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Abstract
Large granitic boulders resting on steep slopes represent considerable safety hazards that largely depend on the location of 
the contact surface characterized by the impression d, denoting the parallel distance between the contact surface and the 
original rock surface. On the other hand, this impression reflecting the often convex nature of the contact between boulders 
and resting platforms, cannot be measured precisely, so Factors of Safety (FoS) computed with this input may have significant 
uncertainties. Using geometric 3D analysis, here, we present the concept of computing FoS as a function of the impression d, 
admitting a much more reliable estimate of the actual hazards. Beyond introducing the FoS functions, we also identify all fail-
ure modes, some of which have not yet been investigated. We compute the FoS functions for the boulder Pena do Equilibrio, 
located in Spain. Our computations for FoS against sliding match all earlier results. However, we also compute FoS against 
toppling and against torsion and show that the latter may be critical. Since our methods are general, this suggests that torsion 
phenomena, which have been scarcely studied so far, may be relevant to analyze the stability of other natural rock boulders.

Highlights

•	 A novel method to evaluate the safety of large boulders resting on steep slopes. Instead of Factors of Safety (FoS) com-
puted at a fixed geometry with significant uncertainties, FoS functions are introduced, depending on a single geometric 
parameter.

•	 Considering spatial components of possible displacements, all failure modes of the boulder are identified, some of which 
have never been investigated before.

•	 Using geometric 3D analysis, our method is applied to the boulder Pena do Equilibrio, located in Spain and we find that 
torsional instability, one of the newly identified failure modes is critical.

Keywords  Boulder · Geometric uncertainty · Safety factor function · 3D analysis

1  Introduction

1.1 � Geological Background and Problem Statement

Granite boulders are geomorphic structures, typically dis-
played in a wide variety of shapes, ranging from ellipsoi-
dal, relatively slender blocks through cuboids to almost 
perfect rock spheres. Their size can also span from several 
centimeters in diameter to tens of meters. Many of these 
structures are formed as a result of a long, two-stage, in-
situ physico-chemical weathering process of granitic rock 
masses (Twidale 1982). Internal fracture networks represent 
preferential paths for water percolation, which causes rel-
evant degradation of part of the rock mass, turning it into a 
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set of rounded, sound rock blocks embedded in decomposed 
granite. If this material is eroded, the remaining rock mass 
emerges as a group of piled boulders. At this stage, and as a 
consequence of their rounded shape, these boulders tend to 
freestand on relatively small contact areas, sometimes close 
to precarious equilibrium conditions (Fig. 1a,c) (Domokos 
et al. 2012).

Other examples of these balanced rocks are represented 
by allochthonous blocks (also known as ‘erratic blocks’) 
transported by glaciers (Fig. 1b) or those derived from rock-
fall events (Fig. 1d). These shapes, resulting from fracture 
(Domokos et al. 2022) and abrasion in a glacial environment, 
typically display sharp edges, unlike the rounded shapes 
resulting from weathering.

The interest in studying the stability of precariously bal-
anced rigid bodies arose in the 1960s after some earthquakes 
took place in Chile. At this time, some slender structures 
were found to remain surprisingly stable after the occur-
rence of the seismic events, whereas others, apparently more 
stable, were seriously damaged. These observations were 
noticed by Housner (1963), who first proposed a set of equa-
tions to model the rocking motion and damping of a rigid 
block (inverted pendulum). After this seminal approach, sev-
eral authors have shown interest in studying the aforesaid 
problem, improving the existing solutions over a number of 
years (Yim et al. 1980; Mohammad et al. 1980; Ishiyama 
1982; Makris and Roussos 2000; Prieto and Lourenço 2005).

In a parallel manner, from a rock engineering perspec-
tive, the first approach considering the study of the toppling 
mechanism in a 2D rectangular block and a rock slope was 
developed by Ashby (1971) and later improved by other 

authors (Hoek and Bray 1974; Sagaseta 1986). These results 
were based on static assumptions and did not consider a seis-
mic trigger when dealing with the stability against toppling. 
Coombs et al. (1976) found in precariously balanced rocks 
(PBRs)—a real example of the problem of a rigid block 
susceptible to toppling—appropriate elements to be used as 
natural seismoscopes, helping in constraining estimates of 
peak ground motions. Later, Brune et al. (1996) developed 
an analytical–numerical methodology for estimating the 
ground acceleration necessary to topple such a PBR, relat-
ing this value with the existence of past seisms.

Some recent works started analyzing the mechanism of 
toppling in blocks with shapes closer to reality, i.e., Alejano 
et al. (2010) examined the sliding and toppling stability of a 
huge granitic boulder through a limit equilibrium approach 
and geometrical information gathered with LiDAR. The 
influence of rounded corners in toppling for both single 
and groups of blocks was studied by Alejano et al. (2015, 
2018) in the laboratory and on-site, respectively. Vann et al. 
(2019) developed a practical reliability-based approach to 
evaluate the stability of precariously balanced boulders, 
which accounted for the 3D effects of real natural contact 
surface on the stability. Almost at the same time, a limit-
equilibrium-based approach was proposed by Pérez-Rey 
et al. (2019) to evaluate the factor of safety for sliding and 
toppling mechanisms of a large granitic boulder.

The limitations of a 2D stability analysis approach 
for PBRs have been noted by various authors, leading to 
performing comparisons between 2 and 3D calculations 
(Haddad et  al. 2012). Domokos et  al. (2012) formally 
investigated, through 3D models of pebbles, how the static 

Fig. 1   a Pena do Equilibrio boulder in SW of Galicia (Spain), the 
structure under study in this paper; b ‘Kummakivi’ Boulder, erratic 
block transported by a glacier in Ruokolahti (Finland); c Penedo das 

Fatigas boulder in Southern Galicia (Spain) and (d) some boulders 
derived from rockfalls along a road in Salta (Northwestern Argentina)
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equilibria of rocks exist at two scales, explaining the phe-
nomenon of rocking stones. Later, Domokos et al. (2022) 
determined the relation between the number of macro- and 
micro-equilibria and described their coevolution on a surface 
prone to abrasion.

The advance and affordability of 3D point-cloud acqui-
sition and management lead some authors to use 3D point 
clouds as useful tools to analyze the stability of PBRs. 
Zábranová (2020) demonstrated through the registration of 
eigenfrequencies and numerical modeling based on a 3D 
point cloud that the use of a 2D approach for estimating the 
stability against toppling of PBRs might not be appropri-
ate. In the same article, the authors also emphasized the 
relevance of local irregularities on the contact area when 
estimating the stability of these structures. Muñiz-Menéndez 
et al. (2020) presented a methodology to analyze the slid-
ing and toppling stability of a large granitic boulder using 
3D discrete numerical modeling. Following this line of 
thought, Pérez-Rey et al. (2021) presented a physical mod-
eling approach for analyzing toppling stability based on 
laboratory tilt tests, limit equilibrium computations, and a 
3D-printed version of a real PBR obtained from a 3D point 
cloud. In this article, the relevance of the 3D component in 
the stability of boulders was also highlighted. Recent work 
presented by Saifullah and Wittich (2022) also resorted to 
an LiDAR-based 3D point-cloud model of a PBR to analyze 
the toppling stability response by means of experimental 
and 3D discrete numerical modeling approaches. They also 
studied the influence of the contact normal stiffness on the 
probability of toppling.

The study of PBR stability has been the subject of 
research over several years, as it can be derived from the 
already referred works. These structures have represented 
natural tools for paleoseismic analyses, as they are reliable 
indicators of maximum historical seismic activity. Their 
stability assessment is of great relevance in the field of civil 
engineering due to the risk their failure may pose in infra-
structures. Additionally, precariously balanced rocks are 
particularly interesting geomorphic structures, representing 
important natural heritage elements with potential touristic 
interest.

The safety of boulders at a counterintuitive balanced 
position is a delicate problem. In a similar way to a wide 
variety of civil engineering structures, the critical question 
is a quantitative safety measure expressing the resistance 
against toppling, sliding, and any possible movements of 
the block. In the case of artificial structures, uncertainty is 
mainly attributed to the spatial and temporal distribution of 
the actions (loads) and the material performance (strength). 
At the same time, the geometry is assumed to be known with 
a marginal error. This strategy is well reflected in engineer-
ing practice, where safety (or partial) factors apply to loads 
and material qualities but not to the geometry. In the case of 

boulders, such an approach is controversial: the geometry 
and, in particular, the exact contact surface entail a signifi-
cant uncertainty. One possible approach to address this dif-
ficulty is applying complex probabilistic methods that treat 
the contact surface as a random function. However, such 
an approach relies on so many additional assumptions that 
any numerical outputs might be questioned from the point 
of view of practical engineering. In this paper, by resorting 
to a geometric 3D analysis of a large granitic PBR (Pena do 
Equilibrio boulder, located in Spain and previously shown in 
Fig. 1a), we present the concept where the geometric uncer-
tainty about the contact surface is expressed by the single 
variable d, denoting the impression of the boulder, which 
is the parallel distance between the contact surface and the 
original rock surface (see Fig. 2). Although several Factors 
of Safety (FoS) may sensitively depend on the magnitude 
of d, this value is hard to measure or estimate with high 
accuracy. To accommodate this situation, we propose to use 
FoS functions, which are FoS computed as functions of d, 
instead of constant values. These functions offer a broad 
and balanced view of safety and appeal to the engineer’s 
intuition without involving complicated probabilistic tools. 
They admit an immediate, intuitive view of safety, as they 
are plotted against the geometric parameter d, on which 
the geometry of the contact surface sensitively depends. In 
the case of failure modes with a strong dependence on the 
exact geometry of the contact surface (e.g., toppling), FoS 
functions admit a much more reliable estimate of the actual 

Fig. 2   The Pena do Equilibrio in Spain, the boulder studied in detail 
(photo by the authors) (a). After reconstructing the crushed part of 
the boulder (b), the impression d is used to parametrize the contact 
(c)
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hazards potentially induced by this structure. Needless to 
say, the computation of FoS functions relies on a fully 3D, 
point-cloud-based numerical analysis of the mechanics of 
the boulder’s stability.

Beyond introducing the FoS functions and calculating 
them for this boulder, we also identify all failure modes, 
some of which had not yet been investigated. Our computa-
tions for FoS against sliding match all earlier results (Pérez-
Rey et al. 2019). However, we also compute FoS against 
crushing, toppling, and against torsion/rotation and show 
that the latter may be the most critical mode of failure. Given 
that the methods presented in this paper are general, torsion, 
which has not been studied before, may also be critical in 
the case of other PBRs.

1.2 � Main Hypotheses

Our approach is illustrated in Fig. 2, and it is based on the 
following assumptions:

(a)	 the contact surface is planar;
(b)	 its slope is known.

In this approach, the only unknown parameter is the 
impression depth d identifying the location of the contact 
surface with respect to the original rock surface. We use d as 
a single geometric parameter to characterize the variation of 
the safety factor, which we compute as a function of d. This 
computation relies on the following additional assumptions:

(c)	 We assume that the contact area was created, while the 
boulder material was crushed. Crushing might happen 
under freeze–thaw cycles; beyond this contribution, the 
presence of water on the contact surface is not consid-
ered further, because it is presumably dry during most 
of the boulder’s lifetime.

(d)	 We assume that from the 3D dataset available on the 
existing rock surface, the missing (crushed) part can be 
reconstructed by extrapolation (see Fig. 2b).

1.3 � The Considered Failure Modes

As noted earlier, the contact area, and hence the equilibrium 
is rather sensitive to the value of d. Our assumptions enable 
us to compute the contact area as a function of d (Fig. 2c). 
We identify four failure modes with corresponding FoS func-
tions: sliding (FoSs), toppling (FoSt), crushing (FoSc), and 
rotation around the contact normal (Fig. 3). In the absence 
of an apparent scale, the latter is given as the critical torsion 
Tcrit needed to dislodge the boulder. Safety is computed for 
two loading cases: pure gravity and gravity combined with a 

seismic action, where both an average and an extraordinary 
earthquake are considered.

Our method is illustrated via the example of Pena do 
Equilibrio in Spain (Fig. 2). This boulder with a mass of 
365.5 t appears to be on the verge of dislodging. The details 
of the mechanical assumptions and the computational 
method are summarized in the following sections.

2 � Methods

2.1 � Mechanical Considerations

We study the equilibrium of a homogeneous boulder B 
standing on a slope S (Fig. 4). The slope is assumed to be 
a plane with a dip β. Nonetheless, 0 ≤ β ≤ π/2 holds. We 
investigate the question under which conditions the currently 

Fig. 3   Simplified schematic explanation of the four modes of failure 
studied in this paper: a sliding, b toppling, c crushing, and d rotation 
about the contact normal

Fig. 4   The boulder B on a slope (ramp) S with a dip. The boulder’s 
weight W acts at the center of gravity G. Red arrows denote the 
admissible movement components that vanish in the case of equilib-
rium
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observed static balance position of the boulder B may be 
maintained under gravitational and seismic loads. We iden-
tify four physically relevant scenarios (failure modes) in 
which the boulder may get dislodged, namely: sliding, top-
pling, crushing, and rotation about the contact normal. These 
failure modes are illustrated in Fig. 3.

We aim to determine the factors of safety (FoS) for each 
of these cases, where FoS = 1 means that any incremental 
load could move the boulder.

2.1.1 � Conditions of Equilibrium

For a horizontal slope (β = 0), equilibrium under the gravita-
tional force is obtained if the boulder rests on one of its balanc-
ing points (Domokos et al. 2009, 2012). In geometric terms, 
the balancing or equilibrium points are those surface points 
of the convex hull of B at which the surface normal passes 
through the centroid G. In this case, the gravitational force 
is balanced by a vertical contact force, so equilibrium under 
self-weight is attained without friction. Under seismic action, 
either the dynamic response (i.e., the motion of the boulder) is 
analyzed, or in a simplified setting, a static load is used to char-
acterize the effect of the seismic action. This latter approach is 
widely adopted in structural engineering, and we follow this 
interpretation in this paper (Chopra 1995).

If the dip angle differs from zero, friction becomes essential 
in maintaining the equilibrium even under pure gravity. We 
assume that the contact between the boulder and the slope 
follows Coulomb’s law in dry friction with a coefficient of 
static friction μs. Note that Coulomb’s law relates the normal 
and the tangential forces independently of the contact area 
(Popov 2017).

To simplify the analysis, we assume that the boulder is 
locally convex in the contact’s neighborhood. Strict convexity 
in the neighborhood of the contact is equivalent to point con-
tact between the boulder and the slope. In mechanical terms, 

such an assumption is equal to an unlimited compressive 
strength of the material (both for the boulder and the slope). 
The unlimited compressive strength assumption can be justi-
fied for smaller objects, such as pebbles (Domokos et al. 2012), 
but the performance of the material should be included in a 
realistic model for boulders.

2.1.2 � Role of the Material

Let fd denote the compressive strength of the boulder and 
assume that the compressive strength of the slope’s material 
exceeds fd. Limiting the compressive strength eliminates the 
possibility of a point contact between the boulder and the 
slope, as it dictates a contact surface with a non-vanishing 
area. We assume that a polygon denoted by C encloses the 
contact surface with area A (Fig. 5). Nonetheless, for a contact 
transferring normal force N, the area is bounded below via 
Eq. 1

In our work, we assume a perfectly plastic contact. In 
other words, the boulder and the slope are assumed to be 
rigid bodies as long as the stress is below fd. As we observe 
(and record) the current, loaded geometry of the boulder, 
this assumption is justified.

2.1.3 � Equilibirum Under Gravity

In the case of pure gravity, solely a vertical load W is acting 
at the G centroid of the boulder. Here, W = mg, where m is 
the mass of the boulder, and the gravitational acceleration g 
with a magnitude of g = 9.81 m/s2. The normal and tangen-
tial components of W with respect to the slope are denoted 
to WN and WT, respectively. Equilibrium is demonstrated by 
excluding all possibilities of rigid-body motions. Following 
Fig. 4, let u and ρ denote the vectors of displacements and 
rotations at point P, where P is the vertical projection of the 
centroid G onto the slope S. In the local basis [xyz] axis z 
and x in respect coincide with the normal and gradient of 
S. Based on our assumptions, WN is a compressive force, 
and we exclude cohesive stresses in the contact. Hence, 
WN should be balanced by compressive stresses denoted to 
�(x, y) . The equilibrium conditions read the following:

–	 uz = 0, if σ ≤ fd in all points of the contact polygon C,
–	 uy = 0, because the load W has no y-component,
–	 ux = 0, if friction hinders sliding. As the frictional force 

should exceed WT, it follows that 

(1)A ≥ N

fd
.

(2)tan� ≤ �s,
Fig. 5   Under a seismic action with maximal value H and gravity W, 
the resultant of the loads pass through at a point inside ellipse E, as 
the direction of the horizontal H is arbitrary
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–	 ρx = 0 and ρy = 0, if W passes through the interior of the 
contact polygon C (i.e., P ∈ C) . Furthermore, there exists 
a normal stress distribution that balances WN and σ ≤ fd 
holds in all points of the contact polygon C,

–	 ρz = 0 holds if ρx = 0 and ρy = 0 also hold. (The proof is 
given in Appendix A.)

2.1.4 � Equilibrium Under Seismic Actions

Solely, the horizontal component of the seismic action is 
considered; the associated horizontal force H is given via 
H = αW, where α is the seismic coefficient characteristic 
for the area. Note that the direction of the horizontal H is 
arbitrary (Fig. 5).

The conditions of equilibrium accordingly.

–	 uz = 0, if σ ≤ fd in all points of the contact polygon C,
–	 uy = 0, and ux = 0 if friction hinders sliding. Here, an 

earthquake parallel to the slope gradient is the worst-
case scenario, as the compression on the contact surface 
is minimal (N = WN-Hsinβ). Then, equilibrium requires

regardless of the magnitude of W. This finding agrees 
with Pérez-Rey et al. (2019).

–	 ρx = 0, and ρy = 0, if the resultant force passes through 
the interior of the contact polygon C (i.e., in Fig. 5, the 
ellipse E is inside C). Furthermore, there exists a normal 
stress distribution that balances WN and σ ≤ fd holds in 
all points of the contact polygon C. Note that due to the 
dynamic nature of the earthquake, we do not require an 
admissible normal stress distribution for the resultant 
load W + H, only for W. This simplification is in agree-
ment with experiences on natural and artificial structures 
in seismically active areas (Li et al. 2009; Alhajj Chehade 
et al. 2021).

–	 ρz = 0 holds if ρx = 0 and ρy = 0 also hold. (The proof is 
given in Appendix A.)

2.1.5 � Failure Modes

Considering the conditions of equilibrium above, four failure 
scenarios can be identified. They are the following (and after 
each, we give the corresponding FoS):

(a) sliding (FoSs),
(b) toppling (FoSt),
(c) crushing of the material (FoSc), and
(d) torsional moments acting onto the boulder.

(3)
sin� + �cos�

cos� − �sin�
≤ �s,

While in cases (a), (b), and (c), the Factor of Safety might 
be computed as the ratio of the resistance of the structure 
and the design action, in the last case, there is no appar-
ent scale. Therefore, instead of a safety factor, we compute 
the critical torsional moment Tcrit necessary to dislodge the 
boulder.

As we have two load cases (pure gravity and gravity com-
bined with a seismic action), in principle, eight safety factors 
might be associated with the boulder. However, crushing is 
assumed to be identical for the two load cases. In the lack 
of information on seismic torsion, Tcrit is only calculated for 
the pure gravity load case. Table 1 summarizes the computed 
safety measures.

Observe that a simplistic, planar model neglects failure 
mode (d) entirely and considers just an a-priori fixed orienta-
tion of the earthquake; hence, it might overestimate FoSt,e.

2.1.6 � Safety Factor Functions

Pérez-Rey et al. (2019) determined the safety of the Pena 
do Equilibrio at a fixed contact surface obtained via point-
cloud processing of LiDAR data. The reconstruction of the 
contact surface is not without ambiguities, and the computed 
safety factors are somewhat sensitive to the reconstruction 
of the contact polygon C. This latter depends primarily on 
the depth d of the impression, i.e., the distance between the 
plane of contact (i.e., the slope S) and the plane parallel to 
S and being tangent to the crushed (not anymore existing) 
part of the boulder. To illustrate the sensitivity mentioned 
above of the FoSs, we aim to compute the safety factor func-
tions. These give the value of the safety factors w.r.t. the 
impression d.

2.2 � Computational Tools

2.2.1 � Reconstruction of the Contact Surface

The original rock surface of the Pena do Equilibrio is impos-
sible to measure below its contact plane, while data close to 
the ground are noisy; therefore, it was necessary to restore 
the entire rock surface by extrapolating from the clean part 
of the 3D LiDAR dataset. After meshing the recorded point 

Table 1   The safety measures computed for the boulder

Failure mode Load case

Gravity Gravity + seismic

Sliding FoSs FoSs,e

Toppling FoSt FoSt,e

Crushing FoSc FoSc

Torsion Tcrit –
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cloud and choosing the orientation and dip of the slope S 
were fixed. Next, the 3D mesh was sliced at 1 mm inter-
vals with planes parallel to the slope S. We found that the 
obtained cross-sections constitute a single polygon only if 
their distance from S was greater than or equal to 10 cm. It 
shows that the neighborhood of the contact on B is known 
inaccurately; hence, the part of the mesh closer to S than 
10 cm was discarded.

The arising hole in the mesh was patched by approxi-
mating the missing cross-sections with scaled copies of the 
hole’s boundary, which is a closed, non-intersecting, planar 
polygon (Fig. 6a). To obtain the number of copies and the 
scaling factors, we fitted an oblate spheroid of radii rM and 
rm to approximate the boulder’s surface. Here, rM > rm, and 
we constrained the oblate spheroid as follows:

1.	 Its center of gravity coincides with the boulder’s center 
of gravity G.

2.	 Its volume is equal to the boulder’s previously approxi-
mated volume of 142.22 m3 (Pérez-Rey et al. 2019).

3.	 Its tangent planes at its poles are parallel to the slope S.
4.	 The boulder’s contact area was previously estimated at 

0.61 m2 (Pérez-Rey et al. 2019); the oblate spheroid’s 
intersection with the contact plane must have an identi-
cal area.

Some straightforward calculations yield rm = 1.961 m 
and rM = 4.161 m. This is consistent with previous results 
that measured a zG = 1.95 m distance between the boulder’s 
center of gravity and its contact plane (Pérez-Rey et al. 
2019).

The oblate spheroid protrudes to the opposite side of the 
contact plane S by 1.1 cm in the direction of its rm axis. In 
our model, we assume that the boulder also protrudes 1.1 cm 
below the contact plane and its tangent plane at the furthest 
point is parallel to the slope S. From now on, the impression 
d is measured from the tangent plane.

Now, we need to rebuild the mesh around the hole. Let C0 
denote its boundary, which is a polygon in the plane at a 
d = 11.1 cm distance. Let A(z) denote the area enclosed by 
the circle formed as the intersection of the oblate spheroid 
and the d = z plane. We approximate the unknown cross-
section of the rock surface with the d = z plane as C0 scaled 
by a factor of 

√

A(z)

A(11.1cm)
 . For example, the contact polygon 

C in the d = 1.1 cm distance is C0 scaled by a factor of 
√

A(1.1cm)

A(11.1cm)
 . We patched the hole with a new mesh by calcu-

lating the cross-sections using this technique with planes 
placed at a one-millimeter distance (Fig. 6b). Finally, faces 
between subsequent polygons were added (Fig. 6c, d).

2.2.2 � Computation of the Safety Factor Functions

The safety against sliding is independent of the contact sur-
face. Based on Eq. (3)

Here, the factor FoSs associated with pure gravity is 
obtained via substituting � = 0 into the formula above.

In the case of toppling failure, Pérez-Rey et al. (2019) 
computed the safety factor based on the critical dip of 
the slope needed to induce the toppling of the boulder. In 
Appendix B, we show that an equivalent formulation obtains 
FoSt by computing the support function h(.) of the convex 
hull of the contact polygon C (Fig. 7b). In specific, the gen-
eral formula for FoSt,e reads 

 where � selects a point along the circumference of the con-
tact polygon (see Appendix B for details). Here again, safety 
under static loads can be obtained by substituting � = 0 . As 
the support function h(.) depends on the selection of the con-
tact polygon, FoSt is a function of the impression d. Simi-
larly, the safety against toppling in the case of seismic action 
depends on the impression d. The details of computing FoSt 

(4)FoSs,e =
cos� − �sin�

sin� + �cos�
�s.

(5)FoSt,e = min
�

(

h(�)

cos� +
�

sin�

)

1

zGtan�
,

Fig. 6   3D scan of the Pena do Equilibrio (gray), the patch filling 
the hole where data are noisy or unavailable (red), and their plane of 
contact (orange). The hole after the removal of the noisy part of the 
surface (a) and the mesh formed by the extrapolated cross-sections 
(b). The extrapolated surface viewed from the side direction (c, as in 
Fig. 2) and below (d)
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are given in Appendix B, where we also show that the top-
pling under seismic activity tends to occur around different 
axes than the toppling under pure gravity (Figs. 7c, d, and e).

We also compute FoSc the safety against crushing using a 
fd = 100 MPa ultimate strength for the granite material of B 
and express this safety in terms of strength reserve. Here, an 
ideally plastic stress distribution in compression is computed 
over the contact polygon C for the normal force WN acting at 
point P (Fig. 7f). For the details, see Appendix A. If the plas-
tic resistance NR exceeds the WN magnitude of WN, then the 
boulder is safe against crushing, and the safety factor reads

Finally, the torsional moment around the axis normal to 
the slope and passing through the center of mass of the boul-
der needed to dislodge the rock is computed. In the case of 
point contact, the equilibrium is always unstable, because, 
in the lack of torsional resistance, an arbitrarily small torque 
can rotate B, which lowers the potential energy (i.e., the 
height of G) of the boulder. For an extended contact surface, 
friction stabilizes the equilibrium. We find that the safety 
against torque is linked to the safety against sliding, and we 
express safety in terms of a critical torque Tcrit (again, details 
are given in Appendix A).

(6)FoSc =
NR

WN

.

3 � Results and Discussion

We demonstrate the computation of the safety factor func-
tions on the Pena do Equilibrio in Spain. The mass of the 
boulder is approximately m = 365.5 t (Pérez-Rey et al. 2019), 
and the dip of the slope is found to be β = 27O. The coef-
ficient of static friction reads μs = 2/3. According to the 
Spanish National Act, in the region, the seismic coefficient 
α1 = 0.032 on average and α2 = 0.065 as indirectly estimated 
for exceptional earthquakes.

Regarding sliding, we find FoSs = 1.31 and FoSs,e1 = 1.21 
and FoSs,e2 = 0.75, respectively. The first two agree with the 
values given in Pérez-Rey et al. (2019), and the last one, 
FoSs,e2 shows that in the case of an exceptional earthquake 
that acts close to parallel with the gradient of the slope, the 
safety of the boulder is lost.

In the case of toppling, the safety is slightly below the 
values of Pérez-Rey et al. (2019). In specific, at d = 12 mm, 
which provides a contact area identical to the area consid-
ered in Pérez-Rey et al. (2019), we find that the boulder 
might topple under an average earthquake around the axis 
denoted in red in Fig. 7c. The difference is attributed to the 
fact that in the new method, all possible toppling axes are 
considered.

The numerically computed safety factor functions for 
sliding, toppling, crushing, and the critical torsion function 
are summarized in Fig. 8. Our results can be summarized 
as follows:

1.	 Safety factors against sliding show good agreement with 
earlier results (Pérez-Rey et al. 2019)

2.	 The boulder is safe against the standard earthquake.
3.	 A maximal earthquake may dislodge the boulder.
4.	 Torsion around the normal of the contact surface may 

be critical. Our results indicate that a relatively small 
torsional moment (produced, i.e., by a somewhat large 
group of people) could potentially dislodge the boulder.

4 � Conclusions

Spatial analysis of the precarious balance of granite boulders 
is essential in estimating their safety. A complete verifica-
tion requires that the analysis includes rotation around the 
local normal of the contact beyond sliding and toppling. We 
find that a considerably small torsional moment is sufficient 
to drive the boulder out of its balanced position. Although 
pure gravity does not induce such a torsional moment, either 

Fig. 7   Steps of the computation for a contact polygon C at d = 14 mm 
impression. The polygon was obtained from the extrapolated surface 
(a) and its convex hull (b). The axis of toppling under gravity (green) 
and seismic action (red), respectively (c). The ellipses represent pos-
sible positions of point P for a generic (d) and an exceptional earth-
quake (e). The compressed part of the contact surface assumes a plas-
tic stress state (blue polygon, f)
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artificial actions or even a compound seismic action might 
produce rotation around the axis normal to the slope. This 
observation underscores the importance of spatial analysis as 
pure planar models miss to grab the rotational phenomenon.

Considering the significant weight of the boulders, the 
crushing strength at the interface also affects the boulder’s 
safety. In the example of the Pena do Equilibrio in Spain, 
we demonstrate that, as opposed to classical problems in 
structural engineering, the uncertainty associated with their 
geometry, especially the shape of the contact surface with 
the foundation of the boulder, should be accounted for in 
the analysis. By introducing safety factor functions, we 
expressed the uncertainty of the contact geometry in a one-
parameter-dependent manner. We find that the safety of the 
Pena do Equilibrio cannot be verified under an extreme seis-
mic event.

The interplay between rotation around the normal of the 
contact surface and seismic action calls for further, more 
detailed analysis in the future. Similarly, the case of non-
planar or partial contact between the boulder and its foun-
dation also provides a promising future research direction, 
besides considering the existence of rock bridges that would 
ultimately improve the strength properties of the contact 
surface.

Appendix A

See Fig. 9.

Fig. 8   The safety factor functions with reference to the impression d: 
a sliding, b toppling, c crushing, and d the critical torsional moment 
Tcrit. In panels (a) and (b), the results for pure gravity are given in 
purple; for the seismic action, yellow and brown correspond to an 

average and an extraordinary earthquake, respectively. The vertical 
green lines indicate the case of d = 12 mm impression. The horizontal 
blue lines correspond to FoS = 1 (where it is relevant) 
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About Rotational Equilibrium 
and Computation of Tcrit

Here, we demonstrate that the safety of the boulder on a 
slope against toppling implies safety against torsion around 
axis z and compute the Tcrit critical moment that dislodges 
the body. First, assume the slope dip is critical, i.e., tan 
β = μs holds. If there exists a distribution of the σ(x,y) com-
pressive normal stresses over the contact polygon C, such 
that

 at each point of the contact surface, the boulder is in equi-
librium. Observe that the direction of the shear stress at each 
point of C is parallel to the axis x, i.e., the slope gradient. 
Equation (A4) yields that the T torsional moment vanishes, 
because

(7)0 ≤ �(x, y) ≤ fd ∀(x, y) ∈ C,

(8)∫ A

�dA = WN

(9)∫ A

�xdA = 0,

(10)∫ A

�ydA = 0,

holds, then �0∫ A

�dA = WT implies

(11)� = �s�,

The obtained result also shows that the shear capacity of the 
contact is entirely exploited to prohibit sliding. Therefore, the 
shear resistance of the surface cannot contribute to hindering tor-
sion. It means that even a slight torsion can dislodge the boulder.

If the slope dip is not critical, i.e., tan β < μs holds, then the 
shear capacity of the contact might contribute to hindering 
torsion. The computation of the Tcrit torsional resistance is a 
delicate question. Here, we aim to approximate a lower bound 
on Tcrit. First, a normal stress distribution with a minimal area 
is sought. Based on classical considerations (Timoshenko 
1956), we assume that the contact is without cohesive forces 
and the compressive σ(x,y) normal stresses are in a plastic 
state. Let C∗ ⊆ C denote the plastic zone under the compres-
sive force acting at P (Fig. 9(a)). Assuming a line separating 
the compressed and non-stressed regions, the solution of the 
equilibrium equations is unique (or there exists no solution). 
Let A* denote the area of C*. To find the bound on Tcrit, we 
assume that the points of C* with a high distance from P con-
tribute entirely to resisting sliding, and the shear stress over 
the circular area in the vicinity of P resists torsion. This choice 
is motivated by minimizing the arm of stress in the torsional 
moment. It means that C* is separated into two disjoint sets: 
the shear stresses in CS* hinder sliding, and the shear stresses 
in CT* hinder torsion (Fig. 9 b).

The compressive resistance of the contact reads

 which value is used to compute the FoSc factor in Eq. (5). 
It is straightforward to show that the lower bound on Tcrit 
requires a minimal AT* area of CT*. This minimum is 
attained if the normal stress acting on CT* is maximal, i.e., 
it equals the compressive strength fd. From the equilibrium 
equations, these considerations yield

Let RT denote the radius of the circle with area AT*. The 
torsion resisted by the shear stresses is found after the inte-
gration is performed

Appendix B

See Fig. 10.

(12)T = ∫ A

�ydA = �s∫ A

�ydA = 0.

(13)NR = A∗f d,

(14)A∗
T
=

�sWN −WT

fd�s

.

(15)Tcrit =
2

3
�
s
fdR

3

T
�.

Fig. 9   Computing the lower bound on the critical torsion Tcrit. The 
compressed zone for the contact C in the plastic state (a). The shear 
stresses associated with sliding (blue) and torsion (red (b))
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The Axis of Toppling and Computation 
of FoSt

Here, we compute the safety against toppling for both load 
cases. Following the classical approach to planar toppling, the 
factor of safety is computed as the ratio of the destabilizing and 
stabilizing moments acting around the axis of toppling. All 
possible rotational axes are considered in a spatial problem, 
and the minimal safety computed for one or more axes is asso-
ciated with the boulder. The possible rotational axes are the 
tangents of the convex hull of the contact polygon C (Fig. 10a).

Let G* denote the normal projection of the centroid G on 
the slope S, and the angle between the normal of a tangent to 
C and the PG* line be denoted to � . The h(� ) function is the 
support function of C w.r.t. the center G*. Under pure gravity, 
safety is readily obtained via

 where zG is the normal distance between the slope and G, 
the center of gravity of the boulder. For a given contact, we 
seek the minimum of the expression in the brackets on the 
right. Observe that it is simply the distance between G* and 
the intersection of the tangent line with axis x. Therefore, the 
expression attains its minimum for the tangent line crossing 
axis x on the convex hull of C (plotted with green in Fig. 10).

A horizontal load α W is also acting in the case of seismic 
action. As a simplification, we assume this load in a plane par-
allel to the slope S. The angle between the gradient of the slope 
(axis x) and the direction of the seismic load is � . Similarly, to 
the case of pure gravity, we find

(16)FoSt =
Mstab

Mdestab

=
Gcos�h(�)

GzGsin�cos�
=

(

h(�)

cos�

)

1

zGtan�
,

(17)FoSt,e =
Mstab

Mdestab

=
Gcos�h(�)

GzG[sin�cos� + �cos(� − �)]
.

It is straightforward to show that this expression attains its 
minimum at a seismic load directed to � = � . It follows that the 
safety against toppling in case of a seismic event reads

The toppling happens in a � direction that minimizes the 
expression in the brackets. Observe that the direction of the 
toppling depends on the α strength of the earthquake.
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