with 

the positive z-axis
θg  Magnitude of θ along the top surface of the slope 

(OG)
θs  Magnitude of θ along the limiting slope face 

(OA)
μ  A parameter as defined in Eq. (15)
ξ  Damping ratio of the rock mass
ρ  Instantaneous friction angle as defined in 

Eq. (17)
ρg  Magnitude of ρ along the top surface of the slope 

(OG)
ρs  Magnitude of ρ along the limiting slope face 

(OA)
σ+, σ−  Axes in the two-dimensional curvilinear coordi-

nate system representing the positive and nega-
tive characteristics, respectively

σ1  Major principal stress
σ3  Minor principal stress
σci  Uniaxial compressive strength of the intact rock
σng  Normal stress on the top surface of the slope 

(OG)
σx  Normal stress on the x plane
σz  Normal stress on the z plane
τg  Shear stress on the top surface of the slope (OG)
τxz  Shear stress in the xz plane
χ  Horizontal inclination of the top surface of the 

slope (OG), as shown in Fig. 15a
ψ  Magnitude of θ along the limiting slope face 

(OA), but at the slope crest (O)
ω  Angular frequency of seismic waves = 2π/T
a  Dimensionless Hoek–Brown material parameter, 

as defined in Eq. (7a), representing the character-
istics of rock mass

ah(z, t)  Horizontal seismic acceleration in the rock mass 
at depth z and time t

av(z, t)  Vertical seismic acceleration in the rock mass at 
depth z and time t

Aa  A parameter as defined in Eq. (9)
Cp, Cpz  Dimensionless parameters, as defined in Eqs. 

(4b) and (4a), respectively
Cs, Csz  Dimensionless parameters, as defined in Eqs. 

(3b) and (3a), respectively
d  Depth of rigid bed from the base of the slope
D  Disturbance factor of the rock mass
f  Macroscopic yield condition
fa  Amplification factor for seismic waves
F  Function defining the yield criterion in Eq. (12)
g  Acceleration due to gravity

GSI  Geological strength index
h  Height of the slope having a horizontal top sur-

face (OG), as shown in Fig. 1a
h′  Height of the slope having an inclined top sur-

face (OG), as shown in Fig. 15a
H  Depth of the rigid bed from the top surface (OG) 

of the slope
k  A parameter as defined in Eq. (9)
kh  Horizontal seismic acceleration coefficient
kv  Vertical seismic acceleration coefficient
m  A parameter as defined in Eq. (15)
mb  Dimensionless Hoek–Brown material parameter, 

as defined in Eq. (7b)
mi  Hoek–Brown constant of intact rock representing 

the hardness of the rock
N  Stability number = σci/(γh.FS)
Ncr  Critical stability number corresponding to 

FS = 1.0
p  Average stress
pg  Magnitude of p along the top surface of the slope 

(OG)
ps  Magnitude of p along the limiting slope face 

(OA)
q  Uniformly distributed surcharge
R  Radius of the Mohr circle
Rg  Magnitude of R along the top surface of the 

slope (OG)
Rs  Magnitude of R along the limiting slope face 

(OA)
s  Dimensionless Hoek–Brown material parameter 

as defined in Eq. (7c) representing the degree of 
fragmentation of rock

Sp, Spz  Dimensionless parameters, as defined in Eqs. 
(4b) and (4a), respectively

Ss, Ssz  Dimensionless parameters, as defined in Eqs. 
(3b) and (3a), respectively

t  Time
T  Period of lateral shaking
uh(z, t)  Horizontal displacement of the rock mass at 

depth z and time t
uv(z, t)  Vertical displacement of the rock mass at depth z 

and time t
uh0, uv0  Amplitudes of the finite harmonic displacement 

at the rigid base along the horizontal and the 
vertical directions, respectively

uhb, uvb  Finite harmonic displacements at the rigid base 
along the horizontal and the vertical directions, 
respectively

Vp  Velocity of primary wave
Vs  Velocity of shear wave
x, z  Axes in the regular two-dimensional Cartesian 

coordinate system
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x′, z′  Axes in the transformed two-dimensional Carte-
sian coordinate system, as shown in Fig. 15a

ys1, ys2  Dimensionless parameters, as defined in Eq. (3c)
yp1, yp2  Dimensionless parameters as defined in Eq. (4c)
X  Body force per unit volume in the x-direction
Z  Body force per unit volume in the z-direction

1 Introduction

Evaluation of the rock slope stability in seismically active 
regions is a crucial design consideration for various engi-
neering structures, such as bridges, dams, open pits/mines, 
roads, and tunnels, to ensure the safe and satisfactory per-
formance of the systems. The Mononobe–Okabe method 
(Okabe 1926; Mononobe and Matsuo 1929) or the pseudo-
static (PS) approach is usually recommended for reckoning 
the earthquake effect on the rock slope stability due to its 
remarkable simplicity. To ensure a simplistic analysis, the 
PS approach primarily surmises the seismic inertia forces to 
be constant and uniform across the entire rock mass (Yang 
et al. 2004; Li et al. 2009; Latha and Garaga 2010; Jiang 
et al. 2016; Tiwari and Latha 2016; Belghali et al. 2017; 
Sun et al. 2020; Sarkar and Chakraborty 2021; Singh et al. 
2022; Wallace et al. 2022; Wang et al. 2022b). However, 
naturally, a random vibration, such as an earthquake, is 
barely stationary. The induced earthquake acceleration, an 
obvious function of time and space, contradicts the over-
simplification thus cast in the PS approach (Qin and Chian 
2018; Fan et al. 2019; Gu and Wu 2019). On the contrary, 
quite a few studies (Latha and Garaga 2010; Sun et al. 2012; 
Gischig et al. 2015; Zhang et al. 2015; Zhao et al. 2017; Luo 
et al. 2020) addressed a more reliable seismic response of 
rock slopes utilizing the on-site earthquake ground motion 
records associated with an appropriate constitutive model. 
However, the enormous computational rigor accompanying 
such dynamic time-history analyses conversely condenses its 
flexibility for a routine engineering application. Hence, to 
capture the essence of seismic accelerations with a reason-
able effort, the pseudo-dynamic approach is often preferred 
as a worthy trade-off between the simplistic PS method and 
the rigorous dynamic time-history analysis.

Steedman and Zeng (1990), and Choudhury and Nim-
balkar (2005) proposed the original pseudo-dynamic (OPD) 
approach, where a sinusoidal wave was commonly con-
sidered to accommodate the phase change in shear waves 
propagating through a vibrating medium. Later, Zeng and 
Steedman (1993) substantiated the legitimacy of the OPD 
approach, comparing the theoretical outcomes with a 
group of centrifuge model test results. Subsequently, sev-
eral researchers (Choudhury and Nimbalkar 2005; Nim-
balkar et al. 2006; Xu et al. 2017) contributed to the OPD 

approach by considering the effect of both shear and primary 
waves. Qin and Chian (2018) applied the OPD approach 
to determine the seismic bearing capacity of Hoek–Brown 
rock slopes. Additionally, Sun et  al. (2022) and Wang 
et al. (2022a) evaluated the pseudo-dynamic safety factor 
of slopes in the Hoek–Brown medium utilizing the OPD 
approach. However, the OPD approach suffers from two 
intrinsic limitations: violation of the zero stress boundary 
conditions at the ground surface and approximate linear 
amplification profile for propagating seismic waves. To 
overcome such shortcomings of the OPD approach, Bellezza 
(2014, 2015) introduced the modified pseudo-dynamic 
(MPD) approach based on a more realistic idealization of the 
energy dissipation characteristics of the medium modeled as 
the Kelvin–Voigt material. Later, the efficacy of the MPD 
approach was established by several researchers (Pain et al. 
2017; Rajesh and Choudhury 2017; Srikar and Mittal 2020) 
in solving different geotechnical problems. However, limited 
studies were conducted deploying the MPD approach in a 
specific context of rock slopes. Gu and Wu (2019) imple-
mented the MPD approach alongside the non-linear twin 
shear criterion to analyze the seismic stability of waterfront 
rock slopes. Zhao et al. (2020) performed a reliability-based 
slope stability analysis under the combined framework of 
the Barton–Bandis failure criterion and the MPD approach. 
Zhong and Yang (2021) presented the seismic stability of 
rock slopes considering the Hoek–Brown strength criterion 
and the MPD approach.

Most of the studies discussed above extensively utilized 
the limit equilibrium (LE) or the limit analysis (LA) method 
while analyzing the seismic stability of rock slopes. Hence, 
inevitable inadequacy, such as predestined slip surfaces 
assumed prior to the analysis (Yang et al. 2004; Jiang et al. 
2016; Belghali et al. 2017; Gu and Wu 2019), inevitably 
exists in the previous formulations, apart from the inherent 
shortcomings of the PS and the OPD approaches. In addi-
tion, an approximated state of stress, even if not aligned 
with the conditions of the static equilibrium, can also be 
observed alongside such presumed slip surfaces (Zhong and 
Yang 2021). Besides, the LE method overestimates the sta-
bility of rock slopes, especially in the case of steeper rock 
slopes and poor-quality rock masses (Li et al. 2009, 2022). 
By employing the finite-element limit analysis (FELA), sev-
eral previous investigations (Li et al. 2009, 2022; Kumar 
and Rahaman 2020; Wu et al. 2021) endeavored to avoid 
the above-mentioned discrepancies. However, the accu-
racy is utterly earned at the cost of an enhanced numerical 
computation over an excessive requirement of input param-
eters, even for a simple preliminary analysis of homogene-
ous slopes (Yang and Zou 2006). In contrast, the method 
of stress characteristics (MSC), a plasticity-based classi-
cal approach, emerges as a compelling choice to tackle the 
above-mentioned limitations. Sokolovski (1960) introduced 
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Fig. 1  a Problem idealization with associated collapse mechanism; b state of stress and sign convention; c Mohr-circle envelope at failure for 
non-linear generalized Hoek–Brown criterion
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the MSC for the soil media. Later, Serrano and Olalla (1994) 
extended the method in the domain of classical rock mechan-
ics to investigate the bearing capacity of strip footings rest-
ing on a weightless rock medium. Subsequently, several 
studies (Serrano et al. 2000; Kumar and Mohan Rao 2003; 
Jahanandish and Keshavarz 2005; Veiskarami et al. 2014; 
Keshavarz et al. 2016; Keshavarz and Kumar 2018, 2021; 
Li et al. 2019; Santhoshkumar et al. 2019; Santhoshkumar 
and Ghosh 2020; Nandi et al. 2021a, b) accounting for vari-
ous stability-related geotechnical problems were performed 
using the MSC. In addition, based on the MSC, Sokolovski 
(1960) initiated a novel concept of the limiting slope face 
(LSF), anticipating a target factor of safety (FS) of 1.0 for 
the static stability analysis of soil slopes. Later, Nandi et al. 
(2021a, b) improvised the concept of the LSF for soil slopes 
by coupling it with the OPD and MPD approaches, respec-
tively. However, the seismic stability analysis of rock slopes 
utilizing the concept of the LSF remains almost untraversed.

Further, there may be better choices than the commonly 
adopted Mohr–Coulomb (MC) failure criterion for rocks. 
Instead, the generalized Hoek–Brown (GHB) strength crite-
rion (Hoek and Brown 1980; Hoek et al. 2002) is preferred 
to model the strength characteristics of intact rocks and 
uniformly jointed rock mass systems. Experimental inves-
tigations generally endorse an omnipresent existence of the 
strength non-linearity for geo-materials, especially in low 
confining stresses (Fu and Liao 2010; Shen et al. 2012). 
However, some recent studies (Qin and Chian 2018; Xu 
et al. 2018; Sarkar and Chakraborty 2021; Sun et al. 2022; 
Wang et al. 2022a) adopted a linear approximation of the 
GHB criterion through a generalized tangential technique 
or equivalent Mohr–Coulomb criterion. Such linear substi-
tution of the GHB criterion through an equivalent set of 
the MC parameters was reported to cause an overestima-
tion of the rock slope stability (Li et al. 2009; Zhao et al. 
2017; Renani and Martin 2020). Limited attempts (Li et al. 
2009; Jiang et al. 2016; Zhong and Yang 2021) were made 
to consider the non-linearity of the GHB criterion. How-
ever, the calculation model was restricted to the LE, LA, or 
FELA method. Consequently, a coupling between the GHB 
strength criterion and the MSC alongside the MPD approach 
urges to be established for a better perspective.

The seismic performance of rock slopes with a specific 
geometry is often appraised by determining various param-
eters, such as a factor of safety, stability number, critical 
earthquake acceleration, seismic ultimate bearing capacity, 
and seismic displacement. Instead of the aforesaid stability 
measures, this study introduces a novel LSF-based stability 
concept employing a combined framework of the MSC and 
the MPD approach. Accordingly, a precise prediction of the 
limiting collapse based on FS = 1.0 is ensured in this study. 
By employing the MSC, the assumption of predestined slip 

surfaces is ruled out in the analysis. In addition, the effect 
of seismic waves, excitation frequency, and damping char-
acteristics of the rock mass system are suitably incorporated 
using the MPD approach. A variable rigid bed below the 
slope base is duly considered to handle horizontal and verti-
cal seismic accelerations. The curvilinear LSF evolved from 
the present methodology is found to be morphologically 
congruent (Gray 2013; Wu and Utili 2015). The results are 
also presented by employing both PS and OPD approaches 
to manifest the versatility of the MPD method. Different 
real-life case studies are validated to establish the potential 
of the current methodology anticipating the state of the lim-
iting stability in advance.

2  Problem Statement and Assumptions

Figure 1a illustrates a finite rock slope of height, h resting on 
a rigid bed of depth, d from the base of the slope. The slope 
supports a uniformly distributed surcharge, q, at the horizontal 
top surface (OG) and is exposed to a harmonic base excitation 
under seismic conditions. The rock mass is characterized by 
the intact uniaxial compressive strength σci, the geological 
strength index GSI, the intact rock yield parameter mi, the 
disturbance factor D, and the unit weight γ. According to 
the previous investigations, this study considers reasonable 
assumptions of the rock mass homogeneity and isotropy 
(Yang et al. 2004; Li et al. 2009; Sun et al. 2020; Sarkar and 
Chakraborty 2021). The strength of the rock mass is assumed 
to be governed by the GHB criterion. The principal objective is 
to determine the curvilinear geometry of the rock slope (OA), 
upholding the condition of the limiting collapse under the 
induced earthquake inertial effect. As mentioned earlier, the 
LSF thus derived corresponds to FS = 1.0. In association with 
the MPD approach, the analysis is executed by establishing 
a network of stress characteristics, which further assists in 
obtaining a robust collapse mechanism considering the effect 
of the frequency of seismic waves, the phase difference, and 
the rock mass damping.

3  Analysis

3.1  Modified Pseudo‑dynamic Approach

Following Bellezza (2014, 2015), the solution to wave prop-
agation problems in visco-elastic rock slopes can be devised 
by modeling the rock mass as the Kelvin–Voigt material 
(Kramer 1996). Based on this model, a material damping 
ratio (ξ) is incorporated to manifest the energy dissipation 
characteristics of the medium under earthquake conditions. 
Additionally, resulting shear (S) and primary (P) waves are 
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assumed to propagate through the medium vertically along 
the z-axis with velocities Vs and Vp, respectively. Subse-
quently, the governing equation of motion can be solved for 
a harmonic base shaking with an angular frequency (ω) and 
a time period (T = 2π/ω) by satisfying the boundary condi-
tions. The aforesaid boundary conditions are a) stress-free 
boundary conditions along the top surface (z = 0); and b) 
finite harmonic displacements (uhb, uvb) at the rigid base 
(z = H), as given in Eq. (1a, 1b)

By imposing the boundary conditions, the solution for 
the SPATIO-temporal variation in horizontal and vertical 
displacements (uh, uv) of the medium at any depth, z, and at 
any instant, t can be expressed as (Bellezza 2014, 2015; Pain 
et al. 2017; Rajesh and Choudhury 2017)

where for S-wave [Eq. (2a)]

for P-wave [Eq. (2b)]

(1a)uhb = uh0cos(�t)(for S − wave)

(1b)uvb = uv0cos(�t)(for P − wave).

(2a)
uh(z, t) =

uh0
C2
s + S2s

[(

CsCsz + SsSsz
)

cos (�t)

+
(

SsCsz − CsSsz
)

sin (�t)
]
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uv0
C2
p + S2p
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)
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)
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(4a)
Cpz = cos

(

yp1z

H

)

cosh

(
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;

Spz = −sin

(

yp1z

H

)

sinh

(

yp2z

H

)

In Eqs. (3c) and (4c), ys1, ys2, yp1, and yp2 are the non-
dimensional entities represented as a function of the damp-
ing ratio (ξ) and the normalized frequencies (ωH/Vs, ωH/Vp) 
for S- and P-waves, respectively; H is the depth of the rigid 
bed from the top surface of the slope (OG) reorganized as 
h(1 + d/h); d and h are the depth of the rigid bed from the 
slope base and the slope height, respectively, as shown in 
Fig. 1a.

Further, the horizontal (ah) and the vertical (av) seismic 
accelerations induced in the medium can be obtained from 
Eq. (5a, 5b) by differentiating Eq. (2a, 2b) twice with respect 
to time (t)

where khg = -ω2uh0 and kvg = -ω2uv0, and kh and kv are the 
seismic acceleration coefficients along the horizontal and 
the vertical directions, respectively.

It is worth mentioning that such a spatial distribution in 
horizontal and vertical acceleration profiles can be reason-
ably assumed to be constant across an infinitesimally small 
rock mass element at a specific time, as shown in Fig. 1b 
(Santhoshkumar et al. 2019; Nandi et al. 2021b).

3.2  Generalized Hoek–Brown Criterion

Among different non-linear strength criteria, the GHB cri-
terion (Hoek et al. 2002) is broadly recognized to deline-
ate the inherent non-linearity in the rock mass strength. 
According to the GHB criterion, the fundamental expres-
sion for the pressure-dependent strength characteristics of 
a uniformly jointed rock mass system in two-dimensional 
principal stress (σ1-σ3) space can be written as
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where σ1 and σ3 are the major and the minor principal 
stresses, respectively; a, mb, and s are the dimensionless 
material parameters determined by the GSI.

It is worth noting that the GSI directly represents the 
rock mass quality by consuming a typical range from 10 
for extremely poor rock masses to 100 for intact rocks. 
Based on the definition provided by Hoek et al. (2002), 
the dimensionless Hoek–Brown strength parameters (a, 
mb, and s) can be presented as

where mi denotes the hardness of the rock, which usually 
ranges from 5 to 35, and D is the disturbance factor varying 
from 0 for the undisturbed state to 1 for the fully disturbed/
fractured state of the rock mass. The work of Hoek and 
Brown (1997) can be referred to for further details about 
the assessment of GSI, mi, and σci.

By utilizing the concept of the Mohr stress circle, a 
subsequent modification in the GHB criterion (Eq. (6)) 
can be expressed as

where p = (σ1 + σ3)/2 and R = (σ1 – σ3)/2 represent the aver-
age stress and the radius of the Mohr circle, respectively, and

Considering the GHB parameters (GSI, mi, σci, and D) 
as input, all the terms mentioned in Eq. (9) can ultimately 
be known for the subsequent analysis.

3.3  Method of Stress Characteristics

The MSC is a classical method to solve various plastic-
ity problems in geotechnical engineering (Sokolovski 
1960). It was later extended and applied to the domain 

(6)
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,
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; k =
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a
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=

mb(1 − a)

2
1

a

,

of rock mechanics by different researchers (Serrano and 
Olalla 1994; Serrano et al. 2000; Keshavarz et al. 2016; 
Keshavarz and Kumar 2018, 2021). In this method, the 
equilibrium and the yield equations are simultaneously 
utilized to establish a system of hyperbolic partial differ-
ential equations subjected to physical boundary conditions 
(Veiskarami et al. 2014). Thus, the system of equations 
can be solved by any suitable numerical scheme, prefer-
ably by the finite-difference method (Sokolovski 1960; 
Jahanandish and Keshavarz 2005; Keshavarz et al. 2016; 
Keshavarz and Kumar 2021). A comprehensive discussion 
on the MSC and the solution procedure is available in the 
previous studies (Sokolovski 1960; Jahanandish and Kes-
havarz 2005; Keshavarz et al. 2016). However, this paper 
discusses a brief outline of the method for wholeness.

3.3.1  Equilibrium‑Yield Equations

Figure 1a portrays the 2D plane strain representation of the 
proposed rock slope in the x–z plane with the slope crest O 
as the origin of the coordinate system. From Fig. 1b, the 
governing equations of the static equilibrium under the 
plane strain condition can be written as

where σx, σz, and τxz are the stress components acting upon 
an infinitesimally small rock mass element (Fig. 1b); X and 
Z are the body forces per unit volume of the rock mass in 
x- and z-directions, respectively, and can be expressed as

where γ is the unit weight of the rock mass, and αh and αv 
are the non-dimensional horizontal and vertical accelera-
tions, respectively, which can be written as αh = ah/g and 
αv = av/g. It is worth mentioning that the directions of the 
horizontal and the vertical accelerations are chosen to repli-
cate the most critical seismic inertial impact in the analysis 
(Santhoshkumar et al. 2019; Nandi et al. 2021b). A separate 
parametric study is reported in this paper later by consider-
ing this aspect.

(10a)
��x

�x
+

��xz

�z
= X

(10b)
��xz

�x
+

��z

�z
= Z,

(11a)X = −��h

(11b)Z = �
(

1 ± �v
)

,
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along σ+ direction

where

(14a)

dx

dz
= tan(� − m − �)

sin2(m − �)dp + 2Fd� = −cos2m[{sin2�dx − cos2�dz}X + {cos2�dx + sin2�dz}Z]

}

(14b)

dx

dz
= tan(� − m + �)

sin2(m + �)dp + 2Fd� = cos2m[{sin2�dx + cos2�dz}X − {cos2�dx − sin2�dz}Z]

}

,

By following the recommendations of Booker and Davis 
(1972), the generalized yield criterion for a homogeneous 
medium can be written as a function of the aforesaid stress 
components in Eq. (12)

where θ represents the orientation of the major principal 
stress (σ1) about the positive z-axis with a counter-clockwise 
sense of rotation taken as positive.

From the Mohr circle, the stress components can also 
be derived as

Simultaneous utilization of the equilibrium equations 
given in Eq. (10a, 10b) and the yield equations given in 
Eq. (13a, 13b, 13c), followed by some algebraic simpli-
fications, establishes two families of characteristics. The 
equilibrium equations along the characteristics can be 
termed the equilibrium-yield equations (Jahanandish and 
Keshavarz 2005; Keshavarz and Kumar 2018, 2021) and 
are written  as

along σ− direction

(12)f
(

�x, �z, �xz
)

= R − F(p, �) = 0,

(13a)�x = p − R cos2 �

(13b)�z = p + R cos2 �

(13c)�xz = R sin2 �.

(16)m = 0; � =
1

2
cos

−1

⎛

⎜

⎜

⎜

⎝

1

1 + (1 − a)

�

R
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�k

(1 + k)

⎞
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.
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Fig. 2  Effect of kv direction on LSFs for different values of GSI with 
σci/γh = 8, mi = 15, D = 0, ξ = 0.10, ωH/Vs = 0.94, Vp/Vs = 1.87, and 
d/h = 0: a kh = 0.05; b kh = 0.20

For the GHB criterion, the values of m and μ can be 
determined as

(15)tan2m =
1

2F

�F

��
; cos2� = cos2m

�F

�p
. In addition, the concept of the instantaneous friction 

angle (ρ), as proposed by Serrano and Olalla (1994), is 
presented in Eq. (17) along with a graphical illustration in 
Fig. 1c

(17)
�R

�p
= sin �.
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Subsequent utilization of the concept of the instantaneous 
friction angle defined in Eq. (17) along with Eq. (8) further 
assists in defining the following modified expressions for R 
and p as given in Eq. (18a, 18b):

3.3.2  Boundary Conditions

For the current 2D slope stability problem, the known 
boundaries include (i) the top surface (OG) of the slope 

(18a)R = �a

(

1 − sin �

k sin�

)
1

k

(18b)p = �a

[{

a

(

1 + ksin�

sin�

)(

1 − sin�

ksin�

)
1

k

}

− �a

]

.

and (ii) the slope face (OA). Since a uniformly distributed 
surcharge (q) acts along OG, the normal (σng) and shear 
(τg) stresses developed along OG under seismic conditions 
can be expressed as

From the concept of the Mohr stress circle, it can be 
obtained as

where pg and Rg denote the magnitude of p and R, respec-
tively, along OG.

Subsequently, on substitution of Eqs. (19a, 19b) and 
(20) into Eq. (8), the average stress (pg) on OG can be 
determined by solving the following non-linear equation 
numerically:

Once pg is obtained, the major principal stress orienta-
tion (θg) along OG can be simply evaluated using Eq. (22). 
However, Eq. (13b, 13c), along with the necessary stress 
boundary conditions applicable to the OG plane, needs to 
be employed to obtain Eq. (22)

where

and ρg is the instantaneous friction angle along OG.

(19a)�ng = q
(

1 ± �v
)

(19b)�g = −q�h.

(20)Rg =

√

(

�ng − pg
)2

+ �2
g
,

(21)
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,
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Fig. 3  Effect of kv direction on ψ for different values of kh and ωH/Vs 
with σci/γh = 8, GSI = 40, mi = 15, D = 0, ξ = 0.10, Vp/Vs = 1.87, and 
d/h = 0
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Vp/Vs = 1.87, and d/h = 0
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Fig. 5  Variation of LSFs for different values of kv with σci/γh = 8, 
GSI = 40, mi = 15, D = 0, ξ = 0.10, kh = 0.2, ωH/Vs = 0.94, Vp/Vs = 1.87, 
and d/h = 0
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In contrast, being a stress-free surface, the limiting slope 
face (OA) implies that the normal and the shear stresses 
along OA become zero. It further indicates that Rs = ps, 
where ps and Rs represent the magnitude of p and R, 
respectively, along the stress-free slope face (OA). Hence, 
similar to pg, the average stress (ps) on OA can be calculated 
numerically by solving Eq. (24)

In addition to the stress-free boundary condition, the con-
dition given in Eq. (25) must also be fulfilled at each point 
on OA

where θs is the orientation of the major principal stress along 
OA.

3.4  Determination of Limiting Slope Face

Due to two distinct states of stress at the slope crest (O), 
as evident from Eqs. (21) and (24), there exists a stress 

(24)
ps

�a

(

1 + (1 − a)

(

ps

�a

)k
)

=
ps

�a
+ �a.

(25)
dx

dz
= tan�s,

singularity at point O. Such a stress singularity produces a 
null length σ− characteristic in the neighborhood of O, which 
in turn leads to the following modification of Eq. (14a)

Further, the stress singularity corroborates a rotation in 
the major principal stress orientation, which can be quan-
tified by establishing the major principal stress direction 
at point O but along OA (ψ), as given in Eq. (27). Equa-
tion (26) needs to be integrated from the top surface (OG) 
to the slope face (OA) in conjunction with Eq. (18a, 18b) to 
achieve Eq. (27)

where ρs is the instantaneous friction angle along OA.
Subsequently, the LSF (OA) is traced through the con-

struction of a stress characteristic network by gradually 
emanating from the known boundary (OG) to the unknown 
boundary (OA). The formation of such stress characteristics 
network is often established by adopting a suitable finite-
difference scheme for Eq. (14a, 14b), as reported by previous 
researchers (Jahanandish and Keshavarz 2005; Keshavarz 
et al. 2016). However, to avoid numerical instability in the 
simulation process, a minimum surcharge (q) is considered 
in the analysis while generating the stress characteristics net-
work (Sokolovski 1960; Nandi et al. 2021a, b). Based on the 
recommendation of Srikar and Mittal (2020), the selected 
surcharge should not interfere with the amplification of seis-
mic waves as ensued from the MPD approach.

4  Results and Discussion

The stability of the rock slope was established under the 
unified framework of the GHB criterion, the MSC, and the 
MPD approach by developing an in-house computer code in 
MATLAB. Accordingly, the results manifesting the condi-
tion of the limiting stability (FS = 1.0) are presented as LSF. 
Under seismic conditions, the magnitude of θ at the slope 
crest (O) but along OA, defined by ψ in Eq. (27), plays a 
decisive role in shaping the LSF. Hence, a series of compu-
tations corresponding to various t/T values ranging from 0 
to 1 is performed to ensure the maximum ψ at O. Eventually, 
the developed LSF serves as an efficient, inexpensive, and 
safe design guideline for the stability analysis of slopes as 
discoursed by Nandi et al. (2021b). An elaborative paramet-
ric study is performed in this study to envisage such limiting 
behavior of rock slopes. A practical range of input parame-
ters is adopted from various studies available in the literature 
(Li et al. 2009; Jiang et al. 2016; Sarkar and Chakraborty 

(26)−sin2� dp + 2Rd � = 0.

(27)� = �g +
1

2k

(

cot�s − cot�g + ln

(

tan
(

0.5�g
)

tan
(

0.5�s
)

))

,

Table 1  Input parameters used 
in the analysis

Parameters Range

σci/γh 0.625–40
GSI 10–100
mi 5–35
D 0–1.0
ξ 0.05–0.15
kh 0–0.3
kv (− kh) − (+ 0.5kh)
ωH/Vs 0–2π
ωH/Vp 0–1.1π
d/h 0–1.0
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Fig. 6  Variation of LSFs for different values of kh with σci/γh = 8, 
GSI = 40, mi = 15, D = 0, ξ = 0.10, kv = -0.5kh, ωH/Vs = 0.94, 
Vp/Vs = 1.87, and d/h = 0
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2021; Zhong and Yang 2021) and mentioned in Table 1. It is 
worth noting from Eq. (25) that the variation in θs primarily 
governs the LSF; hence, ψ is additionally chosen to quantify 
the current outcome.

4.1  Effect of Seismic Accelerations

Under seismic conditions, both horizontal and vertical 
seismic accelerations prompt the failure of rock slopes (Sun 
et al. 2012; Jiang et al. 2016; Qin and Chian 2018; Zhao et al. 
2017, 2020). However, the effect of vertical acceleration is 
often overlooked while performing the seismic stability 

analysis of rock slopes. In the most critical situation, the 
horizontal seismic acceleration is expected to act in the 
negative x-direction, that is, away from the slope, as shown 
in Fig. 1a (Li et al. 2009; Nandi et al. 2021b). Conversely, 
the critical direction of vertical acceleration cannot be 
simply established as it depends on various factors, such 
as the level of seismicity (Jiang et al. 2016), the frequency 
content of seismic waves (Nandi et al. 2021b), and the rock 
mass quality (Jiang et al. 2016). Hence, to unveil a trend 
of the functional dependency of kv on the above-mentioned 
parameters, an imperative study is presented in Figs. 2, 3, 4 
considering both positive (downward) and negative (upward) 
directions of kv with a magnitude of 0.5kh. Figure 2 presents 
the effect of the direction of kv on the behavior of the LSF 
for different values of GSI and kh. It can be seen from Fig. 2 
that the influence of the direction of kv is inconsequential at 
the lower seismicity level. However, as the seismicity level 
escalates with increasing kh, a remarkable deviation in the 
LSFs can be observed due to the direction change of kv. 
The magnitudes and directions of kv affect both driving and 
resisting forces operating on the derived critical slip surface 
(CSS), which dictate the limiting stability of the rock slope 
(Jiang et al. 2016).

It can be further noticed from Fig. 2 that the upward 
direction of kv demands a flat LSF at ωH/Vs = 0.94. However, 
such observation may not be true for other values of ωH/Vs. 
Hence, the influence of the frequency-dependent behavior 
of kv on ψ is presented in Fig. 3 by selecting four pertinent 
points (K, L, M, and N) corresponding to ωH/Vs = 0.94, 
1.88, 3.77, and 5.65, respectively. The points K, L, M, and N 
encompassing the currently adopted frequency range assist 

Fig. 7  Variation of ψ for different values of ξ and ωH/Vs with 
σci/γh = 8, GSI = 40, mi = 15, D = 0, kv =  ± 0.5kh, Vp/Vs = 1.87, and 
d/h = 0: a kh = 0.10; b kh = 0.15
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Fig. 8  Variation of ψ for different seismic approaches with σci/γh = 8, 
GSI = 40, mi = 15, D = 0, ξ = 0.10, kh = 0.2, kv =  ± 0.5kh, Vp/Vs = 1.87, 
and d/h = 0
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in portraying the frequency-dependent behavior of the LSF 
effectively. The points K and L are chosen to bracket the first 
fundamental frequency of S-waves. Similarly, points M and 
N are selected to bracket the second fundamental frequency 
of S-waves. Consequently, the first fundamental frequency 
of P-waves gets bracketed inevitably by the points L and 
M. By following the recommendation of Kramer (1996), 
the (n + 1)th normalized fundamental frequency of S-waves 
propagating through a dry, homogeneous, and damped rock 
mass can be expressed as

In Fig. 4, the LSFs derived at different values of ωH/Vs 
corresponding to the aforesaid points K, L, M, and N are 
presented for kh = 0.2. It can be seen from Figs. 3 and 4 that 
the variations of ψ and LSF are significantly affected by 
the direction of kv depending on the frequency content of 
seismic waves. For higher values of kh, the upward direc-
tion of kv is seen to be critical for a range of ωH/Vs varying 
from 0 to π/2 (Fig. 3), whereas the downward direction of kv 
seems to be critical for ωH/Vs varying from π/2 to 0.93π. It 
is worth noting that ωH/Vs = π/2 and ωH/Vs = 0.93π repre-
sent the first normalized fundamental frequencies of S- and 

(28)

(

�H

Vs

)

(n+1)f

=
�

2
+ n� ; [n = 0, 1, 2,………… ..,∞].

P-waves ((ωH/Vs)1f and (ωH/Vp)1f), respectively, considering 
Vp/Vs = 1.87 as applicable to most geo-materials (Kramer 
1996). Hence, it is reasonable to infer that the critical direc-
tion of kv alters with the fundamental frequency of seismic 
waves. It can be seen from Fig. 4 that the difference in the 
LSFs derived for the upward and the downward directions of 
kv reduces with the increase in ωH/Vs beyond π/2. Moreover, 
the LSFs become steeper as the frequency passes through 
the points L, M, and N. It may be attributed to the fact that 
the amplified acceleration profile in the horizontal direction 
undergoes a phase shift at points L, M, and N, which even-
tually subsides the net seismic inertial force in the medium 
significantly. Hence, it can be conceived that vertical seismic 
acceleration certainly needs meticulous attention while con-
sidering the seismic stability analysis of slopes. By consider-
ing the set of parameters adopted for the current parametric 
study, the upward direction of kv is typically found to be crit-
ical. Accordingly, it is followed in the subsequent analysis.

The variations of the LSF for different magnitudes of kv 
and kh are shown in Figs. 5 and 6, respectively. It can be 
observed that the LSFs become progressively flat with an 
increase in kv and kh. However, the extent of variation in the 
LSFs with different kh values is quite significant compared to 
kv. It may be attributed to the increase in kh expedites greater 
seismic inertial forces in the medium than kv.
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4.2  Effect of Rock Mass Damping

The attenuation response in the seismic impact caused by 
the rock mass damping (ξ), especially near the fundamental 
frequencies of seismic waves, is worth exploring. In Fig. 7, 
the variation of ψ with various magnitudes of ξ and kh is 
shown. From Fig. 7, a sudden rise in the magnitude of 
ψ at the fundamental frequencies of seismic waves can 
be observed due to the resonance effect. However, such 
resonance effect is found to diminish with the increase in 
ξ. For kh = 0.1, a reduction of 5.42%, 16.85%, 21.29%, and 
25.60% can be noted in the magnitude of ψ at the points K, 
L, M, and N, respectively, with an increase in ξ from 5 to 
15%. Hence, it can be perceived that the damping affects 
the response at higher frequencies more than at lower 
frequencies (Kramer 1996).

4.3  Effect of Frequency

Figure  8 presents the variation of ψ with ωH/Vs for 
different seismic approaches (MPD, OPD, and PS). 
It can be seen from Fig.  8 that the MPD approach 
generates distinct peaks in the variation of ψ at the 
fundamental frequencies of S-waves. In contrast, the 
OPD approach shows a mild variation in the magnitude 
of ψ even at higher values of fa, whereas the value of 
ψ obtained from the PS approach is independent of the 
frequencies for the apparent reason. For different seismic 
approaches, the variation of LSFs at different frequency 
contents corresponding to the points K, L, M, and N is 
presented in Fig. 9. It can be conceived from Fig. 9 that 
considerably steeper LSFs derived from the OPD and the 
PS approaches severely overestimate the limiting stability 
of the rock slope compared to the MPD approach at the 
frequency levels corresponding to K and L. In contrast, for 
the frequency contents corresponding to M and N, the PS 
approach develops a relatively flat LSF compared to the 
MPD approach and thus resulting in an over-conservative 
design, especially at the higher frequency level. The 
diverse trends of ψ and LSF with ωH/Vs for different 
seismic approaches can be understood well by plotting 
the distributions of αh and αv along the slope height, as 
shown in Fig. 10. It can be observed from Fig. 10 that 
the resulting amplified acceleration profiles encounter a 
usual phase change at each fundamental frequency (π/2, 
3π/2) of the respective seismic wave, which dives into a 
subsequent phase shift in the seismic forces induced in 
the medium (Nandi et al. 2021b). Eventually, the seismic 
inertia forces predicted by the MPD approach become 
an obvious function of ωH/Vs and ξ, which cannot be 
captured by the OPD or the PS approach due to inherent 
limitations. Thus, the MPD approach contributes to a 
more rational seismic design of rock slopes by urging for 
the effective inclusion of the frequency content, the rock 
mass damping, and the wave velocities.

4.4  Effect of the Depth of Rigid Base

The depth of the rigid base (H), as shown in Fig. 1a, may 
not be a constant parameter. It may, instead, vary depending 
on the actual geological formation of the deposit. Figure 11 
shows the variation of LSFs for different values of d/h ratio 
at various frequency levels. It can be seen from Fig. 11 that 
the effect of the d/h ratio on the LSF is not notable up to 
a certain critical depth from the top surface (OG) of the 
slope. However, different LSFs at various d/h ratios can 
be observed beyond the aforesaid critical depth. Figure 11 
shows that the range of such critical depth is hugely 
dependent on the frequency level. At a relatively low value 

(a)

(b) 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

αh

z/h
ωH/Vs = 0.94 (K)

ωH/Vs = 1.88 (L)

ωH/Vs = 3.77 (M)

ωH/Vs = 5.65 (N)

αh = 0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

αv

z/h

ωH/Vp = 0.50 (K)

ωH/Vp = 1.00 (L)

ωH/Vp = 2.00 (M)

ωH/Vp = 3.00 (N)

αv = 0

Fig. 10  Variation of a αh for different values of ωH/Vs; b αv for 
different values of ωH/Vp; with σci/γh = 8, GSI = 40, mi = 15, D = 0, 
ξ = 0.10, kh = 0.2, kv =  ± 0.5kh, Vp/Vs = 1.87, and d/h = 0



5090 S. Nandi, P. Ghosh 

1 3

(a) 

(b)

-1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

ωH/Vs = 0.94 (K)

x/h

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0
ωH/Vs = 0.94 (K)

αh

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

αh = 0

-1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

ωH/Vs = 1.88 (L)

x/h

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0
ωH/Vs = 1.88 (L)

αh

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

αh = 0

(c)

(d)

-1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

ωH/Vs = 3.77 (M)

x/h

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Inflection point
   [typical]

ωH/Vs = 3.77 (M)

αh

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

αh = 0

-1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

ωH/Vs = 5.65 (N)

x/h

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0
ωH/Vs = 5.65 (N)

αh

z/
h

d/h = 0
d/h = 0.25
d/h = 0.50
d/h = 0.75
d/h = 1.00

αh = 0αh = 0

Fig. 11  Variation of LSFs and αh for different values of d/h with σci/γh = 8, GSI = 40, mi = 15, D = 0, ξ = 0.10, kh = 0.2, kv =  ± 0.5kh, and 
Vp/Vs = 1.87: a ωH/Vs = 0.94; b ωH/Vs = 1.88; c ωH/Vs = 3.77; d ωH/Vs = 5.65



5091Seismic Stability Assessment of Rock Slopes Using Limiting Slope Face Concept  

1 3

 )b( )a(

 )d( )c(

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

GSI = 10
GSI = 30
GSI = 50
GSI = 70
GSI = 100

x/h

z/
h

σci /γh = 8, mi = 15, D = 0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

GSI = 40, mi = 15, D = 0

x/h

z/
h

σci /γh = 0.625

σci /γh = 2.500

σci /γh = 10.00

σci /γh = 40.00

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

σci /γh = 8, GSI = 40, D = 0

x/h

z/
h

mi = 5
mi = 15
mi = 25
mi = 35

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

σci /γh = 8, GSI = 40, mi = 15

x/h
z/
h

D = 0
D = 0.25
D = 0.50
D = 0.75
D = 1.00

Fig. 12  Variation of LSFs with ξ = 0.10, kh = 0.2, kv = -0.5kh, ωH/Vs = 0.94, Vp/Vs = 1.87, and d/h = 0 for different values of: a GSI; b σci/γh; c mi; 
d D 

(a)

(b)

σci/γh = 2.5

Critical slip surface 
(CSS) [typical]

σ+ [typical]

Limiting slope face 
(LSF) [typical]

σ- [typical]

A

Top surface [typical]
O G

σci/γh = 10

A

O G

σci/γh = 2.5

A

O G
σci/γh = 10

A

O G

Fig. 13  Stress characteristics meshes for GSI = 40, mi = 15, D = 0, ξ = 0.10, kv = -0.5kh, ωH/Vs = 0.94, Vp/Vs = 1.87, and d/h = 0: a kh = 0; b 
kh = 0.25



5092 S. Nandi, P. Ghosh 

1 3

of ωH/Vs (point K), the critical depth almost extends to the 
entire height of the slope, and hence, the magnitude of the 
d/h ratio is seen to have no substantial impact on the LSF. 
In contrast, at the higher values of ωH/Vs (points L, M, 
and N), the critical depth does not stretch beyond z/h = 0.3. 
It can be further endorsed by plotting the normalized 
horizontal acceleration (αh) profile committed along the 
depth of the rock slope, as shown in Fig. 11. In Fig. 11a, 
the fluctuation of αh corresponding to the point K is not 
found to be significant with the variation of the d/h ratio. In 
contrast, a remarkable variety of αh corresponding to higher 
frequency levels (points L, M, and N) can be observed with 
the increase in the d/h ratio (Fig. 11b–d). At frequencies 
corresponding to points L, M, and N, the inflection points 
responsible for the phase change in αh shift to a deeper 
depth as d/h ratio increases, implying a consequent rise in 
the seismic inertia forces in the vibrating medium. Hence, it 
can be realized that increasing d/h ratio at higher frequency 
necessitates relatively flat LSFs beyond the critical depth 
to compensate for such enhanced inertia forces induced in 
the medium.

4.5  Effect of Rock Mass Properties

Figure 12 shows the variation of LSFs for different rock 
mass properties (GSI, σci/γh, mi, and D) with ξ = 0.10, 
kh = 0.2, kv = -0.5kh, ωH/Vs = 0.94, Vp/Vs = 1.87, and d/h = 0. 
In Fig. 12a–c, the LSFs adopt steeper configurations with the 
enhancement in the magnitude of GSI, σci/γh, and mi. It is 
worth mentioning that the enhancement in the value of GSI, 
σci/γh, and mi generally indicates a good quality rock mass 
with relatively higher strength. In contrast, the strength of 
the rock mass deteriorates with an increase in the rock mass 
disturbance factor (D). Hence, the LSFs are found to acquire 
flat layouts with an increase in the magnitude of D.

4.6  Adaptive Slip Surface and Stress Contour

In Fig. 13, the variation of the CSSs alongside the LSFs 
is presented with different values of σci/γh under static and 
seismic conditions. The evolved CSSs are found to be non-
linear without following any specific shape, as assumed in 
the previous investigations. In addition, the extent of the 
influence zone at a given value of σci/γh is found to expand 
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with increased seismic accelerations. However, the size 
and the curvature of the CSSs decrease with increasing 
σci/γh to produce comparatively steeper LSFs. Such a self-
adaptive feature of the CSS, along with the associated plastic 
failure domain, helps to perceive the seismic slope stability 
precisely. Further, this investigation ensures continuous 
monitoring of stresses mobilized in the developed failure 
domain. Figure 14 shows the mobilization of stresses inside 
the disturbed region as normalized stress (p/σci) contours. 
With increasing seismicity levels, the stress contours at a 
lower value of σci/γh reveal a relatively intense and rapid 
mobilization of stresses near the CSS but a gradual release 
toward the stress-free slope face. In contrast, a uniform and 
mild variation in the mobilized stresses can be noticed at 
a higher magnitude of σci/γh. Further, it can be seen from 
Fig. 14 that the normalized stress (p/σci) drops significantly 
with an increase in the value of σci/γh.

4.7  Inclined Top Surface

In this study, LSFs are primarily derived assuming the 
horizontal top surface of the slope (OG) (Fig. 1a). However, 
on several occasions, the top surface of the slope (OG) may 
be inclined with the horizontal (χ), as shown in Fig. 15a. 
The present LSF concept is also applicable to address the 
seismic stability of slopes with an inclined top surface (OG). 
However, the current MPD approach demands a horizontal 
top surface to conduct the analysis (Gu and Wu 2019; Zhao 
et al. 2020; Zhong and Yang 2021). Hence, an attempt is 
made to derive the LSF with the inclined top surface by 
employing the PS approach. Consequently, the stress 
boundary conditions applicable to OG, as stated in Eq. (19a, 
19b), can be modified as (Kumar and Mohan Rao 2003; 
Kumar and Chakraborty 2013)

Fig. 15  a Problem definition 
for limiting slope profile (LSF) 
with an inclined top surface; b 
variation of LSFs based on PS 
approach for different values 
of χ with σci/γh = 8, GSI = 40, 
mi = 15, D = 0, kv = -0.5kh
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It is worth observing from Eq. (29a, 29b) that Eq. (29a, 
29b) turns into Eq. (19a, 19b) as χ approaches to 0, indicat-
ing a horizontal top surface (OG). Figure 15b depicts the 
variation of LSFs under static (kh = 0) and seismic (kh = 0.2) 
conditions for various values of χ. For both conditions, the 
LSFs are seen to acquire flat layouts as the magnitude of χ 
increases. It may be attributed to the fact that the inclined 
top surface exerts greater driving forces on the slope due to 
surplus rock mass. However, the impact of χ on the limiting 
stability is not found to be significant. Later, the stability of 
a rock-cut slope with an inclined top surface from the field is 
analyzed using the LSF concept to showcase the legitimacy 
of the proposed method.

(29a)�ng = q
[(

1 ± kv
)

cos
2 � − khsin�cos�

]

(29b)�g = −q
[(

1 ± kv
)

sin�cos� + khcos
2 �

]

.

5  Comparison

The current methodology demonstrates the slope stability 
analysis considering the concept of the LSF (FS = 1.0). 
Hence, a direct quantitative comparison with the available 
studies is difficult as the previous investigations focused on 
the minimum FS. However, considering different seismic 
approaches (PS, OPD, and MPD), the present results are 
compared qualitatively with the available studies (Li et al. 
2009; Jiang et al. 2016; Qin and Chian 2018; Sarkar and 
Chakraborty 2021; Zhong and Yang 2021) in Figs. 16, 17, 
18, 19, 20. Using the lower and the upper bound FELA 
coupled with the PS approach, Li et al. (2009) provided a 
set of stability charts based on the stability number, N = σci/
(γh.FS). Jiang et al. (2016) and Sarkar and Chakraborty 
(2021) recommended similar stability charts based on 
an explicit definition of the FS but under the framework 
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of the limit equilibrium (LE) and the variational limit 
equilibrium (VLE) methods, respectively. Qin and Chian 
(2018) employed a discretization-based kinematic approach 
of the limit analysis (LA) alongside the OPD approach to 
determine the seismic ultimate bearing capacity (q/γh) of 
rock slopes. Further, Zhong and Yang (2021) implemented 
a combined framework of the kinematic approach of the LA 
and the MPD approach to revisit the seismic stability of rock 
slopes in terms of the critical stability number, Ncr = σci/γh, 
at FS = 1.0. Whatever the solution strategy, all the studies 
mentioned above considered a predetermined slope 
geometry, primarily linear, to commence with the analysis. 
In contrast, the present analysis surpasses such restriction 
by deriving the curvilinear LSF with the inputs taken from 
various available studies. Hence, considering different rock 
mass properties and seismic loading parameters, rational 
comparisons between the current LSFs and the linear slopes 
adopted by the available studies (Li et al. 2009; Jiang et al. 
2016; Qin and Chian 2018; Sarkar and Chakraborty 2021; 
Zhong and Yang 2021) are presented in Figs. 16, 17, 18, 19, 
20. It can be conceived from the comparison that the present 
curvilinear LSF mainly reveals a steeper gradient compared 
to the traditional linear slope considered by various 

researchers, except for Qin and Chian (2018). In Figs. 16 
and 17, the current LSFs obtained from the PS and the MPD 
approaches, respectively, compare reasonably well with the 
linear slopes (α = 45° and 60°) adopted by Li et al. (2009) 
and Zhong and Yang (2021), where α is the horizontal 
inclination of the linear slope. Such a close agreement of the 
present LSFs with the linear slopes considered by previous 
researchers authenticates the accuracy and robustness of the 
proposed methodology. In Fig. 18, the current LSFs at higher 
values of GSI are found to be marginally flat compared to 
the linear slope assumed by Qin and Chain (2018) with 
α = 50°. It may be attributed to the linearization of the GHB 
envelope through a generalized tangential technique by Qin 
and Chian (2018), which eventually overestimates the rock 
strength. Sarkar and Chakraborty (2021) followed a similar 
GHB envelope linearization process through the equivalent 
Mohr–Coulomb criterion. However, in the investigation 
of Sarkar and Chakraborty (2021), the effect of the rock 
strength overestimation successively subjugates through 
enhanced driving forces developed in an enlarged failure 
domain evolved with the VLE method. On the contrary, 
Jiang et  al. (2016) considered predefined circular slip 
surfaces for the analysis based on the LE method. Hence, 
it can be seen from Fig. 19 that the current LSFs derived 
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for the PS approach are steeper than the linear slopes 
(α = 30°) considered by Jiang et al. (2016) and Sarkar and 
Chakraborty (2021).

In addition to the LSF, the critical slip surface (CSS) of rock 
slopes at the limiting equilibrium is also a primary concern of 
practicing engineers. Figure 20 compares the CSSs and LSFs 
obtained from this study with those reported by Qin and Chian 
(2018) at various seismicity levels. It can be seen from Fig. 20 
that at lower seismicity levels, the current LSFs and CSSs dif-
fer significantly from those obtained by Qin and Chian (2018). 
However, a good agreement with Qin and Chian (2018) can 
be found as the seismicity level rises. Qin and Chian (2018) 
considered a strip footing resting with a set-back distance from 
the slope crest while determining the seismic ultimate bearing 
capacity (q/γh) of linear rock slope (α = 50°). In contrast, the 

present work considers a comparable magnitude of surcharge 
(q/γh) but starts from the slope crest (O) to derive the LSF. 
Apart from that, Qin and Chian (2018) adopted the generalized 
tangential technique to linearize the GHB criterion, which, as 
previously mentioned, further influences variation by overes-
timating the rock mass strength.

6  Application to Real Slopes

The proposed LSF concept is applied to analyze the 
seismic stability of various real slopes, as listed in 
Table 2. The analysis procedure primarily relies upon a 
profile-matching scheme, as illustrated by Nandi et al. 
(2021b). Accordingly, the LSF corresponding to the 
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target FS of unity is first determined with the given rock 
mass properties and seismic inputs and then matched 
with the existing rock slope profile. Later, the stability 
of the slope can be assessed by examining the safety 
margin between the known profile and the derived profile. 
If the existing profile is found to be flat compared to 
the derived LSF (FS = 1.0), it remains safe and stable. 
Following this principle, the case study on the Donghekou 
landslide induced by the Wenchuan earthquake (2008) is 
revisited here. Among various landslides triggered by the 
Wenchuan earthquake, the Donghekou landslide located 
in Hongguang city of Qingchuan country was one of the 
large-scale rapid and long run-out landslides. The on-site 
acceleration records of the Wenchuan earthquake are 
shown in Fig. 21a. The geological conditions at the site 
are complex and mainly composed of metamorphic rocks 
and limestones (Zhao et al. 2017). The cross-section of 
the original slope in the Donghekou landslide is shown in 
Fig. 21b with the following details, α = 35° and h = 360 m 
(Zhang et al. 2015). As reported by Zhao et al. (2017), 
the geo-mechanical parameters of the rock mass at that 
site are mentioned in Table 2. However, more details of 
the location, such as groundwater table conditions and 

weathering parameters, can be obtained from earlier 
studies (Sun et al. 2012; Zhang et al. 2015; Zhao et al. 
2017). Previous researchers (Sun et al. 2012; Zhang et al. 
2015; Zhao et al. 2017) studied the Donghekou landslide 
using various techniques to consider wide-ranging and 
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deadliest causalities. Zhao et al. (2017) determined the 
slope displacement accumulated during the seismic 
event using the upper bound LA and the rigid block 
displacement technique. In the rigid block displacement 
technique, the displacement starts accumulating as the 
limiting stability of a given slope under the seismic 
condition exceeds. Accordingly, Zhao et  al. (2017) 
reported no permanent displacement up to t = 15  s. 
The displacement accumulation began only at t = 15 s, 
followed by a devastating landslide. Hence, it can be 
reasonably assumed that the rock slope was marginally 
stable up to t = 15 s. At t = 15 s, seismic inertia forces 
induced by earthquake acceleration magnitudes of 0.22 g 
and − 0.14 g in the horizontal and vertical directions, 
respectively, as indicated in Fig.  21a, surpassed the 
limiting stability (FS = 1.0) and pushed the slope toward 
imminent collapse. By employing these parameters 
as inputs (Table 2), the LSFs are derived based on the 
present analysis under static and pseudo-static conditions 
and compared with the original slope (α = 35°) of the 
Donghekou landslide in Fig. 21c. Figure 21c indicates 
that the current LSF derived for the static condition is 
steeper than the original Donghekou slope. Hence, the 
Donghekou slope remained stable as long as there was 
no seismic evidence. However, in the presence of seismic 
excitation, the Donghekou slope urged for a flat profile to 
maintain the state of limiting stability (FS = 1.0), which 
can be seen from the present LSF under the pseudo-static 
condition. Since such a flat, curved slope profile was not 
satisfied with the comparatively steeper Donghekou linear 
slope with α = 35° (Fig. 21c), the slope led to an imminent 
collapse accompanied by a large co-seismic displacement 
as previously investigated by Zhao et al. (2017).

The seismic stability of the right abutment slope of the 
Chenab railway bridge in the Himalayas, India (Latha and 
Garaga 2010) and a cut slope along the National Highway 
(NH – 7) in Uttarakhand, India (Singh et  al. 2022) is 
examined using the present LSF concept. The input 
parameters required for this analysis are adopted from 
relevant literature and mentioned in Table 2. It is worth 
noting that some surcharge loads from the bridge piers 
were considered while analyzing the stability of the right 
abutment of the Chenab railway bridge (Latha and Garaga 
2010). However, in this study, such surcharge loads are 
neglected due to their nominal values. In Fig. 22, the LSFs 
obtained from the current analyses are noticed to compare 
reasonably well with the existing profiles for both cases. 
Consequently, these slopes are marginally stable based on 
FS of 1.0. Latha and Garaga (2010) and Singh et al. (2022) 
also reported similar results with FS values of 1.02 and 
0.995, respectively. Thus, the current LSF-based stability 
criterion establishes an efficient and expedient benchmark 
for the stability analysis of existing rock slopes. Ta

bl
e 

2 
 In

pu
t p

ar
am

et
er

s u
se

d 
fo

r v
al

id
at

in
g 

va
rio

us
 c

as
e 

stu
di

es

a  To
p 

su
rfa

ce
 o

f t
he

 sl
op

e 
is

 in
cl

in
ed

 to
 th

e 
ho

riz
on

ta
l a

t a
n 

an
gl

e 
(χ

) o
f a

pp
ro

xi
m

at
el

y 
11

°, 
an

d 
he

nc
e,

 th
e 

sl
op

e 
he

ig
ht

 (h
) i

s m
ea

su
re

d 
fro

m
 th

e 
to

e 
(A

) t
o 

th
e 

cr
es

t (
O

) o
f t

he
 sl

op
e

C
as

e 
stu

di
es

Re
fe

re
nc

es
In

pu
t p

ar
am

et
er

s

σ c
i (

M
Pa

)
G

SI
m

i
D

γ (
kN

/m
3 )

h (m
)

σ c
i/γ

h
m

b
s

k h
k v

D
on

gh
ek

ou
 la

nd
sl

id
e,

 H
on

gg
ua

ng
, Q

in
gc

hu
an

Zh
ao

 e
t a

l. 
(2

01
7)

45
45

8
1.

0
23

36
0

5.
4

0.
15

7
1.

04
E-

04
0.

22
−

 0
.1

4
R

ig
ht

 a
bu

tm
en

t o
f C

he
na

b 
ra

ilw
ay

 b
rid

ge
, H

im
al

ay
as

, I
nd

ia
La

th
a 

an
d 

G
ar

ag
a 

(2
01

0)
11

5
43

23
.5

2
 −

 
27

35
0

12
.2

0.
59

1.
27

E-
03

0.
31

−
 0

.2
0

C
ut

 sl
op

e,
 N

at
io

na
l H

ig
hw

ay
 (N

H
)-

7,
 U

tta
ra

kh
an

d,
 In

di
a

Si
ng

h 
et

 a
l. 

(2
02

2)
62

.8
41

10
1.

0
27

40
a

58
.1

0.
14

8
5.

36
E-

05
0.

26
0.

15



5099Seismic Stability Assessment of Rock Slopes Using Limiting Slope Face Concept  

1 3

7  Conclusions

An integrated framework of the method of stress char-
acteristics (MSC), the modified pseudo-dynamic (MPD) 
approach, and the generalized Hoek–Brown (GHB) 
strength criterion is effectively implemented in this paper 
to predict the limiting seismic stability of rock slopes. 
Traditional stability indices, such as stability number and 
factor of safety, are replaced with the concept of the limit-
ing slope face (LSF). The current methodology obliterates 
the demand for prejudged geometry of the slope face and 
the slip surface. Compared to the traditional linear slopes, 
the derived LSFs are found to provide an optimized solu-
tion with a factor of safety of 1.0. An extensive paramet-
ric study demonstrating the effect of various rock mass 
properties, seismic wave parameters, rigid variable base, 
and inclined top surface imparts a better insight into the 
limiting behavior of rock slopes. The LSF-based design 
charts are provided to assess the seismic stability of rock 
slopes efficiently. For the advancements in rock slope engi-
neering, the LSF concept is applied to different case stud-
ies, advocating the practical implications of the proposed 
technique. The present study focuses on determining slope 
faces at the limiting stability (FS = 1.0), whereas in stand-
ard design practice, slope faces with FS > 1.0 are generally 
reported. Hence, this study can be extended further by 
coupling it with an appropriate strength reduction strategy 
to obtain higher FS.
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(b) (c)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

z/
h

 LSF for slope of Donghekou landslide (Static)
 LSF for slope of Donghekou landslide (Pseudo-static)
 Original slope of Donghekou landslide 

                         (Zhao et al. 2017) 

x/h

α = 35o

-0.14 (g)

15
s

Vertical ground motion record

0.22 (g)

15
s

Horizontal ground motion record

Sliding deposits

Original slope

Sliding surface

Hongshi river Xiasi river

Fig. 21  a Accelerations of Whenchuan earthquake (Zhao et  al. 2017); b cross-section of the Donghekou landslide (Zhang et  al. 2015); c 
comparison of present LSFs with the original slope in Donghekou landslide (Zhao et al. 2017) based on PS approach
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Fig. 22  Comparison of present LSFs under PS condition with a 
the slope of right abutment of Chenab railway bridge, Himalayas, 
India (Latha and Garaga 2010); b the rock-cut slope along NH-7, 
Uttarakhand, India (Singh et al. 2022)



5100 S. Nandi, P. Ghosh 

1 3

Acknowledgements The first author acknowledges the Ministry 
of Education, Government of India, for Prime Minister’s Research 
Fellowship grant.

Author Contributions Conceptualization: PG; methodology: SN and 
PG; formal analysis and investigation: SN; writing–original draft 
preparation: SN; writing—review and editing: PG; resources: SN and 
PG; supervision: PG.

Data Availability Some or all data, models, or codes that support the 
findings of this study are available from the corresponding author upon 
reasonable request.

Declarations 

Conflict of Interest The authors have no relevant financial or non-
financial interests to disclose. The authors have no competing 
interests to declare that are relevant to the content of this article. All 
authors certify that they have no affiliations with or involvement in 
any organization or entity with any financial interest or non-financial 
interest in the subject matter or materials discussed in this manuscript. 
The authors have no financial or proprietary interests in any material 
discussed in this article.

References

Belghali M, Saada Z, Garnier D, Maghous S (2017) Pseudo-static 
stability analysis of rock slopes reinforced by passive bolts using 
the generalized Hoek-Brown criterion. J Rock Mech Geotech Eng 
9(4):659–670. https:// doi. org/ 10. 1016/j. jrmge. 2016. 12. 007

Bellezza I (2014) A new pseudo-dynamic approach for seismic active 
soil thrust. Geotech Geol Eng 32(2):561–576. https:// doi. org/ 10. 
1007/ s10706- 014- 9734-y

Bellezza I (2015) Seismic active earth pressure on walls using a new 
pseudo-dynamic approach. Geotech Geol Eng 33(4):795–812. 
https:// doi. org/ 10. 1007/ s10706- 015- 9860-1

Booker JR, Davis EH (1972) A general treatment of plastic 
anisotropy under conditions of plane strain. J Mech Phys Solids 
20(4):239–250

Choudhury D, Nimbalkar S (2005) Seismic passive resistance by 
pseudo-dynamic method. Géotechnique 55(9):699–702. https:// 
doi. org/ 10. 1680/ geot. 2005. 55.9. 699

Fan G, Zhang L, Zhang J, Yang C (2019) Analysis of seismic stability 
of an obsequent rock slope using time–frequency method. 
Rock Mech Rock Eng 52:3809–3823. https:// doi. org/ 10. 1007/ 
s00603- 019- 01821-9

Fu W, Liao Y (2010) Non-linear shear strength reduction technique 
in slope stability calculation. Comput Geotech 37(3):288–298. 
https:// doi. org/ 10. 1016/j. compg eo. 2009. 11. 002

Gischig VS, Eberhardt E, Moore JR, Hungr O (2015) On the seismic 
response of deep-seated rock slope instabilities – insights from 
numerical modeling. Eng Geol 193:1–18. https:// doi. org/ 10. 
1016/j. enggeo. 2015. 04. 003

Gray DH (2013) Influence of slope morphology on the stability of 
earthen slopes. In: Proceedings of Geo-Congress 2013, Reston, 
VA, pp 1902–1911

Gu XB, Wu QH (2019) Seismic stability analysis of waterfront 
rock slopes using the modified pseudo-dynamic method. 
Geotech Geol Eng 37(3):1743–1753. https:// doi. org/ 10. 1007/ 
s10706- 018- 0718-1

Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. 
J Geotech Eng Div ASCE 106(9):1013–1035. https:// doi. org/ 10. 
1061/ AJGEB6. 00010 29

Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int 
J Rock Mech Min Sci 34(8):1165–1186. https:// doi. org/ 10. 1016/ 
S1365- 1609(97) 80069-X

Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-brown failure 
criterion – 2002 edition. In: Proceedings of the 5th North 
American rock mechanics symposium, Toronto, pp 267–273

Jahanandish M, Keshavarz A (2005) Seismic bearing capacity of 
foundations on reinforced soil slopes. Geotext Geomembr 
23(1):1–25. https:// doi. org/ 10. 1016/j. geote xmem. 2004. 09. 001

Jiang XY, Cui P, Liu CZ (2016) A chart-based seismic stability 
analysis method for rock slopes using Hoek-Brown failure 
criterion. Eng Geol 209:196–208. https:// doi. org/ 10. 1016/j. 
enggeo. 2016. 05. 015

Keshavarz A, Kumar J (2018) Bearing capacity of foundations on 
rock mass using the method of characteristics. Int J Numer Anal 
Methods Geomech 42(3):542–557. https:// doi. org/ 10. 1002/ nag. 
2754

Keshavarz A, Kumar J (2021) Bearing Capacity of ring foundations 
over rock media. J Geotech Geoenviron Eng 147(6):04021027. 
https:// doi. org/ 10. 1061/ (ASCE) GT. 1943- 5606. 00025 17

Keshavarz A, Fazeli A, Sadeghi S (2016) Seismic bearing capacity 
of strip footings on rock masses using the Hoek-Brown failure 
criterion. J Rock Mech Geotech Eng 8(2):170–177. https:// doi. 
org/ 10. 1016/j. jrmge. 2015. 10. 003

Kramer SL (1996) Geotechnical earthquake engineering. Prentice 
Hall, Upper Saddle River, New Jersey

Kumar J, Chakraborty D (2013) Seismic bearing capacity of 
foundations on cohesionless slopes. J Geotech Geoenviron Eng 
139(11):1986–1993. https:// doi. org/ 10. 1061/ (ASCE) GT. 1943- 
5606. 00009 09

Kumar J, Mohan Rao VBK (2003) Seismic bearing capacity of 
foundations on slopes. Géotechnique 53(3):347–361. https:// 
doi. org/ 10. 1680/ geot. 2003. 53.3. 347

Kumar J, Rahaman O (2020) Lower bound limit analysis using 
power cone programming for solving stability problems in 
rock mechanics for generalized Hoek-Brown criterion. Rock 
Mech Rock Eng 53:3237–3252. https:// doi. org/ 10. 1007/ 
s00603- 020- 02099-y

Latha GM, Garaga A (2010) Seismic stability analysis of a 
Himalayan rock slope. Rock Mech Rock Eng 43:831–843. 
https:// doi. org/ 10. 1007/ s00603- 010- 0088-3

Li AJ, Lyamin AV, Merifield RS (2009) Seismic rock slope stability 
charts based on limit analysis methods. Comput Geotech 36(1–
2):135–148. https:// doi. org/ 10. 1016/j. compg eo. 2008. 01. 004

Li C, Jiang P, Zhou A (2019) Rigorous solution of slope stability 
under seismic action. Comput Geotech 109:99–107. https:// doi. 
org/ 10. 1016/j. compg eo. 2019. 01. 018

Li C, Wei S, Xu X, Qu X (2022) Modelling of critical acceleration 
for regional seismic landslide hazard assessments by finite 
element limit analysis. Front Earth Sci. https:// doi. org/ 10. 3389/ 
feart. 2022. 830371

Luo Y, Fan X, Huang R, Wang Y, Yunus AP, Havenith HB (2020) 
Topographic and near-surface stratigraphic amplification of 
the seismic response of a mountain slope revealed by field 
monitoring and numerical simulations. Eng Geol 271:105607. 
https:// doi. org/ 10. 1016/j. enggeo. 2020. 105607

Mononobe N, Matsuo H (1929) On the determination of earth 
pressure during earthquake. In: Proceedings of World 
Engineering Conf, Tokyo, Japan, pp 177–185

Nandi S, Santhoshkumar G, Ghosh P (2021a) Determination of 
critical slope face in c–ϕ soil under seismic condition using 

https://doi.org/10.1016/j.jrmge.2016.12.007
https://doi.org/10.1007/s10706-014-9734-y
https://doi.org/10.1007/s10706-014-9734-y
https://doi.org/10.1007/s10706-015-9860-1
https://doi.org/10.1680/geot.2005.55.9.699
https://doi.org/10.1680/geot.2005.55.9.699
https://doi.org/10.1007/s00603-019-01821-9
https://doi.org/10.1007/s00603-019-01821-9
https://doi.org/10.1016/j.compgeo.2009.11.002
https://doi.org/10.1016/j.enggeo.2015.04.003
https://doi.org/10.1016/j.enggeo.2015.04.003
https://doi.org/10.1007/s10706-018-0718-1
https://doi.org/10.1007/s10706-018-0718-1
https://doi.org/10.1061/AJGEB6.0001029
https://doi.org/10.1061/AJGEB6.0001029
https://doi.org/10.1016/S1365-1609(97)80069-X
https://doi.org/10.1016/S1365-1609(97)80069-X
https://doi.org/10.1016/j.geotexmem.2004.09.001
https://doi.org/10.1016/j.enggeo.2016.05.015
https://doi.org/10.1016/j.enggeo.2016.05.015
https://doi.org/10.1002/nag.2754
https://doi.org/10.1002/nag.2754
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002517
https://doi.org/10.1016/j.jrmge.2015.10.003
https://doi.org/10.1016/j.jrmge.2015.10.003
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000909
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000909
https://doi.org/10.1680/geot.2003.53.3.347
https://doi.org/10.1680/geot.2003.53.3.347
https://doi.org/10.1007/s00603-020-02099-y
https://doi.org/10.1007/s00603-020-02099-y
https://doi.org/10.1007/s00603-010-0088-3
https://doi.org/10.1016/j.compgeo.2008.01.004
https://doi.org/10.1016/j.compgeo.2019.01.018
https://doi.org/10.1016/j.compgeo.2019.01.018
https://doi.org/10.3389/feart.2022.830371
https://doi.org/10.3389/feart.2022.830371
https://doi.org/10.1016/j.enggeo.2020.105607


5101Seismic Stability Assessment of Rock Slopes Using Limiting Slope Face Concept  

1 3

method of stress characteristics. Int J Geomech 21(4):04021031. 
https:// doi. org/ 10. 1061/ (ASCE) GM. 1943- 5622. 00019 76

Nandi S, Santhoshkumar G, Ghosh P (2021b) Development of 
limiting soil slope profile under seismic condition using slip 
line theory. Acta Geotech 16(11):3517–3531. https:// doi. org/ 
10. 1007/ s11440- 021- 01251-4

Nimbalkar SS, Choudhury D, Mandal JN (2006) Seismic stability 
of reinforced-soil wall by pseudo-dynamic method. Geosynth 
Int 13(3):111–119. https:// doi. org/ 10. 1680/ gein. 2006. 13.3. 111

Okabe S (1926) General theory of earth pressure. J Jpn Soc Civ Eng 
12(6):1277–1323

Pain A, Choudhury D, Bhattacharyya SK (2017) Seismic rotational 
stability of gravity retaining walls by modified pseudo-dynamic 
method. Soil Dyn Earthq Eng 94:244–253. https:// doi. org/ 10. 
1016/j. soild yn. 2017. 01. 016

Qin C, Chian SC (2018) Seismic ultimate bearing capacity of a Hoek-
Brown rock slope using discretization-based kinematic analysis 
and pseudodynamic methods. Int J Geomech 18(6):04018054. 
https:// doi. org/ 10. 1061/ (asce) gm. 1943- 5622. 00011 47

Rajesh BG, Choudhury D (2017) Seismic passive earth resistance 
in submerged soils using modified pseudo-dynamic method 
with curved rupture surface. Mar Georesources Geotechnol 
35(7):930–938. https:// doi. org/ 10. 1080/ 10641 19X. 2016. 12600 
77

Renani HR, Martin CD (2020) Slope stability analysis using equivalent 
Mohr-Coulomb and Hoek-Brown criteria. Rock Mech Rock Eng 
53:13–21. https:// doi. org/ 10. 1007/ s00603- 019- 01889-3

Santhoshkumar G, Ghosh P (2020) Seismic stability analysis of a 
hunchbacked retaining wall under passive state using method of 
stress characteristics. Acta Geotech 15(10):2969–2982. https:// 
doi. org/ 10. 1007/ s11440- 020- 01003-w

Santhoshkumar G, Ghosh P, Murakami A (2019) Seismic active 
resistance of a tilted cantilever retaining wall considering adaptive 
failure mechanism. Int J Geomech 19(8):04019086. https:// doi. 
org/ 10. 1061/ (ASCE) GM. 1943- 5622. 00014 70

Sarkar S, Chakraborty M (2021) Pseudostatic stability analysis of rock 
slopes using variational method. Indian Geotech J 51(5):935–951. 
https:// doi. org/ 10. 1007/ s40098- 020- 00475-7

Serrano A, Olalla C (1994) Ultimate bearing capacity of rock masses. 
Int J Rock Mech Min Sci Geomech Abstr 31(2):93–106. https:// 
doi. org/ 10. 1016/ 0148- 9062(94) 92799-5

Serrano A, Olalla C, González J (2000) Ultimate bearing capacity of 
rock masses based on the modified Hoek-Brown criterion. Int J 
Rock Mech Min Sci 37(6):1013–1018. https:// doi. org/ 10. 1016/ 
S1365- 1609(00) 00028-9

Shen J, Priest SD, Karakus M (2012) Determination of Mohr-Coulomb 
shear strength parameters from generalized Hoek-Brown criterion 
for slope stability analysis. Rock Mech Rock Eng 45(1):123–129. 
https:// doi. org/ 10. 1007/ s00603- 011- 0184-z

Singh HM, Singh TN, Singh KH (2022) Integrated empirical and 
numerical approach for stability and failure analysis of cut slopes 
in seismically active Uttarakhand Himalayan, India. Eng Fail Anal 
131:105847. https:// doi. org/ 10. 1016/j. engfa ilanal. 2021. 105847

Sokolovski VV (1960) Statics of soil media. Butterworths Scientific 
Publications, London

Srikar G, Mittal S (2020) Seismic analysis of retaining wall subjected 
to surcharge: a modified pseudodynamic approach. Int J Geomech 
20(9):06020022. https:// doi. org/ 10. 1061/ (ASCE) GM. 1943- 5622. 
00017 80

Steedman RS, Zeng X (1990) The influence of phase on the calculation 
of pseudo-static earth pressure on a retaining wall. Géotechnique 
40(1):103–112. https:// doi. org/ 10. 1680/ geot. 1990. 40.1. 103

Sun P, Yin Y, Wu S, Chen L (2012) Does vertical seismic force play 
an important role for the failure mechanism of rock avalanches? 
A case study of rock avalanches triggered by the Wenchuan 

earthquake of May 12, 2008, Sichuan China. Environ Earth Sci 
66(5):1285–1293. https:// doi. org/ 10. 1007/ s12665- 011- 1338-8

Sun C, Chai J, Luo T, Xu Z, Qin Y, Yuan X, Ma B (2020) Stability 
charts for pseudostatic stability analysis of rock slopes using the 
non-linear Hoek-Brown strength reduction technique. Adv Civil 
Eng. https:// doi. org/ 10. 1155/ 2020/ 88410 90

Sun ZB, Wang BW, Hou CQ, Wu SC, Yang XL (2022) Pseudodynamic 
approach for rock slopes in Hoek-Brown media: three-dimensional 
perspective. Int J Geomech 22(11):04022190. https:// doi. org/ 10. 
1061/ (ASCE) GM. 1943- 5622. 00025 53

Tiwari G, Latha GM (2016) Design of rock slope reinforcement: an 
Himalayan case study. Rock Mech Rock Eng 49:2075–2097. 
https:// doi. org/ 10. 1007/ s00603- 016- 0913-4

Veiskarami M, Kumar J, Valikhah F (2014) Effect of the flow rule 
on the bearing capacity of strip foundations on sand by the 
upper-bound limit analysis and slip lines. Int J Geomech 
14(3):04014008. https:// doi. org/ 10. 1061/ (ASCE) GM. 1943- 5622. 
00003 24

Wallace CS, Schaefer LN, Villeneuve MC (2022) Material properties 
and triggering mechanisms of an andesitic lava dome collapse at 
Shiveluch Volcano, Kamchatka, Russia, revealed using the finite 
element method. Rock Mech Rock Eng 55:2711–2728. https:// doi. 
org/ 10. 1007/ s00603- 021- 02513-z

Wang B, Li T, Sun Z, Li Y, Hou C (2022a) A pseudo-dynamic approach 
for seismic stability analysis of rock slopes in Hoek-Brown media. 
Geotech Geol Eng 40(7):3561–3577. https:// doi. org/ 10. 1007/ 
s10706- 022- 02120-x

Wang S, Zhang Z, Huang X, Lei Q (2022b) Generalized block theory 
for the stability analysis of blocky rock mass systems under 
seismic loads. Rock Mech Rock Eng 55:2747–2769. https:// doi. 
org/ 10. 1007/ s00603- 021- 02628-3

Wu G, Zhao M, Zhang R, Lei M (2021) Ultimate bearing capacity of 
strip footings on Hoek-Brown rock slopes using adaptive finite 
element limit analysis. Rock Mech Rock Eng 54:1621–1628. 
https:// doi. org/ 10. 1007/ s00603- 020- 02334-6

Wu W, Utili S (2015) On the optimal profile of a rock slope. In: 
Proceedings of the 13th international congress of rock mechanics, 
Montreal, Canada

Xu X, Zhou X, Huang X, Xu L (2017) Wedge-failure analysis of the 
seismic slope using the pseudodynamic method. Int J Geomech 
17(12):04017108. https:// doi. org/ 10. 1061/ (ASCE) GM. 1943- 
5622. 00010 15

Xu J, Pan Q, Yang XL, Li W (2018) Stability charts for rock slopes 
subjected to water drawdown based on the modified non-linear 
Hoek-Brown failure criterion. Int J Geomech 18(1):04017133. 
https:// doi. org/ 10. 1061/ (ASCE) GM. 1943- 5622. 00010 39

Yang XL, Zou JF (2006) Stability factors for rock slopes subjected to 
pore water pressure based on the Hoek-Brown failure criterion. 
Int J Rock Mech Min Sci 43(7):1146–1152. https:// doi. org/ 10. 
1016/j. ijrmms. 2006. 03. 010

Yang XL, Li L, Yin JH (2004) Seismic and static stability analysis for 
rock slopes by a kinematical approach. Géotechnique 54(8):543–
549. https:// doi. org/ 10. 1680/ geot. 2004. 54.8. 543

Zeng X, Steedman RS (1993) On the behaviour of quay walls in 
earthquakes. Géotechnique 43(3):417–431. https:// doi. org/ 10. 
1680/ geot. 1993. 43.3. 417

Zhang Y, Wang J, Xu Q, Chen G, Zhao JX, Zheng L, Han Z, Yu P 
(2015) DDA validation of the mobility of earthquake-induced 
landslides. Eng Geol 194:38–51. https:// doi. org/ 10. 1016/j. enggeo. 
2014. 08. 024

Zhao L, Cheng X, Li L, Chen J, Zhang Y (2017) Seismic displacement 
along a log-spiral failure surface with crack using rock Hoek-
Brown failure criterion. Soil Dyn Earthq Eng 99:74–85. https:// 
doi. org/ 10. 1016/j. soild yn. 2017. 04. 019

Zhao L, Yu C, Li L, An A, Nie Z, Peng A, Zuo S (2020) Rock slope 
reliability analysis using Barton-Bandis failure criterion with 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001976
https://doi.org/10.1007/s11440-021-01251-4
https://doi.org/10.1007/s11440-021-01251-4
https://doi.org/10.1680/gein.2006.13.3.111
https://doi.org/10.1016/j.soildyn.2017.01.016
https://doi.org/10.1016/j.soildyn.2017.01.016
https://doi.org/10.1061/(asce)gm.1943-5622.0001147
https://doi.org/10.1080/1064119X.2016.1260077
https://doi.org/10.1080/1064119X.2016.1260077
https://doi.org/10.1007/s00603-019-01889-3
https://doi.org/10.1007/s11440-020-01003-w
https://doi.org/10.1007/s11440-020-01003-w
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001470
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001470
https://doi.org/10.1007/s40098-020-00475-7
https://doi.org/10.1016/0148-9062(94)92799-5
https://doi.org/10.1016/0148-9062(94)92799-5
https://doi.org/10.1016/S1365-1609(00)00028-9
https://doi.org/10.1016/S1365-1609(00)00028-9
https://doi.org/10.1007/s00603-011-0184-z
https://doi.org/10.1016/j.engfailanal.2021.105847
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001780
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001780
https://doi.org/10.1680/geot.1990.40.1.103
https://doi.org/10.1007/s12665-011-1338-8
https://doi.org/10.1155/2020/8841090
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002553
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002553
https://doi.org/10.1007/s00603-016-0913-4
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000324
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000324
https://doi.org/10.1007/s00603-021-02513-z
https://doi.org/10.1007/s00603-021-02513-z
https://doi.org/10.1007/s10706-022-02120-x
https://doi.org/10.1007/s10706-022-02120-x
https://doi.org/10.1007/s00603-021-02628-3
https://doi.org/10.1007/s00603-021-02628-3
https://doi.org/10.1007/s00603-020-02334-6
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001015
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001015
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001039
https://doi.org/10.1016/j.ijrmms.2006.03.010
https://doi.org/10.1016/j.ijrmms.2006.03.010
https://doi.org/10.1680/geot.2004.54.8.543
https://doi.org/10.1680/geot.1993.43.3.417
https://doi.org/10.1680/geot.1993.43.3.417
https://doi.org/10.1016/j.enggeo.2014.08.024
https://doi.org/10.1016/j.enggeo.2014.08.024
https://doi.org/10.1016/j.soildyn.2017.04.019
https://doi.org/10.1016/j.soildyn.2017.04.019


5102 S. Nandi, P. Ghosh 

1 3

modified pseudo-dynamic approach. Soil Dyn Earthq Eng 
139:106310. https:// doi. org/ 10. 1016/j. soild yn. 2020. 106310

Zhong JH, Yang XL (2021) Pseudo-dynamic stability of rock slope 
considering Hoek-Brown strength criterion. Acta Geotech 
17(6):2481–2494. https:// doi. org/ 10. 1007/ s11440- 021- 01425-0

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.soildyn.2020.106310
https://doi.org/10.1007/s11440-021-01425-0

	Seismic Stability Assessment of Rock Slopes Using Limiting Slope Face Concept
	Abstract
	1 Introduction
	2 Problem Statement and Assumptions
	3 Analysis
	3.1 Modified Pseudo-dynamic Approach
	3.2 Generalized Hoek–Brown Criterion
	3.3 Method of Stress Characteristics
	3.3.1 Equilibrium-Yield Equations
	3.3.2 Boundary Conditions

	3.4 Determination of Limiting Slope Face

	4 Results and Discussion
	4.1 Effect of Seismic Accelerations
	4.2 Effect of Rock Mass Damping
	4.3 Effect of Frequency
	4.4 Effect of the Depth of Rigid Base
	4.5 Effect of Rock Mass Properties
	4.6 Adaptive Slip Surface and Stress Contour
	4.7 Inclined Top Surface

	5 Comparison
	6 Application to Real Slopes
	7 Conclusions
	Acknowledgements 
	References




