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Abstract
A discrete fracture network (DFN) model based on non-parametric kernel density estimators (KDE) and directional-linear 
statistics is developed. The model provides a characterization of the fracture network with distributions of fracture orien-
tation and size jointly. A solution to the Bertrand paradox is used for the calculation of disk sizes from trace lengths, the 
latter calculated from the intersection of disks and highwall faces by triangulation. A Poisson point process is applied for 
the generation of the model, with fractures assumed to be flat and circular in shape, the number of fractures per unit volume 
(P30) adjusted to match the experimental length of fractures per unit area (P21). Length censoring of traces due to the surface 
dimension is considered in the calculations by including semi-bounded traces, i.e., traces censored in one of their ends. Ori-
entation and size biases are corrected with a weighting function in the random sampling. The truncation effect whereby no 
traces shorter than some cut-off length are recorded, is addressed by a randomized optimization algorithm. The joint fracture 
orientation-size distribution model developed is tested with trace maps of discontinuities measured from photogrammetric 
models of twelve highwall faces of quarry benches, with outstanding results. Computational advantages over traditional 
parametric fracture models are addressed.

Highlights

•	 Nonparametric directional-linear statistics has been used for the construction of DFN models. The mathematical analysis 
of this new approach is described in detail.

•	 A new link between distributions of disc size and pseudo-trace lengths is established. Relationships between means and 
variances for the distributions of trace length and disc size are discussed.

•	 Censoring bias is corrected by a mixed random variable and truncation bias is corrected by including semibounded traces 
and using a probabilistic filter.

•	 The nonparametric DFN model developed is applied to photogrammetric discontinuity data maps. Consistency of the 
results is assessed and thoroughly discussed.

Keywords  Rock mass characterization · Directional-linear kernel estimator · Fracture density · Bertrand paradox · Trace 
length · Discontinuity censoring and truncation
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Ψ	� Product distribution of Y  by Ξ
�	� Support of the random variable Ψ
Ωq	� Support of the directional random variable
�q	� Lebesgue measure in Ωq

A	� Area of a single disk (m2)
A′	� Projected area of a single disc (m2)
a	� Constant of the size weighting function
b	� Constant of the orientation weighting function
c	� Center of the shifted cone (m)
ch,q	� Normalizing constant
D	� Disk size random variable (m)
D	� Disk size (m)
F̂D	� Cumulative distribution function of disk size for a 

single orientation
F̂�	� Cumulative distribution function of incomplete 

pseudo-trace length for a single orientation
f̂D	� Probability density function of disk size for a single 

orientation
fg	� Probability density function of sizes
f̂g	� Kernel density estimator (KDE) of sizes
fh	� Probability density function of orientations
f̂h	� KDE of orientations
fh,g	� Joint probability density functions of 

orientation-sizes
f̂h,g	� Joint KDE of orientation-sizes
fW	� Weighted probability density function
fZ	� Any probability density function of sizes
fZ∗ ∶	� Log-transformed probability density function
g	� Linear bandwidth
gmlcv	� Maximum likelihood cross-validation linear band-

width selector
h	� Directional bandwidth
hROT	� Rule-of-thumb directional bandwidth selector
KL	� Directional kernel smoother
KZ	� Linear kernel smoother
L	� Complete pseudo-trace length random variable (m)
L	� Complete pseudo-trace length (m)
�	� Incomplete pseudo-trace length random variable 

(m)
l	� Incomplete pseudo-trace length (m)
li	� Experimental incomplete pseudo-trace lengths (m)
l	� Mean of the experimental KDE of incomplete 

pseudo-trace lengths (m)
�	� Log-transformed KDE of the linear part with 

Gaussian smoother
mD	� Mean diameter of the discontinuities generated in 

the domain (m)
mL	� Mean trace length of the discontinuities that inter-

sect a planar surface (m)
N	� Total number of disks that intersect the surface 

(after filtering)
n	� Pole of a disk in the lower hemisphere (m)

OP	� Parametrization of the hemisphere–cone intersec-
tion (m).

P	� Probability
p	� Ratio of semi-bounded traces over the total number 

of traces
℘	� Cumulative distribution function of �
P30	� Intensity parameter, number of disk centers inside a 

volume (m−3)
P̂30	� Estimator of P30 (m−3)
P21	� Intensity parameter, length of fractures per unit 

area (m−1)
P32	� Intensity parameter, total disk area divided by the 

volume of the domain (m−1)
q	� Dimension of the sphere
R	� Disk radii random variable (m)
r	� Radius (m)
t	� Random angle between 0 and 2π (rad)
TF	� Total number of fractures generated in the domain
u	� Horizontal vector (m)
V 	� Volume of the domain (m3)
v	� Cross product of n by u (m)
vD	� Standard deviation of diameters of the discontinui-

ties generated in the domain (m)
vL	� Standard deviation of trace lengths of the disconti-

nuities that intersect a planar surface (m)
w	� Weighting function
X	� Directional random variable (m)
Xi	� Sample of the directional random variable (m)
x	� Orientation (m)
Y 	� Ratio between L and D
y	� Support of the random variable Y
Z	� Linear random variable (m)
Zi	� Sample of the linear random variable (m)
z	� Support of the linear random variable (m)

1  Introduction

Characterization of fractured rock mass is a critical task in 
the development of open-pit and underground mining for 
the design of slopes, support means or blast optimization. 
Discrete Fracture Networks (DFNs) have proved to be an 
effective tool for the three-dimensional representation of a 
natural fracture network (Baecher et al. 1977; Long et al. 
1982; Baecher 1983; Andersson et al. 1984; Dershowitz and 
Einstein 1988; Zhang et al. 2002; Miyoshi et al. 2018) and 
are increasingly being used in many geotechnical and min-
ing engineering problems (Elmo et al. 2015; Elmouttie and 
Poropat 2012; Umili et al. 2020) e.g., in analysis of rock 
slope stability (Bonilla-Sierra et al. 2015), geo-mechan-
ical and hydrological behavior of fractured rocks (Robin-
son 1983; Andersson et al. 1984; Lei et al. 2017), seismic 
attenuation and stiffness modulus dispersion Hunziker et al. 
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(2018), and multi-physics processes, see e.g., Keilegavlen 
et al. (2021).

The basis of the DFN method is the characterization of 
fracture parameters using statistical analysis to build a com-
putational model that explicitly represents the geometrical 
properties of each individual discontinuity and the topo-
logical relationships between individual discontinuities and 
discontinuity sets (Lei et al. 2017; Miyoshi et al. 2018). In 
general, the term ‘discontinuity’ groups all weak planes of 
geological origin, such as fractures, joints, bedding planes, 
cleavages and faults (Lu 1997). In what follows we are treat-
ing all these terms equivalently. Among the geometrical 
properties of each fracture, one may emphasize orientation, 
size, location, shape and aperture and their corresponding 
probability distributions (Baecher et al. 1977; ISRM 1978; 
Baecher 1983; Dershowitz and Einstein 1988; Dershowitz 
and Herda 1992). Other relevant characteristics may also be 
considered, such as genetic type, filling material (Hekmat-
nejad et al. 2018) and roughness (Tang et al. 2022 and Zou 
et al. 2022).

Traditionally, DFN models group visible fractures by 
orientation in families of poles (ISRM 1978) on the stereo-
graphic projection. This is done by dividing the stereogram 
into sectors and fitting directional probability distributions. 
The most frequent are the bivariate von Mises–Fisher and 
Bingham (Bingham 1964; Baecher 1983; Fisher et al. 1993). 
The goodness of the fit is assessed using the chi-squared and 
the Kolmogorov–Smirnov tests (Baecher 1983). Similarly, 
analytical probability density functions (pdfs), such as log-
normal, uniform, power law, gamma, normal, etc., are used 
to characterize the distribution of trace lengths measured on 
an outcrop (Tonon and Chen 2007). Even though analytical 
forms seldom provide satisfactory approximations to orien-
tation data (Baecher 1983), works in which the statistical 
analysis is performed in a non-parametric way are rare, see 
e.g., Xu and Dowd (2010), and those that treat jointly the 
disk orientation and size pdfs in a non-parametric way are 
non-existent, to the authors’ knowledge. In this work, we use 
directional-linear statistics as a way to jointly estimate the 
density functions of fracture sizes and orientations, based on 
the theory of directional-linear kernels by García-Portugués 
et al. (2013). In directional statistics, the sample space is the 
unit sphere, while in directional-linear statistics, the sample 
space is the Cartesian product of a sphere and the real line.

Because the rock mass structure is impossible to be 
directly observed without dismantling it completely (Priest 
1993), a variety of methods must be used for sampling dis-
continuity data. From that observation, the ‘true’ joint den-
sity function of orientation-sizes inherent to the rock mass is 
inferred through stereology. Data from exposed rock faces, 
such as natural outcrops, excavation faces, and boreholes 
have proved to be useful (Tonon and Chen 2007). Among 
sampling techniques for deriving fracture parameters, the 

most utilized are in-hole images or wireline geophysical log-
ging (Ozkaya aand Mattner 2003; Hekmatnejad et al. 2019), 
scanline survey, circle sampling or window survey (Priest 
and Hudson 1981a, b; Kulatilake et al. 2003; Kulatilake and 
Wu 1984; Zhang and Einstein 1998, 2000; Song and Lee 
2001; Jimenez-Rodriguez and Sitar 2006), as well as digital 
photogrammetry and laser scanning techniques (Elmo et al. 
2015; Vollgger and Cruden 2016).

The history of the problem of determining density func-
tions of disk sizes from trace length probability density func-
tions is well summarized by Tonon and Chen (2007). The 
work of Warburton (1980b) provided a starting point for 
estimating trace length probability density functions from 
disk size density functions, using stereological principles, 
for disks without aperture, circular in shape, parallel to 
each other and with centers arranged within a volume fol-
lowing a Poisson process, see e.g., Baecher et al. (1977). 
Other contributions assume fractures to be elliptical in 
shape (Zhang et al. 2002) (Guo et al. 2022 and Zheng et al. 
2022). The inverse process, i.e., obtaining disk sizes pdf 
from trace lengths, was already formulated years before by 
Santaló (1955). However, works by Tonon and Chen (2007, 
2010) showed that this relationship leads in some cases to 
non-positive pdf values; it also fails for bimodal or multi-
modal distributions. As this type of distributions is common 
in the field, a solution to this problem is explored in this 
work using one of the Bertrand’s paradoxes (Bertrand 1888; 
Aldous et al. 1988; Chiu and Larson 2009) and its relation 
with Warburton’s work (Warburton 1980a).

When characterizing rock exposures, one should con-
sider bias effects inherent to the sampling procedure. 
According to Kulatilake and Wu (1984), Priest and 
Hudson (1981a, b), Laslett (1982), Baecher and Lanney 
(1978), Baecher (1983), Villaescusa and Brown (1992) and 
Chilès and Marsily (1993) there are four main causes of 
bias in the distribution of trace lengths: censoring, trunca-
tion, size and relative orientation. Censoring occurs when 
one or both terminations of a trace are not observable. 
This effect occurs when the surveying surface is finite; the 
disk orientation-size density function and the size, shape 
and orientation of the surface to be intersected have also 
some influence. The resulting traces may be grouped into 
three categories according to the number of terminations 
or censoring condition, namely complete, semi-bounded 
and bounded (White and Willis 2000). Truncation is intro-
duced because traces shorter than a cut-off length (Bae-
cher 1983) cannot be observed. When an observer maps 
traces on an outcrop, unintentional truncation occurs. 
Operator’s skills, and sampling scale, makes that small 
traces are less likely to be observed. That is what Riley 
(2005) called ‘the protocol adopted for recording short 
traces (lower truncation limit)’. Size bias occurs because 
longer traces are more likely to be sampled than shorter 
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ones (Baecher 1983; Jimenez-Rodriguez and Sitar 2006) 
thus, large fractures are over-represented and this must 
be considered when estimating the true size distribution. 
A fourth bias effect is caused by the relative orientation 
between fractures and the outcrop surface: a fracture is 
more likely to intersect a surface the more perpendicular 
their relative orientations are. All these phenomena need 
to be suitably accounted by the model to interpret the true 
nature of the rock mass in the best possible way.

The spatial structure of the fractures’ support points is 
another fundamental aspect in DFN models. The homoge-
neous Poisson-Boolean point process has been widely used 
(Baecher et al. 1977; Kulatilake and Wu 1984; Zhang and 
Einstein 1998; Song and Lee 2001; Jimenez-Rodriguez and 
Sitar 2006; Hekmatnejad et al. 2019). Other types of point-
supporting processes are the doubly stochastic Poisson, or 
Cox, the Levy–Lee Fractal, the non-stationary Poisson and 
the Gibbs processes, among others. See e.g., Aldous et al. 
(1988), Lee et al. (2011) and Hekmatnejad et al. (2019). The 
decision on the process to be applied depends on the overall 
breakage pattern of the rock.

In this work, a novel distribution-free DFN generation 
technique is developed. It uses a directional-linear KDE to 
characterize the joint distribution of orientations and trace 
lengths in a non-parametrical way. The DFN models are cali-
brated using Monte Carlo realizations of the non-parametric 
distributions (Zheng et al. 2014 and Zheng et al. 2015). Pois-
son point process is used for fractures location and these 
are assumed to be flat and circular in shape. Triangulated 
surfaces are used to conduct the intersection of a disk with 
a three-dimensional surface; a MATLAB (MATLAB 2019) 
function called SurfaceIntersection.m (Tuszynski 2014) 
based on a triangle/triangle intersection algorithm proposed 
by (Moller 1998) is used for this purpose. A solution to the 
Bertrand paradox (Bertrand 1888; Chiu and Larson 2009) is 
considered to estimate disk sizes from trace lengths. Correc-
tion of sampling biases is also addressed. The experimental 
value of P21, i.e., length of fractures per unit area for each 
trace map, is fitted through the number of fractures per unit 
volume (P30), see (Zheng et al. 2017). Field data used to test 
the model were collected from photogrammetric models of 
non-planar highwall faces. Disk orientations are obtained 
by fitting a plane to the 3D coordinates of the polyline fitted 
to the exposed trace.

In the following sections, data collection and subsequent 
data processing techniques are described; the mathemati-
cal foundations of the model are developed and the calibra-
tion process presented. The results obtained from the model 
are shown, followed by a discussion on the approximation 
to calculate the trace length distributions and its validity. 
The influence of the surface on the distribution of trace 
lengths and the relation between fracture intensities is also 
investigated.

2 � Data Overview

The experimental work was carried out at El Aljibe quarry 
(Almonacid de Toledo, Spain), where mylonite is mined by 
drilling and blasting. Discontinuities were mapped from photo-
grammetric models of the highwall faces of 12 blasts in which 
the sampling scale was about 10 mm. The blasts were arranged 
in two test campaigns of six blasts each, located in the same 
area of the pit. A major extensional fault defines two structural 
domains DS1 (trace maps TM1-TM6) and DS2 (trace maps 
TM7-TM12) with different fracture density. Bernardini et al. 
(2022) give an insight to data collection, discontinuity sets 
and a classical DFN construction using the FracMan® suite 
(Golder Associates 2018).

For the analysis, point clouds of the outcrops and discon-
tinuity characteristics (dip, dip direction, and coordinates of 
polylines’ points) are treated in.csv format. The orientations 
of the 12 faces are similar with a dip direction of 228.54 ± 4° 
and a dip of 22.98 ± 3.59° (circular mean ± standard deviation). 
Because the inspected area is smaller than the area of the com-
plete photogrammetric model, it is cropped with a MATLAB 
function in a way that the parameter P21 is not affected. The 
limits of the outcrop surface considered for the calculations 
are defined by the minimum and maximum coordinates of 
the traces. The resulting surface areas range between 200 m2 
(TM6) and 390 m2 (TM10) approximately.

The number and length of the mapped fractures are shown 
in Table 1. It also shows the sampling window dimensions, 
areal fracture density P21 and the percentage of complete, 
semi-bounded and bounded traces. These are plotted in red, 
green and blue, respectively in the trace maps of the twelve 
faces shown in Fig. 1; complete discontinuities correspond 
to more than 85% of the total, while bounded fractures are 
observed only in five blasts. Figure 16 shows the stereograms 
of the experimental poles obtained for each trace map (black 
dots). There is an increase in the number of fractures marked 
in DS2 domain (trace maps TM7–TM12), due likely to the 
effect of the fault mentioned above. This results in a mean P21 
of 0.72 m−1 for DS1 and 1.23 m−1 for DS2. The histograms of 
the lengths of the fractures mapped are shown in Sect. 3.1.2 
(Fig. 4).

3 � Model Description

The DFN model proposed treats fractures individually 
instead of considering their belonging to a certain set or 
family. KDEs are suitable to this end, since they are versatile 
enough to be used in both directional and linear domains. 
A Poisson–Boolean point process has been considered to 
model the location of the support points which is character-
ized by a constant parameter, P30. Disks are described as 



3259A Non‑parametric Discrete Fracture Network Model﻿	

1 3

Table 1   Main characteristics of 
mapped discontinuities

a C refers to complete, S to semi-bounded and B to bounded traces

Face dimensions (m) Trace characteristics P21(m−1) Trace typea (%)

Height × width No Length (m) C S B

Total Mean

TM1 9.3 × 19.2 66 188.6 2.86 0.82 89.4 6.0 4.6
TM2 8.7 × 21.1 54 164.7 3.05 0.59 87.0 13.0 0.0
TM3 9.6 × 20.9 50 159.6 3.19 0.60 94.0 6.0 0.0
TM4 10.1 × 18.3 91 218.4 2.40 0.92 93.4 6.6 0.0
TM5 11.0 × 17.3 58 152.5 2.63 0.62 94.8 5.2 0.0
TM6 9.8 × 16.9 74 157.3 2.13 0.79 89.2 9.5 1.3
TM7 10.4 × 20.5 141 305.9 2.17 1.00 95.0 5.0 0.0
TM8 11.7 × 21.5 165 306.3 1.86 0.90 95.8 4.2 0.0
TM9 10.3 × 19.8 267 570.0 2.13 1.81 95.5 4.6 0.0
TM10 13.4 × 20.4 202 479.3 2.37 1.23 95.5 4.5 0.0
TM11 9.6 × 17.6 206 427.5 2.08 1.39 97.1 2.9 0.0
TM12 10.1 × 19.6 242 288.0 1.19 1.05 95.9 3.7 0.4

Fig. 1   Trace maps of the 12 benches analyzed. Different trace termination types are given with different colors: complete (red), semi-bounded 
(green) and bounded (blue) censored traces. Camera line of sight (azimuth, elevation) is (128°, 20°) (colour figure online)
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flat and circular, although they are modeled as triaconta-
gons.1 Fracture sizes and orientations have been considered 
to be independent. Corrections are implemented to account 
for orientation, size, truncation and censoring biases and a 
method has been developed to random sampling the direc-
tional-linear KDE; this sampling method is also applicable 
to non-planar surfaces such as those observed in the field.

3.1 � Directional‑Linear Kernel to Represent Trace 
Maps

The DFN is based on a non-parametric distribution using 
the kernel density estimation for linear-directional data by 
García-Portugués et al. (2013).

Let Z denote a linear random variable with density fg 
whose support is all the real numbers. For a random sample 
of Z, with size n, the traditional linear KDE is given by 
García-Portugués et al. (2013):

where KZ is a suitable kernel smoother, and g is the band-
width of the linear part. In this work we assume a Gaussian 
smoother. This linear variable may be applied for any length 
or size of discontinuities equivalently. And let X denote a 
directional random variable in Cartesian coordinates with 
density fh that accounts for orientation. The support of such 
a variable is the q-dimensional hemisphere, denoted by:

where ωq is the Lebesgue measure in Ωq, which is the sur-
face area of Ωq and Γ(·) is the gamma function. For spherical 
data q = 2 and the Lebesgue measure in Ω2 is 2π. Likewise, 
for a random sample of X, the directional KDE is given by 
García-Portugués et al. (2013):

where KL is a suitable kernel smoother, h is the bandwidth 
of the directional part and ch,q(KL) is a normalizing constant 
for any x ∈ Ωq , which is given by García-Portugués et al. 
(2013):

(1)f̂g(z) =
1

ng

n∑
i=1

KZ

(
z − Zi

g

)
, z ∈ ℝ

(2)�q = �q

(
Ωq

)
=

�
q+1

2

Γ
(

q+1

2

) , q ≥ 1

(3)f̂h(x) =
ch,q

(
KL

)
n

n∑
i=1

KL

(
1 − xTXi

h2

)
, x ∈ Ωq

In this case, the von Mises–Fisher kernel smoother has 
been chosen for simplicity:

For a directional-linear random variable (X, Z) with sup-
port Ωq ×ℝ and joint density fh,g, the KDE of orientation-
sizes may be expressed as (García-Portugués et al. 2013):

where the notation KLKZ should be understood as:

3.1.1 � Log‑transformed Kernel for Linear Data

To have a kernel support positive, to prevent negative sizes 
in the distribution, and to meet the condition fg(0) = 0 , a 
variable Z* = ln(Z) is introduced (Geenens and Wang 2018). 
From standard arguments, one has:

which readily suggests using the estimator f̂Z∗ of fZ∗.

3.1.2 � Optimal Bandwidths

Bandwidth selection of the KDE is an important aspect in 
non-parametric statistics; the rule-of-thumb (ROT) band-
width selector hROT for directional data (García-Portugués 
et al. 2013) is considered in this work:

The parameter �̂ is estimated by maximum-likelihood. 
The ROT selector is simple but fails when estimating 
directional densities with multimodality (García-Portu-
gués 2013). This is an issue in geological discontinuity 
representation, since orientation measurements often pre-
sent multimodality (in fact the usual procedure is to group 
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1  Thirty-sided regular polygon.
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traces by families, i.e., different modes). To solve this, we 
consider only data around the likeliest point in the stereo-
gram, so that the information of the main mode is well 
fitted. hROT is then calculated from points that do not differ 
more than 45° from the likeliest point. Figure 2 shows as 
example the likeliest orientation and the area considered 
to calculate hROT with Eq.  (10) in trace map TM8; the 
marginal KDE of orientation plotted was obtained with 
hROT = 0.126. The location of points more than 45° away 
from the likeliest pole is obtained through a parametriza-
tion of the hemisphere–cone intersection (see Sect. 3.3.2).

The marginal KDEs of the discontinuity orientation 
are shown in Fig. 3. They are constructed onto a dense 
equi-spaced Fibonacci grid through a MATLAB algorithm 
called SpiralSampleSphere.m (Semechko 2012). The like-
liest orientations, which are not evident in all the graphs, 
are marked with white crosses. Bandwidths from Eq. (10) 
are given in Table 4.

For the linear part of the KDE, the maximum-likelihood 
cross-validation MLCV (García-Portugués 2013) is used 
for bandwidth selection; g is chosen to maximize the fol-
lowing quantity:

where MLCV(g) is given by (García-Portugués 2013):

Figure 4 shows the histograms (blue bars) and the mar-
ginal KDEs (red lines) of pseudo-trace lengths (see next 
section) calculated with the bandwidths obtained with Eqs. 
(11) and (12). They are given in Table 3

(11)gmlcv = argmax
g>0

MLCV(g)

(12)

MLCV(g) =

(
n−1

n∑
i=1

log

[∑
j≠i

KZ

(
Zj − Zi

g

)]
− log

[
(n − 1)g

])

3.2 � Trace Length‑to‑Fracture Size Distribution 
Estimation

When a fracture, in this case modeled as a circular disk of 
a given size, intersects a plane surface of infinite extension, 
the result is a line whose initial and final points are located 
on the perimeter of the disk. The exposure of this intersec-
tion on the surface is called trace and its length is tradi-
tionally called trace length. However, when the surface is 
non-planar, the intersection between the disk and the surface 
becomes a polyline. Its length, if measured in 3D, is that we 
call the ‘true’ trace length. The higher the specific area of 
the surface, the longer the true length is. This is an inconven-
ience when calculating fracturing intensity parameters that 
must be matched with experimental measures since these are 
closer to the projected length on the mean plane of the sur-
face. This is solved by considering the pseudo-trace length 
of the chord that a disk forms when intersects the irregular 
three-dimensional surface.

The probability of a trace obtained from the intersection 
of a disk with a surface of infinite extension to have a cer-
tain length can be approached with the Bertrand’s Paradox 
(Bertrand 1888). This, however, offers several answers, all 
plausible, to the interpretation of the concept of random-
ness Chiu and Larson (2009). Intuitively, one might choose 
the paradox No. 3, in which the chord center is assumed 
to be uniformly distributed over a reference radius. This is 
equivalent to selecting a random point on a reference radius 
to become the center of a random chord (see Fig. 5).

Following the scheme in Fig. 5, if one starts from the 
basis of a disk size distribution D , or a disk radii distribution 
R = D /2 (a triangular distribution has been chosen arbitrarily 
for the distribution of radii in the right graphs of Fig. 5), and 
takes any point on a reference radius of any of those disks, 
a distribution of lengths Λ from the center of the disk to the 
mentioned point can be formed. For an arbitrary disk radius 
r, Λ can take values between 0 and r following a uniform 
distribution, then Λ may be written as the product of two 
distributions:

where U(0,1) is the uniform distribution between 0 and 1. 
Equation (14) is represented as operation a on the right part 
of Fig. 5. From Fig. 5, the distributions of L , R and Λ are 
related by:

Inserting Eq. (13) in Eq. (14), L may be directly obtained 
from D:

(13)Λ = R ⋅ U(0, 1)

(14)L = 2

√
R2 − Λ2

(15)L = D
√
1 − U2(0, 1)

Fig. 2   Example of calculation of hROT. Marginal KDE of orientations 
(left) and experimental poles (right) for trace map TM8. Dashed lines 
are the intersection of a cone of 45° with the hemisphere
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Equation (15) is equivalent to the Warburton’s relationship 
for estimating trace length probability density, as shown in 
Appendix A.1, see Eqs. (39–42). Appendix A.2 demonstrates 
that Eq. (15) is consistent with Bertrand’s paradox No. 3. 
Equation (15) is represented on the right part of Fig. 5, opera-
tion b.

Dividing the pseudo-trace lengths by their respective diam-
eters one may obtain:

where Y is a random variable whose density function may 
be expressed as:

(16)L
D

= Y

A proof of the validity of Eq. (17) is offered in Appendix 
A.3.

In practice, the outcrop has finite extension so that some 
traces are censored. Thus, a modification that corrects the 
censoring bias has to be included. This is accomplished with 
a mixed random variable Ξ:

(17)fY (y) =
y√

1 − y2
, y ∈ [0, 1]

(18)� = D ⋅Ψ

Fig. 3   Marginal KDE of orientations and likeliest points in the stereogram (white crosses) for each highwall face; data is sorted horizontally 
from top left to bottom right (colour figure online)
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where � is the incomplete pseudo-trace length random vari-
able, see Fig. 5 operation d, and Ψ a new random variable 
resulting from multiplying Y and Ξ, see Fig. 5 operation c, 
using the properties of product distributions. The following 
cumulative distribution function has been selected for Ξ:

(19)
FΞ(𝜉) =

{
p𝜉2, 0 ≤ 𝜉 < 1

1, 𝜉 ≥ 1

where p is a parameter that indicates the proportion of semi-
bounded traces over the total number of traces; it is one of 
the fitting parameters of the model. This function has been 
built to be a mixed random variable so that it only applies to 
a proportion of fractures to be treated as semi-bounded; the 
square has been chosen to enhance the occurrence of long 
traces. The resulting probability density function of Ψ is:

(20)fΨ(�) = −p�
�√

1 − �2 − 1

�⎛⎜⎜⎜⎝

�2

√
1 − �2

�√
1 − �2 + 1

�2
+

1√
1 − �2 + 1

⎞
⎟⎟⎟⎠
− 2p� ln

�
�√

1 − �2 + 1

�
+

�√
1 − �2

, � ∈ [0, 1]

A proof of the validity of Eq. (20) is offered in Appendix 
A.4.

Equation (18) is of key importance, as it directly relates 
trace lengths with their respective disk sizes including the 
censoring bias; moreover, it allows using non-analytic 

Fig. 4   Marginal KDE of trace lengths for each highwall face. Experimental data (histograms) and KDEs (red lines); data is sorted from top left 
to bottom right (colour figure online)
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distributions and finite surfaces to obtain the disk size dis-
tribution for each orientation, based on the distribution 
of measurable trace lengths using the definition of ratio 
distribution:

where the KDE f̂h,g is used. A list of quadruplets composed 
by the Cartesian coordinates of each pole on the unit hemi-
sphere, and the incomplete pseudo-trace lengths, is asso-
ciated to each trace map. For a given orientation Xi (the 
first three) there is a one-dimensional function of the type 
f̂h,g

(
Xi, l

)
 (see the integrand in Eq. (21)). Such function is 

normalized to obtain the cumulative distribution function F̂� . 
This may be done for each Xi so that a disk size distribution 
is obtained for each orientation. To obtain disks larger than 
the incomplete pseudo-trace length with which it is associ-
ated, the distribution function of experimental incomplete 
pseudo-trace lengths is used to calculate the probability 
level of a given pseudo-trace li . This level is considered in 
the distribution function obtained from Eq. (21) to get the 
respective disk size Di through:

where F̂D is the distribution function obtained from Eq. (21).
To simplify the calculation, these functions are taken as 

piecewise linear. Equation (21) is solved numerically for 
each pseudo-trace. Figure 6 shows the result for trace map 
TM12 and P = 0.18. As it should, the cumulative distribution 

(21)f̂D
(
Xi,D

)
= �

1

0

� fΨ(�)
f̂h,g

(
Xi,D�

)

∫ ∞

0
f̂h,g

(
Xi, l

)
dl
d�

(22)F̂D

(
Xi,Di

)
= F̂�

(
Xi, li

)

of disk sizes (in red) is shifted to the right, so that chord 
length percentiles are always smaller than the percentiles 
of fracture size.

3.3 � KDE Random Sampling

To construct a DFN model, the directional-linear kernel 
must be sampled randomly. This is done by (i) random sam-
pling the kernel smoother, (ii) randomly selecting one of the 
experimental data points with replacement and (iii) adding 
both values. Random sampling must consider that each point 
has a different weight, as will be explained in Sect. 3.3.3. 
The properties of the kernel are associated to all points that 

Fig. 5   Scheme for calculation of the pseudo-trace length distribution 
from a disk size distribution. D = 2R disk diameter; Λ radial distance 
to the center of the chord; � incomplete pseudo-trace length; L com-

plete pseudo-trace length. The functions and their operations repre-
sented on the right of the figure relate to Eqs. (13–20)

Fig. 6   Disk size distribution (red) for trace map TM12 from the 
experimental pseudo-trace length distribution (blue) (colour figure 
online)
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make up the support. As a Poisson–Boolean point process, 
it is characterized by two fundamental properties: (i) Pois-
son distribution of point counts and (ii) completely random 
position in the bounded region (Aldous et al. 1988).

3.3.1 � Random Sampling of Disk Sizes

Once KDE is sampled, the disk size is taken from the quad-
ruplet associated to each individual discontinuity. A ran-
dom value depending on the kernel smoother used and the 
directional bandwidth must be added or subtracted to the 
disk size. For convenience, it is possible to transform the 
linear kernel into a quantile function; let be the linear part 
of the KDE:

Since a Gaussian smoother is used, the cumulative distri-
bution function of � is given by:

where erf is the error function. Solving for z in Eq. (24), 
one obtains:

3.3.2 � Random Sampling of Orientations

For the purpose of randomly sampling orientations on the 
unit hemisphere, points within a certain angular distance 
around a pole must be selected. This may be accomplished 

(23)�
(
z,Zi;h

)
=

1

zg
KZ

(
lnz − lnZi

g

)

(24)℘ =
1

2
+

1

2
erf

�
lnz − lnZi

g
√
2

�

(25)lnz = lnZi + g
√
2erf−1(2℘ − 1)

by intersecting a cone with a random opening angle with the 
hemisphere and then randomly selecting one of the points 
on the intersection circle. This way, a parametrization of the 
circle (sin�cost, sin�sint) is carried out by mapping it onto 
the cone-hemisphere intersection; δ is the cone’s half angle 
and t a random angle between 0 and 2π. The transformation 
consists of a rotation and a translation, which reduces to 
finding a suitable orthonormal basis for ℝ 3. Figure 7 illus-
trates the orientation sampling process.

For the translation part, the center of the circle is shifted 
from the origin to:

where c is the intersection of the cone’s axis with the circle’s 
plane and n is a unit vector which corresponds to the Car-
tesian coordinates of any disc’s pole. For the rotation part, 
the z-axis must be mapped to the normal of the intersection 
circle’s plane. If:

Then let

be a horizontal unit vector and

With these two vectors, one may construct the 
parametrization:

δ is derived from the von Mises kernel as a quantile function:

If the z coordinate of P is positive, then it is transformed 
in its antipode, so that it is always on the lower hemisphere.

3.3.3 � Weighting Function for Random Sampling

When sampling a joint distribution of disk orientations-sizes 
within a domain and intersecting them with the highwall 
face, a disk is more likely to intersect the surface the larger 
and the closer to perpendicular to the surface it is. Three 
joint orientation-size distributions are considered: (i) the 
‘true’ distribution, (ii) the distribution of disks that inter-
sect the surface, and (iii) the experimental distribution of 
pseudo-traces. Weighting must be applied to both size and 
orientation to obtain (i) from (ii), and vice versa. Obtaining 

(26)c = cos�n

(27)n =
(
nx, ny, nz

)T

(28)u =
n × (0, 0, 1)T

‖n × (0, 0, 1)T‖

(29)
v = n × u

(30)OP = c + sin�costu + sin�sintv

(31)cos� = h2ln
{
℘

(
e2∕h

2

− 1

)
+ 1

}
− 1, ℘ ∈ [0, 1]

Fig. 7   Random sampling of orientations
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a weighted density function from another is accomplished 
through the following relation (Saghir et al. 2017):

where w(x) is an appropriate weighting function and E[⋅] 
denotes mathematical expectation. Here f(z) and fW(z) corre-
spond to distributions (i) and (ii), respectively. Equation (32) 
may be applied for sizes and orientations equally. w(z) may 
be numerically obtained by computing the ratio between the 
bin values of the histogram of sizes of disks that intersect 
the surface (distribution ii) and the histogram of sizes of all 
the disks generated within the domain (distribution i). These 
ratios fit well a power law:

a being a constant and γ an additional fitting parameter of 
the model. The value of a is not relevant because it vanishes 
when normalizing. Baecher (1983) already considered a 
quadratic weighting function.

(32)fW (z) = f (z)
w(z)

E[w(Z)]

(33)w(z) = az�

Figure 8 shows the process of obtaining γ. By way of 
example, five hundred thousand disks that follow a uniform 
distribution of diameters between 0 and 3 m and with random 
orientation are modeled. Green and red histograms in the 
left graph represent the ‘true’ distribution and the distribu-
tion of disks that intersect the surface, respectively. Note the 
size bias effect caused by the surface. The ratio between bin 
values of both histograms is shown in the right graph (blue 
circles). The determination coefficient of fitting Eq. (33) to 
these points (red line) is 0.996, a = 0.6675 ± 4.7·10–3 and 
γ = 0.9959 ± 8.3·10–3 at confidence level of 95%. The fact 
that an infinite planar surface is assumed makes γ ≈ 1. For a 
non-planar case, γ takes values higher than 1. For the faces 
studied in this work, γ ranges from 1.13 to 1.48 (see Table 4 
in Appendix B); γ is statistically significant in all cases.

The bias correction due to the relative orientation between 
disks and the intersection surface (the classic Terzaghi cor-
rection (Terzaghi 1965) is made by the function:

(34)wi = b

√
1 −

(
�TXi

)2

Fig. 8   Example of calculation 
of γ. Green and red histograms 
in the left graph represent the 
‘true’ distribution of disks and 
the distribution of disks that 
intersect the surface, respec-
tively (colour figure online)

Fig. 9   Weighting function for 
orientations. Green and red 
histograms in the left graph 
represent the ‘true’ distribution 
of the dot product �TXi and the 
distribution of disks that inter-
sect the surface, respectively 
(colour figure online)
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where b is a constant and μT is the average normal vec-
tor to the surface in case this is non-planar. The value of b 
is not relevant because it vanishes when normalizing. The 
vertexNormal.m function in MATLAB has been used to cal-
culate μT which is the normal unit vector to the surface at 
each of the points of the face. This is a modified version 
from Mauldon and Xiaohai (2006).

Figure 9 shows the validity of Eq.  (34) for a similar 
simulation, including an infinite planar surface, to that in 
Fig. 8. The true density function of the dot product �TXi 
is the green histogram in the left graph, and the red one 
is the distribution of disks that intersect the surface. The 
ratio between bin values of both histograms is shown in the 
right graph (blue circles). Fitting Eq. (34) (red line) to these 
points leads to a determination coefficient of 0.9984 with 
b = 1.186 ± 7·10–3 at a confidence level 95%.

Equations  (33) and (34) are combined into a single 
weighting function for calculating the true distribution from 
the distribution of disks that intersect the surface:

3.4 � Probabilistic Truncation

Truncation can be described as a ‘perfect filter’ that discards 
samples when a certain bound is exceeded. This work con-
siders a ‘probabilistic filter’ that groups the sources of error 
cited in Sect. 1 above and truncates fractures according to 
a probability level associated with a threshold pseudo-trace 
length. A simple function that that accepts or rejects traces 
based on a probability level is the log-logistic distribution 
function:

where α is a scale parameter with units of length that is the 
trace length with a 50% chance of being observed according 
to the experimental protocol (e.g., ground sampling distance, 
operator’s skills, etc.); β is a dimensionless parameter that 
controls the filter steepness. Low values of β indicate both 
a large operation range and a low slope, while high β values 
indicate a sharp transition.

The filter in Eq. (36) is calibrated through probabilistic 
optimization. The starting point is the histogram of simu-
lated pseudo-trace lengths for a certain trace map. Each 
trace has its respective length and, therefore, a probability 
level of being or not being observed by the operator accord-
ing to Eq. (36). α and β are estimated such that experimen-
tal and simulated pseudo-trace length histograms match. 
A randomized algorithm based on the binornd.m routine 
has been developed in MATLAB. It consists in sampling 

(35)wi =
(
1 −

(
�
TXi

)2)−1∕2

Zi
−�

(36)F(l) =
1

1 + (l∕𝛼)−𝛽
, l > 0

a Bernoulli distribution with a vector composed of n prob-
abilities, n being the number of disks that intersect the sur-
face. The result is a logical vector with 0 when the trace is 
not observed and 1 when the trace is observed. This process 
is repeated one thousand times for the whole set of pseudo-
trace lengths in each highwall face; for each of those realiza-
tions, a Kolmogorov–Smirnov test between the experimental 
and simulated histograms is performed. The average of the 
test P values is the parameter to be maximized. The number 
of disks deemed observed after this filtering is N. Figure 10 
shows as an example the effect of the probabilistic filter in 
the simulated pseudo-trace lengths of TM3. Note that there 
are many small traces that have not been observed as their 
sizes were probably below the resolution of the experimental 
discontinuity detection system.

4 � Model Calibration and Results

The objective of the model is to estimate the value of frac-
ture intensity P30 that replicates the experimental P21 value 
for each trace map. The process followed to calibrate the 
DFN model is summarized in Appendix C; (i) Bandwidths 
h and g are calculated according to Eqs. (10), (11) and (12). 
(ii) The pseudo-trace length KDE for each orientation is 
calculated using Eq. (6). (iii) The distribution of disk sizes 
is estimated through Eqs. (18), (21) and (22); an initial value 
0.3 is chosen for the ratio p between semi-bounded traces 
and the total number of traces. (iv) A large number of disks 
are sampled according to Eqs. (26) and (30) within a domain 
large enough to engulf each outcrop; a cubic volume of 40 m 
side and two million disks (equivalent to a P30 of 31.25 m−3) 
are considered initially. The exponent γ of the weighting 
function in Eq. (35) is initially set to 1 for all the faces. In a 

Fig. 10   Probabilistic filter with α = 1.039 m and β = 2.375 for pseudo-
trace lengths of TM3. Histogram of simulated pseudo-traces (blue), 
histogram of likely observed pseudo-traces (red) and marginal KDE 
(cyan line) of the observed traces
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second iteration, p and γ are recalculated from the results of 
the previous iteration: p is obtained by counting the number 
of semi-bounded traces over the total number of traces and 
γ by following the procedure described in Sect. 3.3.3. These 
values are checked for convergence:

Steps (iii) to (iv) are repeated until convergence. Then (v) 
the probabilistic truncation process in Sect. 3.4 is applied to 
fit the truncation function parameters α and β in Eq. (36). 
The resulting mean number of traces that intersect the face 
after applying the probabilistic filter, N, is obtained in this 
process.

An estimator of P30, i.e., number of disks to be simulated 
within the domain to obtain the P21 observed on the surface 
in the field is:

(37)||pi − pi−1
|| ∧ ||𝛾i − 𝛾i−1

|| < 𝜖

(38)P̂30 = ⌈
∑

ili

l
∕
N

TF
⌉∕V

where li is the pseudo-trace length of a trace observed exper-
imentally, l is the mean of the pseudo-trace length KDE, TF 
is the total number of fractures generated within the domain 
and V the volume of the domain.

The parameters of the model (h, g, p, γ, α and β) are sum-
marized in Table 4 for the twelve highwall faces. Fracture 
intensities P30, P21 and P32 are given and also the percentage 
of fractures that intersect the outcrop over the total num-
ber of disks generated, N/TF. An example of DFN model 
is shown in Fig. 11, see others in Fig. 20, Appendix B. The 
scale parameter α of the log-logistic function, Eq. (36), 
decreases from TM1 to TM12 (Table 4). This implies that 
shorter traces are marked for the last faces. This might be 
likely caused either by local changes in rock mass due to 
the existence of the extensional fault that crosses the high-
wall faces TM11 and TM12, see Bernardini et al. (2022) 
for additional information. Figure 12 shows the fracturing 
intensity parameters for the twelve trace maps. They are in 

Fig. 11   DFN model for trace map TM2. Disks in inverse pole figure 
color code (fractures with similar orientation in similar tone)

Fig. 12   Fracture intensity parameters P30, P21 and P32 for the faces 
studied

Fig. 13   Model results for face TM1. Left: pseudo-traces, shown as 
green segments (the surface has some transparency and darker lines 
are pseudo-traces located behind the surface). Center: marginal KDE 
of pseudo-trace lengths obtained from experimental data (red curve: 

experimental; blue bars: histogram of pseudo-trace lengths from the 
simulation). Right: map of experimental (black dots) and simulated 
(red dots) poles (colour figure online)
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general higher for faces in DS2 domain (TM7–TM12), and 
they all follow a similar trend except in TM11 and TM12, 
where P30 increases and P21 and P32 do not. This may be 
explained as Table 1 shows due to an increase in the number 
of fractures, and a decrease in their mean sizes (raised to the 
second power), especially in TM12. 

To illustrate the model performance, Fig. 13 shows, for 
TM1: traces (chords) obtained from a simulation (green 
lines in the left graph); the marginal KDE of pseudo-trace 
lengths obtained from experimental data (red curve in the 
central graph), together with the histogram of pseudo-trace 
lengths obtained from the simulation (blue bars); and the 
map of experimental and simulated poles (black and red 
dots, respectively, right graph). The model is stochasti-
cally similar to the observations. The number of fractures 
observed to intersect the surface is 66 that coincides with the 
average number of simulated disks that intersect the surface. 
All other cases are shown in Fig. 16.

5 � Discussion

To assess the validity of the proposed DFN model, the rela-
tions proposed by Zhang et al. (2002) for trace lengths and 
disk sizes must be verified and typical relations among frac-
ture intensities must be met.

The common relations between true disk sizes and 
pseudo-trace lengths distributions Zhang et al. (2002) have 
been used to assess Eq. (17) in Sect. 3.2. Such relations were 
derived for some common distributions of trace length, such 
as lognormal, negative exponential and gamma, assuming 

the same distribution for both disk size and pseudo-trace 
length. Three numerical simulations have been performed 
with disk sizes following: (i) a lognormal distribution with 
μ = 0.5 m and σ = 0.25 m, (ii) a negative exponential distri-
bution with μ = 0.25 m, and (iii) a gamma distribution with 
α = 2 and β = 0.5. The resultant distributions obtained with 
Eqs. (17) and (35) are shown in Fig. 14. Green histograms 
correspond to the true disk size distribution and the blue 
ones the pseudo-trace lengths. The distributions of disks 
that intersect the surface have also been plotted (red), as 
these distributions are used for calculating the pseudo-trace 
lengths. Table 2 summarizes the means and variances (m 
and v) of the different distributions obtained in the simula-
tions. They are asymptotically equal to those obtained from 
the relationships provided by Zhang et al. (2002) (for a two 
million disk simulation they are equal to the third significant 
digit). Note in Fig. 14 that the distribution type of disk sizes 

Fig. 14   Lognormal (left), nega-
tive exponential (center) and 
gamma (right) distributions of 
true disk sizes (green), size of 
disks that intersect the surface 
(red) and pseudo-trace lengths 
(blue) (colour figure online)

Table 2   Relation between parameters (mean, m and variance, v) of 
the true disk size (subscript D) and the pseudo-trace length (subscript 
L) distributions; same colors as in Fig. 14 have been used

True disk size distribution mD mL vD vL

Lognormal 1.701 1.422 0.187 0.304
Negative exponential 0.500 0.786 0.250 0.383
Gamma 1.000 1.048 0.334 0.387

Fig. 15   Linear correlations between P32 and P21 for the 12 highwall 
faces studied. DS1 (blue and cyan) and DS2 (red and orange) (colour 
figure online)
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and traces is not necessarily preserved; this is quite obvious 
for the lognormal and the negative exponential cases. Even 
if the means and variances are well estimated, the actual 
distributions can be grossly different.  

A linear relationship would be expected between the frac-
ture intensities P21 and P32 for domains with similar prop-
erties (Dershowitz and Herda 1992; Mauldon 1994; Wang 
2005), with a ratio P21/P32 between 0 and 1. This applies 
irrespective of the disk size distribution. To verify this, val-
ues of P32 and P21 from Table 4 have been plotted, grouping 
them by the domain they belong to, in Fig. 15. Values of 
P21/P32 are also given in Table 4. Correlation coefficients 
are shown in the upper left part of the graph. Both P values 
are lower than 0.05 which indicates the relations are sig-
nificant. The same relations were tried between P30 and P21, 
and P30 and P32, in this case without significance to the 0.05 
level. P30 provides an incomplete fracture description as it 
only indicates the density of support points while the size 
of the fractures (unlike P21 and P32) is missing in it. In fact, 
there is probably no reason for P30 to be correlated, in gen-
eral, with P32 or P21 though, for a given size distribution of 
fractures, more fractures will likely encompass more traces 
(and longer total trace length) on an intersecting surface, and 
more fracture surface per unit volume. To assess differences 
between the model developed in this work and traditional 
DFN models, fracture densities of the domains DS1 and DS2 
built with FracMan® suite Bernardini et al. (2022) are plot-
ted for comparison, as cyan and orange points, in Fig. 15. 
They fall acceptably well in the linear trends of each pair 
of fracture densities, especially for the DS2 case (red and 
orange points).

The use of traditional DFN codes implies inevitably: (i) 
initial manual sectorization of fractures, which may intro-
duce some bias because of the operator’s criterion; to this, 
the time spent in interpreting the data must be added; (ii) 
parametrical characterization of the families, which involves 
selecting some probability distribution functions based on 
Kolmogorov–Smirnov tests; and (iii) calibration of an inten-
sity parameter for each family of fractures, which entails 
increasing computational time with increasing number of 
families. In our own experience with traditional codes, the 
third step consumes the most computational time. The cali-
bration process of the model proposed here saves consider-
able amounts of time in this step, since the KDEs considers 
all fractures independently of the family they might belong 
to. As an example, the computational time the code con-
sumes in completing an iteration for TM10 is about 75 min 
on a 2.2 GHz MSI GF62 8RD laptop. Most of the time, 
65.2%, is spent in solving the triangle–triangle intersections 
that is dependent of the quantity of disks, the number of 
sides of each disk and the number of triangles that make 
up the intersection surface, a 21% in self-time (third step in 

Sect. 4), a 5.5% in calibrating the probabilistic filter, a 5.3% 
in random sampling and the rest in other subroutines.

6 � Conclusions

A novel distribution-free DFN generation technique is devel-
oped, making use of directional-linear KDE to non-para-
metrically characterize jointly the distribution of fracture 
orientations and trace lengths. The non-parametric approach 
does not require a classification of fractures into sets as para-
metric models do and does not demand any statement on 
a particular functional distribution of trace lengths or disk 
diameters derived thereof.

The mathematical modeling and the application steps are 
explained thoroughly, with the inclusion of numerical tests 
of consistency where required. Bias corrections are provided 
for censoring, size, orientation and truncation. Censoring 
is addressed using a new calculation method that includes 
semi-bounded traces. Size and orientation biases are jointly 
addressed using a new weighting function. The truncation 
bias is corrected by a probabilistic filter capable of incorpo-
rating fractures to the DFN shorter than those observed in 
field measurements. This endows the model with a certain 
scale-independent character, not the case of traditional para-
metric DFN models.

The model has been applied to twelve trace maps obtained 
from photogrammetry of highwall faces. Disk orientations 

Fig. 16   Pseudo-trace length distribution resultant from 1 m diameter 
disks. Results from randomly evaluating Eq.  (15) (blue histogram) 
and from the distribution functions in Table 3
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were obtained by fitting a plane to the 3D-polyline defined 
by the traces. The DFN models are calibrated using Monte 
Carlo realizations of the non-parametric distributions. A 
Poisson point process is used for fractures location, assumed 
to be flat and circular in shape. Solution No. 3 of the Ber-
trand paradox has proved to be effective to estimate disk 
sizes from trace lengths.

The experimental value of P21, is fitted through the num-
ber of fractures per unit volume (P30). The resulting fracture 
intensities P21 and P32 are linearly related, which supports 
the model validity. These intensities have been discussed 
with classical DFN generation systems.

While the non-parametric model does not require an 
assumption of a distribution type for traces and fracture 
diameters, its results meet the classical relations between 
mean and variance of trace lengths and disk diameters. It is 
shown however, that the distribution types of trace lengths 
and diameters can be markedly different, a feature that does 
not affect kernel-based non-parametric DFNs.

Appendix A. Proofs

In this appendix different proofs mentioned in the manu-
script are exposed.

A.1 Warburton’s Relationship Derivation

Consider two independent random variables X and Y. The 
resultant product distribution of a new random variable Z is:

(39)fZ(z) = ∫
∞

−∞

fX(x)fY (z∕x)
1

|x|dx

Taking the density function in Eq. (22) as the distribution 
of the random variable Y, the density function of X as the 
weighed disk size density function and Z as the pseudo-trace 
length density function, one may write:

Since for infinite outcrops the weighing function 
w(D) = D and E[w(D)] is a constant, then the previous equa-
tion may be simplified to:

Regarding integration limits, none of the functions are 
defined for negative values. Furthermore, as any pseudo-
trace length is obtained from disks with size larger than the 
pseudo-trace itself, then Eq. (B.3) may be written:

Note the similarity of this equation with the relation 
obtained by Warburton (1980a).

A.2 Relationship Between Eq. (15) and Bertrand 
Paradox Number 3

The distribution of Eq. (15) is consistent with the distribu-
tion function obtained from Aldous et al. (1988) and Chiu 
and Larson (2009) for Bertrand’s paradox number 3. Tak-
ing for instance disks of diameter D = 1 m, Fig. 16 com-
pares the results from randomly sampling Eq. (15) and Ber-
trand’s distribution functions together with some sources 

(40)fL(L) = ∫
∞

−∞

fD(D) ⋅ w(D) ⋅ L

E[w(D)] ⋅ D ⋅ |D| ⋅
√

1 − (L∕D)2
dD

(41)fL(L) =
L

E[w(D)]∫
∞

−∞

fD(D)

|D|
√

1 − (L∕D)2
dD

(42)fL(L) =
L

E[w(D)]∫
∞

L

fD(D)√
D2 − L2

dD

Fig. 17   Left: density function of 
the variable Y = L∕D , Eq. (16); 
numerical values (blue histo-
gram) and density function of 
Eq. (17) (red line). Right: Rela-
tion of pseudo-trace length vs. 
diameter (colour figure online)
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Table 3   Statistics of random chord lengths of cases 1–7 described by Chiu and Larson (2009). Main statistics are obtained making r = 1

Bertrand 1: 
two points on 
circumference

Bertrand 2: 
chord center 
inside circle

Bertrand 3: 
chord center on 
radius

One point on circumfer-
ence, one inside

Both points inside circle

Case 1 Case 2 Case 3 Cases 4–6 Case 7

Density function 
L ∈ [0, 2r]

2

�
√
4r2−L2

L

2r2

L

2r

√
4r2−L2

L
2

�r2
√
4r2−L2

1

3�
√
4r2−l2

�
L

r

�4

Distribution function L 
∈ [0,2r]

2

�
sin−1

(
L

2r

)
L
2

4r2
1 −

√
4r2−L2

2r

2

�

�
sin−1

�
L

2r

�
−

L

√
4r2−L2

4r2

�
2

�
cos−1

�√
4r2−L2

2r

�
−

L(6r2+L2)
√
4r2−L2

12�r4

Bertrand probability 
P(L > √3)

1/3 1/4 1/2 0.609 0.7468

Median √2 √2 √3 1.8295 1.9021
Mean 4/π 4/3 π/2 16/3π 256/45π
Standard deviation √(2−16/π2) √2/3 (1/4)√π(π2−8) √(3−256/9π2) √(10/3−65536/2025π2)

Fig. 18   Upper left: density function of Ψ; numerical values (blue his-
togram) and Eq.  (20) (red line). The other graphs: relation between 
incomplete pseudo-trace lengths and their respective diameters, 
with color points coded differently: upper right, according to their 
trace type (red, green and blue dots are complete, semi-bounded and 

bounded traces respectively); lower left, according to their dip direc-
tion; lower right: according to their dip angle. In the lower graphs, 
colors correspond to the scales on the right of the plots (colour figure 
online)
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of randomness (cases 4 to 7) discussed by Chiu and Larson 
(2009) (see Table 3). One may note that Eq. (15) and Ber-
trand 3 (green line) are clearly equivalent. The same works 
for any other diameter.

A.3 Numerical Simulation to Prove the Validity 
of Eq. (17)

Five hundred thousand disks with random orientations were 
distributed inside a cubic domain with 10 m side, following 
a Poisson process. Their sizes were assumed to be distrib-
uted following a lognormal distribution with parameters 
μ = 0.5 m and σ = 0.25 m so that they never exceeded the 
extension of a finite rectangular surface of 30 × 30 m. The 
resulting traces were divided by their respective disk sizes. 
Figure 17 shows the histogram of L/D (blue bars) obtained 
with Eq. (18) and the analytical probability distribution in 
Eq. (17) (red line). Red points in the right graph show the 
complete trace lengths corresponding to their disk sizes. The 
result is quite satisfactory.

A.4 Numerical Simulation to Prove the Validity 
of Eq. (20)

Disks with random orientations and following a Poisson pro-
cess were generated within a 10 m side cubic domain so that 
they intersect a 5 m-radius circumferential outcrop. disk sizes 

may be set to follow any distribution used in the literature 
for trace lengths; take for example a gamma distribution with 
parameters α = 2 and β = 0.5. To the extent possible, these 
parameters were chosen in a way that the size of the surface is 
large compared to disk sizes, leading to a limited number of 
bounded traces. The result of the test is shown in Fig. 18. The 
graph on the upper left shows the histogram of �/D (blue bars) 
and the density function fΨ (red line) with p taking a value of 
0.2. P has been obtained from the upper right graph, calcu-
lating the proportion of semi-bounded traces over the total 
number of traces. In this graph, l values are represented vs. 
disk size D ; red, green and blue dots in the upper plot indicate 
complete, semi-bounded and bounded traces, respectively. The 
result is, again, satisfactory.

Orientation and dip have also been plotted to check inde-
pendence between the random variables, see bottom graphs 
in Fig. 18. Orientations are randomly distributed, without a 
preferential pattern.

Appendix B. Results

Table 4 and Figs. 19, 20 sumarize the main results of the 
model developed in this paper. 

Table 4   DFN results

Trace map Bandwidths P γ Log-logistic truncation DFN results

h g α (m) β P value N/TF (%) P30 (m−3) Area (m2) P21sim (m−1) P32sim (m−1) P21/P32

TM1 0.13 0.35 0.37 1.33 1.17 2.27 0.72 0.37 0.276 230.2 0.81 2.05 0.40
TM2 0.16 0.23 0.36 1.42 1.53 3.03 0.71 0.49 0.151 268.1 0.59 1.25 0.47
TM3 0.19 0.40 0.43 1.13 1.04 2.38 0.84 0.70 0.111 264.7 0.59 1.37 0.43
TM4 0.16 0.37 0.31 1.21 0.75 2.74 0.99 0.38 0.372 234.5 0.93 2.08 0.45
TM5 0.15 0.66 0.30 1.28 0.87 2.69 0.91 0.44 0.208 247.2 0.61 1.25 0.49
TM6 0.17 0.30 0.27 1.48 0.98 2.31 0.83 0.26 0.447 199.7 0.78 1.72 0.45
TM7 0.12 0.40 0.28 1.34 0.62 2.91 0.99 0.55 0.398 307.3 0.97 1.59 0.61
TM8 0.13 0.50 0.23 1.17 0.30 2.81 0.97 0.57 0.451 338.9 0.90 1.38 0.65
TM9 0.14 0.59 0.28 1.30 0.34 2.57 0.95 0.54 0.697 314.2 1.82 2.60 0.70
TM10 0.13 0.69 0.29 1.22 0.23 3.00 0.99 0.77 0.341 389.0 1.22 1.80 0.68
TM11 0.12 0.61 0.30 1.24 0.23 4.73 0.96 0.36 0.717 308.6 1.39 1.73 0.80
TM12 0.14 0.51 0.18 1.22 0.17 2.56 0.99 0.26 1.237 274.8 1.05 1.48 0.71
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Fig. 19   Simulated pseudo-trace lengths (blue bar histograms), experimental KDE of pseudo-trace lengths (red lines), experimental poles (black 
dots) and simulated poles (red dots) (colour figure online)
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Appendix C. Flowchart of the calculation 
process

The process followed to calibrate the DFN model is summa-
rized in Fig. 21.

Fig. 20   Simulated DFN models in domains with size 30 × 20 × 10 m. Fractures with similar orientations are colored with similar tones using an 
inverse pole figure color code
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