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Abstract
Shear strength criterion for rock discontinuities is a greatly important issue to most geoengineering analyses and designs. 
This paper aims to develop criteria and make a comparative study using statistical, lazy, and ensemble learning methods for 
fast predicting the shear strength of rock discontinuities. To do so, simple linear regression (SLR), multiple linear regression 
(MLR), least median squared regression (LMSR), isotonic regression (IR), pace regression (PR), k-nearest neighbors (kNN), 
and extreme gradient boosting (XGBoost) learning models are developed using compiled experimental data from direct 
shear tests based on commonly used variables in criteria. Statistical indices (RMSE, R2 , and MAE) and comparative analyses 
indicate that the adopted XGBoost model has a good generalization performance than other models. However, MLR- and 
PR-based-derived linear equations with R2 = 0.98 and 0.96 for training and testing datasets are also promising new practical 
criteria. Interpretability and explainability of the proposed XGBoost model are demonstrated using feature important rank, 
partial dependence plots (PDPs), feature interaction, and local interpretable model-agnostic explanations (LIME) techniques. 
The Taylor diagram is also included to substantiate the capability of the developed data-driven surrogate models. Moreover, 
the proposed models provide satisfactory performance and comparable results to existing prediction models. Findings of 
this study will assist the geoengineers in estimating shear strength of rock discontinuities.

Highlights

• Criteria developed to predict shear strength of rock discontinuities using statistical, lazy, and ensemble learning methods.
• XGBoost showed best generalization performance, while MLR and PR-based equations were also promising practical 

criteria with high R2 values.
• XGBoost model's interpretability and explainability shown using various techniques.
• Proposed models provide satisfactory performance and comparable results to existing prediction models.

Keywords Shear strength criterion · Rock discontinuities · Data-driven models · Regression analysis · Sensitivity analysis

1 Introduction

Rock mass behavior and, therefore, stability of the slope 
and underground cavities are strongly affected by the shear 
strength of rock joints in the rock mass. It is not straightfor-
ward to precisely predict the shear strength of the rock joints 
due to a variety of complex variables. Various methods, such 

as empirical (Patton 1966; Jaeger 1971; Barton 1973; Bar-
ton and Choubey 1977; Maksimovic 1996; Kulatilake et al. 
1995; Zhao 1997; Grasselli 2001; Tatone 2009; Xia et al. 
2014; Yang et al. 2016; Tang et al. 2016; Tian et al. 2018), 
semi-theoretical (Ladanyi and Archambault 1969; Seidel and 
Haberfield 1995; Johansson and Stille 2014), and theoreti-
cal (Lanaro and Stephansson 2003), have been applied to 
describe shear strength of rock discontinuities over the years. 
In the literature, there has been a comparative investigation 
of shear strength models of rock discontinuities (e.g., Singh 
and Basu 2018; Tian et al. 2018; Li et al. 2020).
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Conventional regression methods can be improved to bet-
ter capture and represent the multi-variable, nonlinear, com-
plex, and constitutive responses of systems such as the shear 
behavior of rock discontinuities with the processing capa-
bility of current computers. Data-driven-based methods are 
widely used in geoengineering (Fathipour-Azar and Torabi 
2014; Fathipour-Azar et al. 2017, 2020; Zhang et al. 2020a, 
b, c; Fathipour-Azar 2021a, b, 2022a, b, c, d, e, f, 2023). 
Based on the literature reviews, the previously published 
machine learning methods for predicting shear strength of 
rock discontinuity are summarized, as shown in Table 1.

The shear strength of a joint varies depending on param-
eters such as rock type, joint material, normal stress level, and 
morphology characteristics (e.g., Tang et al. 2016; Wang and 
Li 2018; Xia et al. 2019). Although some current machine-
learning-based surrogate models and criteria are well suited 
for the shear behavior of rock joints, there is a still need for a 
simple adoptable model that takes into consideration all the 
influential factors that affect the nonlinear complicated nature 
of joint strength. Moreover, there is a need to use black-box 
visualization tools to explain and interpret black-box models 
developed by these techniques. However, Fathipour-Azar 
(2022a) proposed an effective shear strength criterion ( R2 = 
0.98) to use in rock mechanics application with fewer input 
variables using interpretable multivariate adaptive regression 
splines (MARS) method.

The purpose of this study is to construct shear strength 
criteria for rock discontinuities based on data-driven mod-
els using the simple linear regression (SLR), multiple linear 
regression (MLR), least median squared regression (LMSR), 
isotonic regression (IR), pace regression (PR), k-nearest 
neighbors (kNN), and extreme gradient boosting (XGBoost) 

learning models. The universal applicability of the devel-
oped models is validated with the result of measured shear 
strength data of rock discontinuities in the earlier studies, 
previous machine-learning-based models, and several well-
known shear strength criteria. To do this, R2 (coefficient of 
determination), root mean square error (RMSE), and mean 
absolute error (MAE) are used to calculate the validity of the 
predictive models, and sensitivity analysis is carried out on 
the established XGBoost model to analyze the relationship 
between shear strength and influencing factors. This study can 
be used for the comparative analysis of the use of different 
surrogate-based methodologies for estimating shear strength 
of rock discontinuities.

2  Data‑Driven Modeling Methodologies

Data-driven surrogate-based methodologies that have been 
used to construct the failure criteria and predict the shear 
strength of rock discontinuities are briefly outlined in this 
section.

2.1  Simple Linear Regression (SLR)

Linear regression is a method of mathematically modeling 
the relationship between a response variable (also called the 
outcome or dependent variable) and one or more input vari-
ables (also called the predictor, explanatory, or independent 
variable). A linear regression model with a satisfactory fit may 
be used to predict future values of the output variable. Simple 
linear regression (SLR) selects the variable feature that results 
in the lowest squared error. For a single explanatory variable, 
the SLR can be written as:

Table 1  A summary of previously published machine learning methods to predict shear strength of rock discontinuity

JRC joint roughness coefficient, E Young’s modulus, �
b
 basic friction angle, �

c
 uniaxial compressive strength of the joint surface, �

n
 normal 

stress, JCS joint wall compressive strength (= �
c
for the fresh rock), �

t
 tensile strength, A

0
 maximum potential contact area ratio, �∗

max
 maximum 

apparent dip angle, C roughness parameter, and l sampling interval

Proposed by Prediction method Indicators considered Number 
of sam-
ples

Babanouri and Fattahi (2018) Support vector regression JRC, E, �b , �c , and �n 84
Babanouri and Fattahi (2020) Adaptive neuro-fuzzy inference system combined with 

teaching–learning-based optimization algorithm
Hasanipanah et al. (2020) Enhanced Kriging interpolation
Peng et al. (2020) Radial basis function neural network with grey wolf 

optimization and genetic algorithm
Huang et al. (2021) Support vector regression and firefly algorithm
Xia et al. (2019) Relevance vector machine JCS∕�n , �n∕�t , A0

 , ( �∗
max

∕(C + 1) ), and �b 86
Fathipour-Azar (2022a) Multivariate adaptive regression splines, Gaussian 

process, alternating model tree, Cubist, radial basis 
function networks, and elastic net

l , A
0
 , C , �∗

max
 , �b , �t , �c , and �n 83
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where �
0
 and �

1
 are the regression parameters to be estimated 

and � is the error term.

2.2  Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is the approach used when 
there are more than one estimator variable. In this study, MLR 
with ridge regularization is performed based on standard least 
squares linear regression. To solve ill-posed problems and 
control the potential over-fitting issues in the MLR, a regular-
ized version of the MLR, namely, the ridge regression is used 
(Witten and Frank 2005). In the linear regression model, the 
least square method is used to determine �

0
 and �

1
 predictions 

such that the sum of squared distance from the real yi response 
ŷ = b

0
+ b

1
xi approaches the lowest of all feasible regression 

coefficients.

2.3  Least Median Squared Regression (LMSR)

Least median squared regression (LMSR) predicts using 
MLR. Least squared regression functions are created from 
random subsamples of the data. The final model is the least 
squared regression with the lowest median squared error 
(Rousseeuw 1984), that is:

2.4  Isotonic Regression (IR)

Isotonic regression (IR) is a nonparametric method for fitting 
a freestyle line to a sequential of perceptions under following 
conditions: the given freestyle line model needs to be con-
sistent with the monotonicity and as close to the observed 
values as possible (Salanti 2003; Leeuw et al. 2010). It 
selects the attribute with the lowest squared error and bases 
its isotonic regression model on this decision. The IR opti-
mization formula is as follows:

where wi is chosen weights.

(1)y = �
0
+ �

1
x + �

(2)
(
�
0
, �

1

)
= arg min

(b0,b1)

n∑

i=1

[
yi −

(
b
0
+ b

1
xi
)]2

(3)

(
�
0
, �

1

)
= arg min

(b0,b1)

median
[
yi −

(
b
0
+ b

1
xi
)]2

, i = 1, 2, .., n

(4)ŷIR = argmin
y

n∑

i=1

wi

[
yi − ŷi

]2

2.5  Pace Regression

Projection adjustment by contribution estimation (pace) 
regression (PR) improves on classical MLR by assessing 
the influence of each variable and using clustering analysis 
to improve the statistical basis for determining their contri-
bution to the overall regression. When the number of coef-
ficients approaches infinity, PR is provably optimum under 
regularity conditions. PR is an approach to fitting linear 
models in high-dimensional spaces. It consists of a set of 
estimators that are either overall or conditionally optimum 
(Wang 2000; Wang and Witten 2002).

2.6  k‑Nearest Neighbors (kNN) Model

k-nearest neighbors (kNN) is a nonparametric, instance-
based, lazy learner algorithm (Aha et al. 1991). The target 
of test data sample is predicted by searching the entire train-
ing set for the k most similar samples (neighbors) and aver-
aging the values of k-nearest neighbors as an output variable. 
In this study, the brute force search algorithm is used to find 
the nearest neighbors and Chebyshev distance is used to 
measure the distance. If D is a dataset consisting of 

(
xi
)
i∈[1,n]

 
training instances (where n = |D| ) with a set of features F 
and the value of an unknown instance p is to be predicted, 
the Chebyshev distance between p and xi is (Cunningham 
and Delany 2021):

2.7  Extreme Gradient Boosting (XGBoost) Model

Extreme gradient boosting (XGBoost) model is an advanced 
ensemble tree boosting algorithm (Chen and Guestrin 2016). 
It is an improvement on Friedman's gradient boosting 
method (Friedman 2001). XGBoost functions by building 
a base model for the pre-existing model, which consists of 
training an initial tree, constructing a second tree combined 
with the initial tree, and repeating the second step until the 
stopping condition(i.e., required number of trees) is met 
(Zhang et al. 2020c). When t  trees are created, the newly 
generated tree is utilized to fit the residual of the last predic-
tion. The sum of each tree's predictions yields the model's 
ultimate prediction. The general function for approximating 
the system response at step t is as:

(5)d
(
p, xi

)
= max

f∈F

|||pf − xif
|||

(6)ŷ
(t)

i
=

t∑

k=1

fk
(
xi
)
= ŷ

(t−1)

i
+ ft(xi)
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where ft(xi) is the learner at step t  , ŷ(t)
i

 and ŷ(t−1)
i

 are the 
estimations at step t and t − 1, and xi is the input variable.

To optimize and prevent over-fitting issues, the objective 
function of XGBoost can be minimized as follows:

where l is a convex function (i.e., loss function) that is used 
to find the difference between exact and computed values, yi 
is a measured value, n is the number of observations used, 
and Ω is the penalty factor (regularization term), and defined 
as:

where � is the vector of scores in the leaves, � is the regu-
larization parameter, and � is the minimum loss needed to 
further partition the leaf node.

Using a greedy algorithm, the XGBoost technique exam-
ines all feature points adopting the objective function value 
as the evaluation function. The split objective function value 
is compared with the gain of a single leaf node's objective 
function within a preset threshold that restricts tree growth, 
and the split is executed only when the gain exceeds the 
threshold. As a consequence, the best features and splitting 

(7)Obj(t) =

n∑

k=1

l(yi, ŷ
(t)

i
) + Ω(ft)

(8)Ω(f ) = �T +
1

2
�‖�‖2

points for constructing the tree structure can be found 
(Zhang et al. 2020a).

3  Database

To predict peak shear strength of discontinuities, the results 
of direct shear tests from published literature (Grasselli 
2001; Tatone 2009; Xia et al. 2014; Yang et al. 2015, 2016) 
are used for training and testing the proposed SLR, MLR, 
LMSR, IR, PR, kNN, and XGBoost techniques. A total of 83 
tests were conducted on 6 different material types of discon-
tinuities (granite, sandstone, limestone, marble, serpentinite, 
mortar).

Based on the literature review conducted on the parameters 
considered by previous machine-learning-based models and 
common criteria to predict shear strength of rock discontinuity, 
eight main influencing input parameters are employed in the 
analyses: sampling interval (l) , maximum contact area ratio 
(A

0
) , distribution parameter (C) , maximum apparent dip angle 

(�∗
max

) , basic friction angle (�b) , tensile strength ( �t ), uniaxial 
compressive strength (�c) , and normal stress (�n) . The data-
set consisting of 83 instances has been divided into 2 phases: 
80% training dataset (66 experimental datasets) and 20% test-
ing dataset (17 experimental datasets), by random sampling. 
Therefore, the training dataset is used for model construction 

Fig. 1  A plot matrix with 
histograms of the variables in 
the diagonal and correlation 
coefficients
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and testing dataset is used for evaluating the prediction perfor-
mance of the developed models for testing purposes.

Figure 1 presents a plot matrix for the variables considered, 
the lower triangle of the matrix shows scatter plots of each pair 
of variables, while the upper triangle shows the correlations of 
the variables. Different color represents each group of material 
type in the lower triangle of the matrix. It is seen that the �p is 
highly correlated to the �n.

In this study, various statistical analysis is computed to 
justify the attainment of the adopted SLR, MLR, LMSR, IR, 
PR, kNN, and XGBoost models. Three most frequently used 
metrics for model assessment in regression problems are R2 
(coefficient of determination), root mean square error (RMSE), 
and mean absolute error (MAE). The following four equations 
express the mathematical indicators:

where yi and y′

i
 are measured and predicted values, respec-

tively, y is the mean of the measured values, and n is the total 
number of data. The predictive technique will be excellent if 
R2

= 1 , RMSE = 0, and MAE = 0.

4  Results and Discussion

4.1  Comparison Analysis of Models

Different surrogate models are constructed based on seven 
data-driven modeling techniques, viz., SLR, MLR, LMSR, 
IR, PR, kNN, and XGBoost, and used to predict the shear 

(9)R
2
= 1 −

n∑
i=1

�
y
i
− y

�

i

�2

∑n

i=1

�
y
i
− y

�2

(10)RMSE =

√
MSE =

����1

n

n�

i=1

�
yi − y

�

i

�2

(11)MAE =
1

n

n∑

i=1

|||yi − y
i

i

|||

strength of rock discontinuity. A tuning phase was per-
formed utilizing the grid search and tenfold cross-validation 
methods to determine suitable values for the parameters that 
characterize considered models. Ridge parameter of 1 × 10

−8 
is used in MLR model. The optimal number of closest 
instances in the training dataset for predicting the value of 
the test instance for the kNN model is 1. For the XGBoost 
model, tree (XGBtree) is considered as base learners and 
boosters. Accordingly, boosting iterations = 972, maximum 
depth of tree = 1, minimum loss reduction = 0, subsample 
ratio of columns = 0.7, minimum sum of instance weight 
(node size) = 1, subsample percentage = 0.71, and booster 
learning rate (shrinkage) = 0.1 are found optimal parameters 
for the model.

Regression equations obtained from the application of the 
statistical algorithms using tenfold cross-validation on train 
dataset are given as below:

To verify the reliability and accuracy of the models 
established, statistical indices, i.e., RMSE, R2 , and MAE 

(12)SLR ∶ �p = 1.5�n + 0.33

(13)

MLR:�p = 2.87 ∗ l + 2.362 ∗ A0 − 0.163 ∗ C

+ 0.033 ∗ θ∗max + 0.041 ∗ �b

+ 1.428 ∗ �n + 0.004 ∗ �c
+ 0.081 ∗ �t − 4.618

(14)

LMSR:�p = 0.803 ∗ l − 1.515 ∗ A0 − 0.125 ∗ C

+ 0.011 ∗ �∗max + 0.041 ∗ �b

+ 1.584 ∗ �n + 0.007 ∗ �c
− 0.002 ∗ �t − 0.965

(15)

PR:�p = 2.168 ∗ l + 2.441 ∗ A0 − 0.159 ∗ C

+ 0.027 ∗ θ∗max + 0.048 ∗ �b

+ 1.424 ∗ �n + 0.004 ∗ �c
− 0.076 ∗ �t − 4.392

Table 2  Shear strength 
prediction performance of the 
developed surrogate models

Model Train Test

RMSE R2 MAE RMSE R2 MAE

SLR 0.659 0.931 0.458 0.739 0.882 0.534
MLR 0.335 0.982 0.259 0.435 0.964 0.344
LMSR 0.501 0.969 0.329 0.551 0.957 0.404
IR 0.506 0.959 0.326 0.676 0.906 0.481
PR 0.337 0.982 0.254 0.435 0.964 0.333
kNN 0.000 1.000 0.000 1.004 0.854 0.787
XGBoost 0.075 0.999 0.060 0.275 0.984 0.240
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are used. Table 2 presents the results of all data-driven cri-
teria performances during the training and testing stages. 
It is seen from Table 2 that the XGBoost model demon-
strates the highest prediction accuracy and generalization 
capability by achieving the highest R2 and lowest RMSE 
and MAE compared with SLR, MLR, LMSR, IR, PR, and 
kNN models in both the training and testing phases.

As shown in Fig.  2, the measured data are plotted 
against predicted data to provide a better insight into the 
prediction success of the criteria. It can be seen that the 
data predicted by the XGBoost-based criterion match the 
measured experimental data perfectly on the regression 
line for the training and testing dataset.

The performance of established models is compared to 
those achieved with the shear strength criteria and other 
machine learning techniques used to address estimating 
problems. Shear strength criteria are given in Table 3 and 
machine learning paradigms considered to perform this 

comparison are MARS, Gaussian process (GP), alternat-
ing model tree (AMT), Cubist, radial basis function (RBF) 
networks, and elastic net (EN) (Fathipour-Azar 2022a). 
Figure 3 shows the comparison results of the criteria, 
previous machine-learning-based models, and developed 
data-driven surrogate models employed in this study for 
the same train and test dataset in the training and testing 
phases. Generally, Fig. 3 demonstrates that surrogate mod-
els established in this study performed satisfactory and 
comparable to those criteria and previous machine-learn-
ing-based models. A good correlation between measured 
and predicted data is seen for proposed data-driven mod-
els, particularly the XGBoost model with a lower error. 
However, the kNN-based model performs poorly.

Generally, a predefined functional representation of the 
model is not required for data-driven surrogate-based meth-
odologies. Such data-driven intelligence modeling gains 
information from training data and then more effectively 
represents a complex and nonlinear constitutive behavior of 

(a) Training phase (b) Testing phase

Fig. 2  Cross plot between measured and predicted data of rock discontinuity shear strength using developed models

Table 3  Review of used shear 
strength criteria

References Shear strength criteria

Grasselli (2001)
�p = �ntan

[
�b +

(
�∗
max

C

)1.18cos�
]
.

(
1 + e

−
1

9A0
⋅

�∗max

C
⋅

�n

�t

)

Tatone (2009)
�p = �ntan

[
�b +

(
�∗
max

C+1

)1.34⋅l0.058
]
.

(
1 + e

−
1

9A0
⋅

�∗max

C+1
⋅

�n

�t

)

Xia et al. (2014)
�p = �ntan

[
�b +

4A
0
�∗
max

C+1

(
1 + e

−
1

9A0
⋅

�∗max

C+1
⋅

�n

�t

)]

Yang et al. (2016) �p = �ntan

[
�b +

�∗
max

C0.45
e

−�n

JCS
C0.75

]

Tang et al. (2016) �p = �n���

[
�b + 9 ⋅ l0.1

A
0
�∗
max

∕(C+1)

�n∕�t+1

]

Tian et al. (2018)
�p = �n tan

[
�b +

160⋅C
�
−0.44

�n∕�t+2

]
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rock discontinuities. Moreover, these developed surrogate 
models are computationally inexpensive. Statistical learning 
methods enable us to express the relationship between the 
input and response variables as a mathematical equation. 
SLR, MLR, LMSR, IR, PR techniques fall into this group. 
The regression equation is determined by minimizing the 

sum or median of squared residuals. kNN is an instance-
based lazy learner. It stores the training data in the memory 
and uses it when predicting a new test instance. XGBoost is 
an ensemble machine learning algorithm. It creates a weak 
prediction model at each stage, which is then weighted and 
incorporated to the overall model, reducing variance and 
bias and so improving model performance. Therefore, the 
results of this study demonstrated that proposed techniques 
can assist scholars in comprehensively considering influen-
tial shear behavior parameters and make fast and accurate 
shear failure evaluation of rock discontinuities without the 
need for a computationally complex mathematical equation 
or expensive and specialized laboratory facilities.

A Taylor diagram (Taylor 2001) is a graphical repre-
sentation of comparing various model outcomes to meas-
ured data. The standard deviation, RMSE, and R between 
different models and measurements are depicted in this 
diagram. This diagram is plotted for shear strength in 
Fig. 4. The location of each model in the diagram indi-
cates how closely the predicted pattern matches with 
measurements. According to this figure, the distance 
between developed models points to the measured point 
indicates that while the developed XGBoost-based model 
is close to the measurement, and therefore a promising 
technique in estimating shear strength, the kNN-based 
model is far from the measurement.

4.2  Sensitivity Analysis

The feature importance score is a strategy for determining 
the relevance of features and the interpretability of models. 
Figure 8 depicts the relative importance of the features for 
the XGBoost model illustrating the influence of features on 

(a) Train data

(b) Test data

Fig. 3  Shear strength prediction performance of the developed mod-
els and criteria for train and test data

Fig. 4  Taylor diagram for presenting the predictive effect of models
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shear strength of rock discontinuities, �p . A trained XGBoost 
model can automatically compute feature importance based 
on the interface feature important criteria, such as gain, 
cover, and frequency criteria. The sum of the importance 
of each feature equals 1. Gain denotes each feature’s con-
tribution of each tree to the model performance improve-
ment. Cover indicates the relative number of observations 
related to a feature. Frequency is the percentage defining 
the relative number of times a feature decides on a split in 
the trees. A higher value of these indices, compared with 
another, implies that such a feature is more important for 
making an estimation. Figure 5 presents the eight feature 
predictors’ average of feature relative importance (%) under 
tenfold cross-validation. The figure shows that the �n , A0

 , C, 
and �∗

max
 affect the shear strength more than other variables.

Figure 6 depicts one-way partial dependence plots (PDPs) 
(Friedman 2001) for the eight predictor features. PDPs dem-
onstrate how variation of one or more variables throughout 
their marginal distributions affects the average predicted 
value (Goldstein et al. 2015). Each plot in Fig. 6 represents 

the influence of each variable while the other variables are 
held constant. Although positive associations with shear 
strength are seen for �n , �t , �∗max , and l features, a negative 
correlation can be seen for C . In general, the shear strength 
increases with all features except for C . The strength of the 
association varies for all features. A wider variation range 
for the average estimated shear strength value could be seen 
for the �n (0.839–11.590) compared with other features in 
the range 2.607–3.642. The sharp changes in shear strength 
occur particularly for �c , �b , and A

0
 . However, it can be seen 

that specific ranges of each feature affect the estimated shear 
strength value. Out of these specific ranges, these features 
are less important variables and variation of the average esti-
mated shear strength is insignificant.

The H-statistic (Friedman and Popescu 2008) is used to 
determine how much variation in the shear strength value 
is attributable to feature interaction. Figure 7 depicts the 
interaction strength for each of the features with any other 

Fig. 5  Relative influence of the variables using XGBoost model

Fig. 6  Partial dependence plots 
for the features of the XGBoost 
model

Fig. 7  The interaction strength for each feature with all other features 
for the XGBoost model
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features for predicting the shear strength. Overall, each vari-
able explains less than 4.5e-5% of the variance, implying 
that the interaction effects between the features are quite 
weak.

Finally, local interpretable model-agnostic explanations 
(LIME) (Ribeiro et al. 2016) is used to investigate and 
explain the relevance of each feature in the testing data 
set for each shear strength estimation by approximating it 
locally with an interpretable model. The results are shown 
in Fig. 8 as a heat map, with the rock joint profile numbers 
on the x axis and the categorized features on the y axis. 
Feature weights are represented by colors. The color of 
each cell reflects the importance of the features in deter-
mining the associated shear strength value. A feature 
with a positive (blue) weight supports the shear strength, 
whereas a feature with a negative (red) weight contradicts 
the shear strength. In addition, the LIME algorithm con-
siders optimally four knobs for each feature (except for 
l  with three knobs) that the model fits the local region. 
Therefore, similar to PDPs plots in Fig. 6, the influen-
tial range of each eight features could be understood that 
supports shear strength. In general, it can be seen that �n 
feature is highly relevant to the estimated shear strength 
value. This result is consistent with feature importance 
obtained with the gain, cover, and frequency approaches 
for the training phase. This figure is useful for understand-
ing how machine learning techniques, in this case the 
XGBoost model, estimate shear strength.

5  Conclusion

Shear strength estimation of rock discontinuities is crucial 
in geoengineering analysis and applications. The present 
study proposed a new approach to predict the �p from the 

l  , A
0
 , C , �∗

max
 , �b , �t , �c , and �n data. Using a compiled 

dataset from the direct shear tests, SLR, MLR, LMSR, IR, 
PR, kNN, and XGBoost models are introduced to estab-
lish the relationship between the �p and various indicators. 
According to statistical indices, the XGBoost model out-
performs all other techniques in predicting shear strength 
values of rock discontinuity, with the highest R2 and low-
est error values, indicating that the model has a superior 
generalization performance for provided dataset. Based 
on the trained XGBoost model, feature importance rank is 
provided using gain, cover, and frequency indices. PDPs 
are used to demonstrate the effect of features on the aver-
age predicted value in the training phase. The H-statistic is 
utilized to evaluate how much of the shear strength value's 
variation is explained by feature interaction. Moreover, the 
LIME algorithm is employed to indicate the effect of the 
variables on the shear strength using the testing dataset. 
The shear strength models were then compared to some 
criteria and previous machine-learning-based surrogate 
models, which demonstrates the effectiveness of estab-
lished data-driven models by achieving comparable perfor-
mance in evaluating the shear strength of rock discontinui-
ties. It is worth highlighting that the predictive accuracy of 
the proposed MLR and PR-based formula ( R2 = 0.98 and 
0.96 for the training and test dataset, respectively) is better 
or comparable to that of conventional criteria.

Further studies based on more datasets are required to 
improve the accuracy of the developed models. The promis-
ing results of this paper certainly give hope that with suffi-
cient amounts of experimental data, the underlying strength 
model describing datasets can be much more efficiently 
identified.

Data Availability All data are provided within the manuscript.

Fig. 8  Feature importance as 
heat map visualization of all 
case-feature combinations for 
testing dataset in the XGBoost 
model
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