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Abstract
To analyze the movement of discrete rock block systems, a nodal-based three-dimensional discontinuous deformation analysis 
method with contact potential (3D-NDDACP) is proposed. In the proposed 3D-NDDACP method, tetrahedral FE meshes 
which can be effectively generated with existing mesh generator are adopted to discretize rock blocks to better capture 
their deformation. Additionally, the contact potential is incorporated to treat the contact between two adjacent blocks. The 
introduction of contact potential significantly simplifies the implementation of the proposed 3D-NDDACP method, since 
the contact force can be directly computed without distinguishing contact types between any two adjacent blocks. However, 
in the traditional 3D-DDA method it is essential to conduct contact type judgment before computing contact forces. Note 
that contact type judgment is not a trivial task for 3D problems, since many different contact types including point-to-point 
contact, point-to-edge contact, point-to-face contact and edge-to-edge contact are involved. With the proposed 3D-NDDACP 
method, three benchmark problems about the movement of rock block systems are investigated. Numerical results obtained 
with the proposed 3D-NDDACP method are in good agreement with the theoretical solution, which means that the proposed 
3D-NDDACP method can reliably and correctly simulate the movement of rock block systems. The proposed 3D-NDDACP 
method warrants further investigation.

Highlights

• A nodal-based 3D DDA model is proposed for modeling the discrete rock block system.
• Contact forces are computed effectively using contact volumes, without the cumbersome contact type determination.
• Simplest and most versatile tetrahedral meshes are always available for the proposed model.
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1 Introduction

Due to the long-term geological process, natural rock masses 
may contain a large number of structural planes (joints, 
faults, and weak side), and show a strong discontinuous 
deformation characteristic (Yang et al. 2018a, 2021a). How 
to accurately obtain the mechanical behavior of discontinu-
ous rock masses has always been an attractive topic in rock 
mechanics. Considering economy and flexibility, numerical 
methods have become an effective tool to fulfil this task, 
such as the continuous-based methods and discontinues-
based methods (Jing 2003).

Some typical continuous-based methods are the finite 
element method (FEM) (Zienkiewicz and Taylor 2000), the 
meshfree method (Rabczuk and Belytschko 2004; Zhuang 
et al. 2012) and the boundary element method (BEM). In 
continuous-based methods, discontinuity elements (Good-
man 1976) are usually introduced to model the mechanical 
behavior of fractured rock masses (Beyabanaki et al. 2009). 
However, the number of discontinuity elements is usually 
limited, since these discontinuity elements may induce the 
numerical instability problem. In addition, it is difficult to 
model large-scale slipping and opening with discontinuity 
elements.

Compared to continuous-based methods, the discon-
tinues-based methods are more suitable for discontinuity 
modeling, since they can directly simulate large-scale slip-
ping and opening of rock masses. This is because in the 
discontinues-based methods, the problem domain is dis-
cretized into a series of individual blocks, and the motion 
and deformation of each block are treated separately. Fur-
thermore, the interaction between blocks is treated using 
mutual contacts. Some typical discontinues-based methods 
are the distinct element method (DEM) (Jing 2003) intro-
duced by Cundall, the discontinuous deformation analysis 
(DDA) method developed by Shi (1988) and the discrete 
finite element or the combined FEM-DEM developed by 
Munjiza (2004).

As a typical discontinuum-based method, the DDA 
method was originally developed to model the deforma-
tion and movement of a rock block system (Shi 1988). 
The DDA method can be considered as an implicit version 
of DEM since the contact and deformation of blocks are 
all included in a unified system equilibrium equation. It 
has been shown in many existing literature (Jing 2003; 
Shi 1988) that the solution of large deformation and dis-
placement of a rock block system can be effectively solved 
by performing static or dynamic DDA analyses. Due to 
the attractive advantages of the DDA method, it has been 
used by researchers and engineers to solve many types 
of practical problems, such as dam deformation problems 
(Kottenstette 1999), Tunnel stability problems (Tsesarsky 

and Hatzor 2006), slope failure problems (Wu 2007; Yang 
et al. 2019, 2020a, b, 2023; Feng et al. 2021), jointed rock 
masses problems (Lin et al. 1996), hydraulic fracturing 
problems (Yang et al. 2018b; Wu et al. 2022; Choo et al. 
2016) and wave propagation problems in rock masses (Wu 
et al. 2020a, b; Bao et al. 2012; Jiao et al. 2007; Gu and 
Zhao 2009). A review article about the validation of the 
DDA method for engineering problems can be found in 
(MacLaughlin and Doolin 2006). However, most of the 
research results mentioned above were obtained using a 
two-dimensional DDA (2D-DDA) method.

Note that all the practical engineering problems are in 
3D space. Hence, the development of a 3D-DDA method 
for engineering problems is essential. Some early pub-
lished work about the 3D-DDA method can be found in 
(Beyabanaki et al. 2008; Jiang and Yeung 2004; Yeung 
et al. 2003). In contrast to the 2D-DDA method, the appli-
cation of the 3D-DDA method to engineering problems 
is not fruitful. One main reason lies behind is that con-
tact treatment in the 3D-DDA method has not been well 
resolved. Compared to the 2D-DDA method, contact 
type judgment in the 3D-DDA method is not a trivial 
task, since more complex contact types, such as point-
to-point contact, point-to-edge contact, point-to-face 
contact, edge-to-edge contact and force-to-face contact, 
are involved. In a typical contact-type judgment process, 
a rough search is first conducted to obtain the blocks 
closing to each other. Then, the possible contact type 
between adjacent blocks is determined using a fine search 
scheme. The contact judgment in the 3D-DDA method 
faces three main difficulties, namely, low efficiency, 
the uncertain direction of contact force and difficulty in 
handling concave blocks (Wang et al. 2021; Yeung et al. 
2007). In addition, the first-order displacement function 
is used in the traditional 3D-DDA method to model the 
deformation of rock blocks (Yang et al. 2021b; Yeung 
et al. 2004). Hence, the stress and strain within any rock 
block computed by the traditional 3D-DDA method are 
constants. For a small rock block, this scheme may be 
acceptable. But for a big rock block in which the dis-
tributions of strain and stress are severely uneven, this 
approach is obviously unacceptable. To deal with the 
above-mentioned problems, some remedy schemes have 
been proposed in the past years, see for example (Wang 
et al. 2021; Beyabanaki et al. 2009; Zhang et al. 2016).

In the present work, to better analyze rock mechanics 
problems, a nodal-based 3D discontinuous deformation 
analysis method with contact potential (3D-NDDACP) 
is proposed. The proposed 3D-NDDACP method inher-
its both the advantages of the FEM-DEM and the tradi-
tional 3D-DDA method. In the 3D-NDDACP method, the 
contact potential (CP) originally proposed in the context 
of the FEM-DEM is used to deal with contact problems. 
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Note that the contact potential has been mentioned in 
many FEM-DEM literature (Munjiza and Latham 2004; 
Mahabadi et al. 2010; Yan et al. 2018; Lisjak et al. 2014; 
Zhao et al. 2018). However, due to the adoption of an 
explicit solution scheme, the FEM-DEM suffers from a 
limitation in which the time step length should be small 
enough to ensure the numerical stability condition (Cheng 
1998). Compared with the FEM-DEM, the 3D-NDDACP 
method is free from the numerical stability problem, since 
the implicit solution scheme (Jing 1998) is used. Further-
more, contact type judgment which is not a trivial task in 
the traditional 3D-DDA method can be totally avoided in 
the 3D-NDDACP method. In addition, high accuracy for 
contact problems may be obtained by the 3D-NDDACP 
method, since the contact force in the 3D-CPDDA method 
is applied in the form of traction force. Finally, to over-
come shortcomings of the traditional 3D-DDA method in 
describing the deformation of a rock block, tetrahedral 
FE meshes which can be effectively generated with any 
mature mesh generator are used to discretize each rock 
block. By means of the proposed 3D-NDDACP method, 
benchmark problems about the movement of rock block 
systems are fully investigated.

2  Fundamental Theory of the 3D‑NDDACP 
Method

2.1  Displacement Function Defined for a Block

In the 3D-NDDACP method, the computational domain Ω 
is represented by a series of blocks with arbitrary shapes. 
Each block is further discretized with a series of tetrahedral 
elements. Regarding the i-th tetrahedral element, the dis-
placement field u(x) for point x(x, y, z) can be described as

where the shape function matrix Ni and the nodal displace-
ment vector di for the i-th tetrahedral element are

(1)u(x) =

⎛⎜⎜⎝

u

v

w

⎞⎟⎟⎠
= Nidi

(2)

Ni =

⎡⎢⎢⎣

Ni1 0 0

0 Ni1 0

0 0 Ni1

Ni2 0 0

0 Ni2 0

0 0 Ni2

Ni3 0 0

0 Ni3 0

0 0 Ni3

Ni4 0 0

0 Ni4 0

0 0 Ni4

⎤⎥⎥⎦

(3)Ni1 = 1 − � − � − � ,Ni2 = �,Ni3 = �,Ni4 = �

(4)
di

T =
[
ui1 vi1 wi1 ui2 vi2 wi2 ui3 vi3 wi3 ui4 vi4 wi4

]

where Nij is the shape function of j-th node, ( �, �, � ) are the 
natural coordinates of a point, and di represents the degree 
of freedoms (DOFs) of the i-th tetrahedral element.

2.2  Simultaneous Equilibrium Equations

Similar to the traditional 3D-DDA method, the simultane-
ous equilibrium equations in the proposed 3D-NDDACP 
method can also be obtained from the minimization of the 
total potential energy (II) of the system, and expressed as 
follows:

in which d =
[
d1 d2 ⋯ dn

]T is the global displace-
ment vector consisting of all the tetrahedral element DOFs; 
d̈ is the global acceleration vector equal to the second deriv-
atives of d with regard to time t ; and n is the number of all 
the tetrahedral elements in the system. The global matrices 
including mass matrix M, stiffness matrix K and force vector 
f  are calculated as

in which b is the body force per unit volume, � is the 
mass density, D is the elastic Hooke matrix, �0 is the ini-
tial stress, and t is the specified traction vector applied 
on Γt.

To solve Eq.  (5), a direct time integration method, 
namely, the Newmark method (Zienkiewicz and Taylor 
2000) is adopted. In the Newmark method, the following 
assumptions are made:

where dt , ḋt and d̈t represent the global displacement vector, 
velocity vector and acceleration vector at instant t, while 
dt+Δt , ḋt+Δt and d̈t+Δt represent the global displacement vec-
tor, velocity vector and acceleration vector at instant (t + Δt) ; 
Δd represents the incremental displacement vector from t to 
(t + Δt) ; and � and � represent the Newmark parameters, 
which are set to 1.0 and 0.5 in the present work to ensure an 
unconditional numerical stability condition.

According to Eqs. (8) and  (9), ḋt+Δt can further be for-
mulated as

(5)Md̈ + Kd = f ,

(6)
M = ∫ Ω

�NTN, K = ∫ Ω
BTDB,

f = ∫ Ω
BT�0 + ∫ Ω

NTb + ∫ Γt

NTt,

(7)dt+Δt = dt + Δd,

(8)d̈t+Δt =
Δd

𝛼Δt2
−

ḋt

𝛼Δt
−
(
1

2𝛼
− 1

)
d̈t,

(9)ḋt+Δt = ḋt + Δt(1 − 𝛿)d̈t + 𝛿Δtd̈t+Δt,
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Substituting Eqs. (7), 8 and  10 into Eq. (5), the system 
equations at an instant (t + Δt) can be formulated as:

where K̃ and f̃  are the equivalent global stiffness matrix and 
force vector, respectively.

Note that the Newmark method used in the present 
paper satisfies the unconditional stability condition, and a 
large time step can be used in theory. However, due to the 
existence of inherent algorithm damping in the integra-
tion scheme, the accuracy of the proposed 3D-NDDACP 
method may be reduced. The influence of inherent algo-
rithm damping on the accuracy of the traditional 2D-DDA 
method has been mentioned in (Jiang et al. 2013). Accord-
ing to their report, the influence of inherent algorithm 
damping on the accuracy of the traditional 2D-DDA 
method can be effectively reduced by using small time 
step. We will investigate the effect of time step length on 
the accuracy of the numerical solution of the 3D-NDDACP 
method in Sect. 4.2.1.

3  Contact Force Formulation

3.1  Normal Contact Force

In the proposed 3D-NDDACP method, rock blocks, which can 
be in any shape, are discretized into a series of tetrahedral ele-
ments. Hence, the contact force between any two rock blocks 
can be obtained by sum all the contact forces caused by the 
contact between the tetrahedral elements belonging to the two 
rock blocks.

The normal contact forces between two tetrahedral ele-
ments are calculated by a potential function method proposed 
by (Munjiza and Andrews 2000). The distributed normal con-
tact force ( df n ) is computed according to the overlap volume 
( dV ) between the contactor element ( �c ) and the target element 
( �t):

where kn is the normal penalty parameter; Pc and Pt are the 
overlapping points of �c and �t ; and � is the corresponding 
contact potential function.

(10)ḋt+Δt =
𝛿Δd

𝛼Δt
+
(
1 −

𝛿

𝛼

)
ḋt + Δt

(
1 −

𝛿

2𝛼

)
d̈t

(11)K̃Δd = f̃ ,

(12)K̃ = K +
M

�Δt2
,

(13)�f = f t+Δt − Kdt +M

(
dt

𝛼Δt2
+

ḋt

𝛼Δt
+
(
1

2𝛼
− 1

)
d̈t

)

(14)df n = kn
[
grad�c

(
Pc

)
− grad�t

(
Pt

)]
dV

By integrating the distributed normal contact force df n over 
the overlapping volume of �c and �t , the total normal contact 
force f n between �c and �t can be computed

As proven by (Munjiza and Andrews 2000), the normal 
contact force f n in Eq. (15) can also be written as an integral 
over the surface boundaries S�c∩�t of the overlapping volume 
�c ∩ �t , leading to

where nS is unit outward normal vector to the outer bound-
ary surface S�c∩�t of the overlapping volume �c ∩ �t.

3.2  Shear Contact Force

According to the Mohr–Coulomb criterion, shear contact 
force between two tetrahedral elements can be expressed as

where f ′t+Δt
�

 represents the trial value of shear contact force 
at time instant (t + Δt) ; f t

�
 is the shear contact force at time 

instant t; ks is the shear penalty parameter; SB is the contact 
area; and Δu� is the tangential relative displacement incre-
ment within Δt.

If the trial shear contact force satisfies |||f ′
t+Δt

�

||| ≤ �||f n|| , 
then

Otherwise, it is calculated as follows

Here, � represents the frictional coefficient.
According to the principle of minimum potential energy, 

the equivalent load vectors from the normal contact force 
and shear contact force can be obtained, see details in (Xu 
et al. 2020).

The values of the normal penalty parameter kn in Eq. (15) 
and the shear penalty parameter ks in Eq. (17) may have 
influence on the performance of the proposed 3D-NDDACP 
method for contact problems. Hence, the optimal values for 
kn and ks should be determined. The corresponding content 
will be discussed in Sect. 4.2.

Note that in each step the contact treatment between 
blocks is handled by contact forces rather than a contact 
matrix, which are calculated according to the updated state 

(15)f n = ∭ �c∩�t

kn
[
grad�c

(
Pc

)
− grad�t

(
Pt

)]
dV

(16)f n = kn∬ S�c∩�t

nS
[
�c

(
Pc

)
− �t

(
Pt

)]
dS

(17)f ′
t+Δt

�
= f t

�
− ksΔu�SB

(18)f t+Δt
�

= f ′
t+Δt

�

(19)f t+Δt
�

=
f ′

t+Δt

�

|||f ′
t+Δt

�

|||
�||f n||
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of the rock block system of the previous step. This treatment 
may bring some explicit features over time step. Similar 
practices can also be found by (Zhao et al. 2017).

4  Numerical Examples

In the traditional 3D-DDA method, the first-order dis-
placement function is used to model the deformation of a 
rock block. Hence, the strain and stress of each rock block 
are constants and are equally distributed. In the proposed 
3D-NDDACP method, tetrahedral finite element meshes 
are used to discretize each rock block. The strain and stress 
of each rock block computed by the 3D-NDDACP method 
are no more constants. Hence, the proposed 3D-NDDACP 
method can better capture the deformation of rock blocks 
than the traditional 3D-NDDACP method. In the follow-
ing content, we mainly focus on the testing of the proposal 
method for 3D rock block contact problems.

4.1  Momentum Conservation Test

As the first example, a rock block collision test shown in 
Fig. 1 is considered. The sizes of Block A and Block B are 
both 1 m × 1 m × 1 m. The distance between Block A and 
Block B is 0.02 m. At time instant 0 s, Block A with an ini-
tial horizontal speed (1 m/s) starts sliding along the friction-
less plate towards the stationary Block B. Shown in Fig. 2 is 
the discretized model for this momentum conservation test.

In the computation, two cases, namely, Case 1 and Case 
2 are considered. In Case 1, the mechanical parameters for 
Block A, Block B and the plate are set as the same val-
ues, namely, Young’s modulus E = 20 GPa, Poisson’s 
ratioν = 0.25 and density ρ = 2650 kg/m3; In Case 2, the den-
sity for Block B is set as 1325 kg/m3, and the rest parameters 
are set as the same values in Case 1. All the outer surfaces 
(except the up surface) of the plate are constrained in the 
normal direction with very stiff springs with a stiffness of 
 106E. Note that in the proposed 3D-NDDACP method, the 

10 m

1
 m

Block BBlock A

0.02 m

1
 m1
 m

Fig. 1  A rigid block collision example: Block A having initial veloc-
ity V0 slides toward Block B

Fig. 2  Discretized model used for the momentum conservation test

(a) Case 1

(b) Case 2

Fig. 3  Computed momentum versus time step
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penalty method used in the traditional DDA method is also 
adopted to impose displacement boundary conditions. The 
time step length Δt is taken as a constant, namely, 1.0 × 
 10–6 s.

In theory, Block A will collide Block B at time instant 
0.02 s. In addition, the block system should satisfy the law 
of momentum conservation and kinetic energy conservation. 
To be more specific: (1) The global horizontal momentum 
should always be 2650 kg m/s even after block A colliding 
with block B; (2) In Case 1, the velocities for Block A and 
Block B should be 1 m/s and 0 m/s before collision, and be 
0 m/s and 1 m/s after collision; and (3) In Case 2, the veloci-
ties for Block A and Block B should be 1 m/s and 0 m/s 
before collision, and be 1/3 (0.3333) m/s and 4/3 (1.3333) 
m/s after the collision.

The calculated total horizontal momentum, horizontal 
momentums of Block A and B and analytical value of total 
horizontal momentum versus time are plotted in Fig. 3. It 
is shown that the calculated total horizontal momentums 
are identical to the analytical values, which means that 
the proposed 3D-NDDACP method passes this momentum 
conversation test.

Furthermore, the values of horizontal momentum and 
velocity for Blocks A and B are also listed in Tables 1 and 
2. It is shown that the values of momentum and velocity 
for Blocks A and B computed with the proposed method 
are all very close to the analytical values.

4.2  Sliding Problem

For the second example, a small tri-prism block staying 
on a ramp is considered, as shown in Fig. 4. The slope 
angle of the ramp is � . In the computation, the tri-prism 
block and the ramp’s material parameters are: Young’s 

Table 1  Computed horizontal 
momentums of the two blocks 
(unit: kg m/s)

Case number Methods Before collision After collision

Block A Block B Total Block A Block B Total

Case 1 3D-NDDACP 2650.0000 0.0000 2650.0000 − 1.3250 2651.3250 2650.0000
Theoretical value 2650.0000 0.0000 2650.0000 0.0000 2650.0000 2650.0000

Case 2 3D-NDDACP 2650.0000 0.0000 2650.0000 882.3808 1767.6210 2650.0018
Theoretical value 2650.0000 0.0000 2650.0000 883.3333 1766.6667 2650.0000

Table 2  Computed horizontal 
velocities of the two blocks 
(unit: m/s)

Case number Methods Before collision After collision

Block A Block B Block A Block B

Case 1 3D-NDDACP 1.0000 0.0000  − 0.0005 1.0005
Theoretical value 1.0000 0.0000 0.0000 1.0000

Case 2 3D-NDDACP 1.00000 0.00000 0.3330 1.3341
Theoretical value 1.00000 0.00000 0.3333 1.3333

 

(a) slope angle  = 45° 

 

(b) slope angle  = 30° 

Fig. 4  A block slides along a ramp
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modulus E = 200 GPa, Poisson’s ratio ν = 0.25 and density 
ρ = 2650 kg/m3. The bottom surface of the ramp is fixed, 
while the other surfaces except the surface contacting the 
tri-prism block are all constrained in the normal direction. 
Due to the self-weight effect, the tri-prism block may slide 
along the ramp. To record the displacement time history 
of the tri-prism block, a monitoring point located at its 
center is used.

The analytical sliding displacement of the tri-prism 
block (S) at time instant t (s) can be expressed as:

where g represents the gravity speed (9.8 m/s2); � repre-
sents the frictional coefficient which can be expressed as 
tan(�∕180◦) . Here, � represents the friction angle between 
the tri-prism block and ramp.

4.2.1  Influence of Normal Penalty Parameter on acCuracy 
of Numerical Solution

To analyze the influence of normal penalty parameter value 
on the accuracy of the proposed 3D-NDDACP method, six 
different values of normal penalty parameter ( kn ) are consid-
ered, namely, kn will be separately set to 1.0 ×  10−1E, 1.0 × 
 10−2E, ⋯ , and 1.0 ×  10−6E. In this section, only the case for 
slope angle � = 45° and friction angle � = 0° is considered.

Figure 5a shows the relative displacement errors under 
different values of the normal penalty parameter ( kn ) for 
time step length Δt = 1.0 ×  10–4 s. For a clearer compari-
son, Fig. 5a is decomposed into Fig. 5b–f. As can be seen in 
Fig. 5b–e, the relative errors of displacement time history 
gradually decrease as the value of kn decreases. When the 
value of kn is set as 1.0 ×  10−5E, the magnitude of relative 
errors of displacement time history is only  10–4. However, 
when the value of kn is set as 1.0 ×  10−6E, the biggest mag-
nitude of relative errors of displacement time history reaches 
 10–3 (Fig. 5f). Hence, the optimal value for kn in this case 
is 1.0 ×  10−5E.

Furthermore, to analyze the effect of time step length 
on the accuracy of the numerical solution, a smaller time 
step length, namely, Δt = 1.0 ×  10–5 s, is also considered. 
Figure 6a shows the relative displacement errors under dif-
ferent values of the normal penalty parameter ( kn ) for time 
step length Δt = 1.0 ×  10–5 s. Figure 6a is also decomposed 
into five subfigures, namely, Fig. 6b–f for a clearer compari-
son. As can be seen in Fig. 6b–e, the magnitudes of relative 
errors of displacement time history are all only  10–4 for kn = 
1.0 ×  10−1E, 1.0 ×  10−2E, ⋯ , and 1.0 ×  10−5E. Even for kn = 
1.0 ×  10−6E, the magnitude of relative errors of displacement 
time history are also only  10–4 except for time instant t is 
close to 0.024 s. Similar to the case with Δt = 1.0 ×  10–4 s, 

(20)S = 0.5(sin� − �cos�)gt2

the optimal value for kn is also 1.0 ×  10−5E for the case with 
Δt = 1.0 ×  10–5 s.

To better illustrate the influence of time step length Δt on 
the accuracy of the numerical solution for kn = 1.0 ×  10−5E, 
Fig. 7 is plotted. As can be seen in Fig. 7, the magnitude of 
relative errors of displacement time history are all only  10–4 
for Δt = 1.0 ×  10–4 s and 1.0 ×  10–5 s. The accuracy of the 
numerical solution for Δt = 1.0 ×  10–5 s is generally better 
than that for Δt = 1.0 ×  10–4 s. The time step length has some 
influence on the accuracy of the numerical solution.

Base on the above discussion, the value of the normal 
penalty parameter ( kn ) will be set to 1.0 ×  10−5E in the fol-
lowing content.

4.2.2  Influence of Shear Penalty Parameter on Accuracy 
of Numerical Solution

To analyze the influence of the shear penalty parameter value 
on the accuracy of the proposed 3D-NDDACP method, four 
different values of the shear penalty parameter ks are consid-
ered, namely, ks will be separately set to 1.0 ×  10−0E, 1.0 × 
 10−1E, 1.0 ×  10−2E, and 1.0 ×  10−3E.

In this section, two cases, namely, Case I and Case II 
are considered. For Case I, slope angle � = 45° and friction 
angle � = 35°; and for Case II, slope angle � = 30° and fric-
tion angle � = 25°. For both Case I and Case II, the time step 
length Δt are all set to 1.0 ×  10–5 s.

Figure 8a shows the relative displacement errors under 
different values of the shear penalty parameter ( ks ) for Case 
I. For a clearer comparison, Fig. 8a is decomposed into 
Fig. 8b–d. As can be seen in Fig. 8b–d, the curves of relative 
errors for ks = 1.0 ×  10−2E, 1.0 ×  10−1E and 1.0 ×  10−0E are 
basically coincide to each other. The magnitude of relative 
errors of displacement time history is only  10–3. However, 
the maximum value of relative errors of displacement time 
history for ks = 1.0 ×  10−3E is close to 0.14.

Figure 9a shows the relative displacement errors under 
different values of the shear penalty parameter ( ks ) for Case 
II. For a clearer comparison, Fig. 9a is decomposed into 
Fig. 9b–d. As can be seen in Fig. 9b–d, the curves of relative 
errors for ks = 1.0 ×  10−2E, 1.0 ×  10−1E and 1.0 ×  10−0E are 
also basically coincide to each other. The magnitude of rela-
tive errors of displacement time history is only  10–2. Note 
that the maximum value of relative errors of displacement 
time history for ks = 1.0 ×  10−3E is close to 0.4.

Base on the above discussion, the shear penalty parameter 
ks can be set to 1.0 ×  10−2E, 1.0 ×  10−1E and 1.0 ×  10−0E. In 
the following section, the normal penalty parameter kn will 
be set to 1.0 ×  10−5E, while the shear penalty parameter ks 
will be set to 1.0 ×  10−1E.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5  Relative displacement errors under different values of normal penalty parameter ( k
n
 ) for time step length Δt = 1.0 ×  10–4 s and slope angle 

� = 45°
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(a) (b)

(c) (d)

(e) (f)

Fig. 6  Relative displacement errors under different values of normal penalty parameter ( k
n
 ) for time step length Δt = 1.0 ×  10–5  s and slope 

angle � = 45°
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4.2.3  Influence of Friction Coefficient on Accuracy 
of the Numerical Solution

In this section, the influence of friction coefficient value on 
the accuracy of the proposed 3D-NDDACP method is ana-
lyzed. In the computation, the time step length Δt , normal 
penalty parameter kn and shear penalty parameter ks are set 
to 1.0 ×  10–5 s, 1.0 ×  10−5E and 1.0 ×  10−1E, respectively.

Two cases, namely, Case III and Case IV are considered. 
For Case III, slope angle � = 45° and friction angle � = 
0° ~ 35°; and for Case IV, slope angle � = 30° and friction 
angle � = 0° ~ 25°. For both Case III and Case IV, the time 
step length Δt are all set to 1.0 ×  10−5 s.

Figure 10 shows the relative displacement errors under 
different friction angles ( � ) corresponding to Case III. As 
can be seen in Fig. 10, the oscillation of the relative error 
curve happens for all eight friction angles. Additionally, for 
each friction angle, the magnitude of relative error gradu-
ally decreases to very small values as time goes on. Similar 
conclusions also hold for Case IV, as shown in Fig. 11.Fig. 7  Relative displacement errors under different time step length 

Δt for slope angle � = 45° and friction angle � = 0°

Fig. 8  Relative displacement 
errors under different values 
of shear penalty parameter ( k

s
 ) 

for time step length Δt = 1.0 × 
 10–5 s, slope angle � = 45°and 
friction angle �=35°

(a) (b)

(c) (d)
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4.3  A Complex Block System

As the last example, we consider a complex polyhedral block 
system, as shown in Fig. 12. The computational model con-
sists of a cubic base and a series of polyhedral rock blocks. 
The polyhedral rock blocks are generated by cutting a col-
umn with the size of 5 m × 5 m × 10 m using a joint set. 
The material parameters of the blocks and the cubic base 
are: Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.25, 
density ρ = 2650 kg/m3. The time step length Δt is set to 
1.0 ×  10–4 s. In the computation, the four side surfaces and 
the bottom surface of the cubic base are constrained in the 
normal direction.

Three scenarios corresponding to different friction angles 
( � = 0°, 5° and 10°) are investigated. The kinetic movements 
of the block system on the cubic base under gravity load are 

recorded. The gravity load is treated as an external force which 
is added suddenly at the beginning of the calculation. The 
block geometries at different time instants for the first scenario 
( � = 0°), the second scenario ( � = 5°) and the third scenario 
( � = 10°) are separately plotted in Figs. 13, 14 and 15.

Due to the frictionless condition in the first scenario, the 
rock blocks move freely under the gravity load. Note that this 
scenario has also been investigated by (Zheng et al. 2020). 
The block geometries at different instants predicted with the 
present numerical model agree well with those presented by 
(Zheng et al. 2020).

For the second scenario and the third scenario, the rock 
blocks cannot move freely under the gravity load, due to the 
influence of friction between blocks. At 0.7 s, the maximum 
values of x-displacement for the second scenario and the third 

Fig. 9  Relative displacement 
errors under different values 
of shear penalty parameter ( k

s
 ) 

for time step length Δt = 1.0 × 
 10–5 s, slope angle � = 30° and 
friction angle � = 25°

(a) (b)

(c) (d)
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Fig. 10  Relative displacement 
errors under different friction 
angles ( � ) for time step length 
Δt = 1.0 ×  10–5 s and slope 
angle � = 45°

(a) = 0° and = 45° (b) = 5° and = 45°

(c) = 10° and = 45° (d) = 15° and = 45°

(e) = 20° and = 45° (f) = 25° and = 45°

(g) = 30° and = 45° (e) = 35° and = 45°
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Fig.11  Relative displacement 
errors under different friction 
angles ( � ) for time step length 
Δt = 1.0 ×  10–5 s and slope 
angle � = 30°

(a) = 0° and = 30° (b) = 5° and = 30°

(c) = 10° and = 30° (d) = 15° and = 30°

(e) = 20° and = 30° (f) = 25° and = 30°
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scenario are 1.970 m and 1.886 m respectively, which are 
smaller than that for the first scenario (1.983 m).

5  Conclusions

To better analyze rock mechanics problems, a nodal-based 
3D discontinuous deformation analysis method with the 
contact potential (3D-NDDACP) is developed. In the pro-
posed numerical model, tetrahedral FE meshes which can 
be effectively generated are adopted to discretize each 
rock block. Additionally, the contact potential is used to 
compute contact forces between any two rock blocks. The 
proposed numerical model has the following advantages:

A) Due to the adoption of tetrahedral FE meshes in each 
rock block, the continuum mechanics principles used 
in FEM may be used in the proposed 3D-NDDACP 
method. By refining the FE mesh in each rock block, 
the deformation ability can be enhanced, while the stress 
distribution can be refined.

B) According to the definition of contact potential, there 
is no need to distinguish contact types between any two 
blocks. Hence, the contact force can be directly com-

puted in the proposed 3D-NDDACP method. However, 
in the traditional 3D-DDA method, the contact type 
should be determined before computing the contact 
force. Note that the determination of contact types in the 
traditional 3D-DDA method is not a tractable task, since 
many different contact types including the point-to-point 
contact, point-to-edge contact, point-to-face contact or 
edge-to-edge contact are involved.

C) In the traditional 3D-DDA method, the contact force 
is first treated as concentrated force, and then added 
to the global force vector. However, in the proposed 
3D-NDDACP method, the contact force is in direct 
proportion to the contact volume, and is treated as a 
traction force before adding into the global force vec-
tor. The numerical examples investigated in the present 
work indicate that the proposed 3D-NDDACP method 
can accurately simulate contact problems.

D) The open-close iteration processes are not needed in the 
proposed 3D-NDDACP method. Hence, the implemen-
tation of the 3D-NDDACP method is much easier than 
that of the traditional 3D-DDA method.

(a) Discretized model 

(b) the initial block geometry (block number plot)

Fig. 12  A polyhedral block system

(a) the block geometry at 0.5 s (x-displacement plot)

(b) the block geometry at 0.7 s (x-displacement plot).

Fig. 13  The block geometry at different instants for the first scenario 
( � = 0°)
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E) In each time step the contact treatment between blocks 
is handled by contact forces. Compared with the tra-
ditional DDA method, this treatment in the proposed 
3D-NDDACP method will bring some explicit features 
over the time step, which means that a small time step 
length may needed to ensure accuracy requirement. 
However, according to our test (Sect. 4.2.1), even when 
the time step length Δt is set to 1.0 ×  10–4, the magnitude 
of relative errors of displacement time history is only 
 10–4, which means that the influence of explicit features 
from the contact force is limited.

Apart from the abovementioned advantages, the pro-
posed 3D-NDDACP method is very suitable for solving 
rock fracturing problems. In our future work, the cur-
rent version of the 3D-NDDACP method will be further 
improved for the rock fracturing modelling.
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