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Abstract
Transversely isotropic layered rock is widely distributed in nature. To better describe the time-dependent entire creep charac-
teristics for transversely isotropic rock, a simple nonlinear damage creep model is derived based on fractional order theory, 
which consists of a Hooke elastomer, a fractional Abel dashpot, a fractional nonlinear damage dashpot, and can effectively 
describe the characteristics of primary creep, steady-state creep and accelerating damage creep. Assuming that Poisson's 
ratio is constant, the creep equation of isotropic rock is extended to transversely isotropic rock, and the nonlinear damage 
creep model for transversely isotropic rock is established. Step-wise loading triaxial creep tests of phyllite specimens with 
three kinds of bedding angles (0°, 45° and 90°) are carried out, and it is found that there are significant differences in creep 
deformation and failure characteristics under different bedding angles. The parameters of the creep model at each bedding 
angle are identified using the Universal Global Optimization method. By comparing the Nishihara model, the modified Nishi-
hara model and experimental data, it shows that the creep model in this paper are highly consistent with the experimental 
data under different bedding angles, load levels and creep stages, and the accuracy and rationality of the model are verified.

Highlights

• A simple nonlinear damage creep model is derived based 
on fractional order theory.

• By assuming that Poisson's ratio is constant, the creep 
equation of isotropic rock is extended to transversely iso-
tropic rock, and the nonlinear damage creep model for 
transversely isotropic rock is established.

• There are significant differences in creep deformation and 
failure characteristics of phyllite specimens with different 
bedding angles.

• Parameters of the proposed creep model at each bedding 
angle are identified by using the Universal Global Opti-
mization, and the accuracy and rationality of the model 
are verified.
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List of symbols
D  Damage variable
E  Elastic modulus parallel to foliation plane
E′  Elastic modulus perpendicular to foliation 

plane
G′  Shear modulus perpendicular to foliation 

plane
μ  Poisson's ratio parallel to foliation plane
μ′  Poisson's ratio perpendicular to foliation 

plane
m  Smallest integer greater than β
n  Ratio of E' to E
t  Creep time
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ta  Accelerating creep time
θ  Angle between loading direction and normal 

direction of bedding plane
β  Derivative order of visco-elastic body
γ  Derivative order of visco-plastic body
η  Viscosity coefficient
η1  Viscosity coefficient of visco-elastic body
η2  Viscosity coefficient of visco-plastic body
η3  Viscosity coefficient of the nonlinear viscous 

body
λ  Damage parameter
σ  Axial stress
σs  Yield stress
ε  Axial strain
εe  Elastic strain
εve  Visco-elastic strain
εvp  Visco-plastic strain
εa  Triggered strain of the accelerating creep 

stage
σx, σy, σz  Axial stresses in global coordinate system
τyz, τzx, τxy  Tangential stresses in global coordinate 

system
εx, εy, εz  Axial strains in global coordinate system
γyz, γzx, γxy  Tangential strains in global coordinate system
Eω,ξ (x)  Mittag–Leffler function
J(t)  Creep compliance
Г(β)  Gamma function
[A]  Poisson's ratio matrix for isotropic rock
[U]  Poisson's ratio matrix for transversely iso-

tropic rock
[S]  Flexibility matrix of global coordinate system
[S′]  Flexibility matrix of local coordinate system
[ε]  Strain tensor of global coordinate system
[ε′]  Strain tensor of local coordinate system
[σ]  Stress tensor of global coordinate system
[σ′]  Stress tensor of local coordinate system
sij  Components of matrix [S]
uij  Components of matrix [U]

1 Introduction

Layered rock masses are widely distributed in southwest 
China, such as phyllite, slate, shale, etc., which are obvi-
ously transversely isotropic (Aliabadian et al. 2019; Chen 
et al. 2017; Li et al. 2021a; Shen et al. 2021). With the 
rapid development of traffic construction in western China, 
more and more traffic tunnels need to cross the geological 
environment, especially in strata with extremely developed 
structural planes and bedding planes. Because of the low 
strength and strong rheological property of the surround-
ing rock, tunnels tend to suffer from asymmetric squeezing 
and large deformation (Chen et al. 2019; Liu et al. 2021b; 

Sun et al. 2021; Xu et al. 2020). Therefore, it is of practi-
cal significance to investigate the creep behavior for layered 
rock masses.

Due to the existence of weak bedding planes, layered 
rocks often show obvious anisotropy characteristic, specifi-
cally transverse isotropic characteristic. Many scholars have 
studied the anisotropic/transversely isotropic characteristic 
and constitutive equation for layered rocks by theoretical 
or experimental method. Pouragha et al. (2020) regarded 
sandstone and slate as aggregates of cohesive particles, and 
described the strength anisotropy for layered rocks by com-
bining local strength criterion and micromechanical equation 
of contact deformation. Saroglou and Tsiambaos (2008) and 
Shi et al. (2016) adopted the anisotropy exponents kβ and 
αβ respectively, and modified the Hoek–Brown criterion to 
describe the anisotropy of the triaxial strength for the layered 
rock. Wang et al. (2018b) established an elastic–plastic con-
stitutive model for transversely isotropic rocks based on the 
Drucker–Prager criterion. Gholami and Rasouli (2014) used 
uniaxial, triaxial and Brazilian splitting tests to evaluate the 
mechanical parameters and strength properties of slates with 
different bedding directions, which have obvious U shaped 
distribution characteristics. However, the investigation for 
layered rocks mostly focuses on mechanical properties, 
strength characteristics, failure modes, etc., while there are 
few reports on its creep characteristics and creep constitu-
tive model.

The research on rock creep constitutive model is still a hot 
spot in the field of rock mechanics at present. There are many 
kinds of creep constitutive models, which can be divided into 
three types: empirical models, component models and other 
nonlinear damage models based on fracture mechanics or dam-
age mechanics. The classical component combination mod-
els are simple in form and clear in physical meaning, such 
as Burgers model, Nishihara model, which are widely used 
(Behbahani et al. 2016; Feng et al. 2021; Nomikos et al. 2011). 
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However, the nonlinear accelerating creep stage of rock can-
not be accurately described because the damage factor of the 
specimens is not considered (Fig. 1). To reflect the coupling 
phenomenon of rock damage and creep, many scholars modi-
fied the classical component combination model, such as Lin 
et al. (2020) modified Burgers model by adopting Kachanov 
creep damage law; Cheng et al. (2021) regarded rock as the 
material with microdefects or micro-damage, and proposed a 
nonlinear creep model based on modified Nishihara consider-
ing damage evolution; Feng et al. (2020) considered the initial 
damage and damage evolution, and improved the components 
in Nishihara model; Hou et al. (2019) researched different ini-
tial damage states of rock, and established a nonlinear damage 
model of four components, which consists of a Hooke body, a 
Kelvin body, an improved viscous component and a nonlinear 
viscous plastic damage component; Cao et al. (2020) derived 
a creep model including creep strengthening and weakening 
behaviors by introducing time-hardening theory and damage 
theory. In view of the fact that the above models are all integer 
orders, and there are some deviations in describing the char-
acteristics of unsteady creep. Zhou et al. (2011) and Yan et al. 
(2020) proposed a creep model based on fractional derivative, 
by replacing Newtonian dashpot in Nishihara model with the 
fractional derivative Abel dashpot, to reflect the accelerating 
creep behavior of rock. Wu et al. (2021) described the com-
plete creep process of salt rock by replacing Newtonian dash-
pot in Maxwell model with variable-order fractional derivative 
component. Xue et al. (2021) introduced the plastic damage 
variable and established Burgers model with the fractional 
damage creep to study the creep behavior of combined stress 
and temperature damage. Fractional order theory can express 
a variety of cases by the function of different orders, and can 
describe the visco-elastic and visco-plastic deformation behav-
iors more accurately, so it has become an important tool to 
describe creep behavior in recent years.

In the above researches, the rock mass is regarded as iso-
tropic material, but the rock mass often has the properties of 
bedding, joints and structural planes, showing multi-layer 
anisotropy(Chen et al. 2016; Pouragha et al. 2020; Shen 
et al. 2021). Therefore, some scholars have studied the creep 
characteristics of transversely isotropic rock. Li et al. (2020) 
carried out four kinds of shale creep tests with different bed-
ding angles (0°, 45°, 75° and 90°), and found that anisotropy 
had significant influence on the creep deformation and creep 
rate, among which the rock with bedding plane of 45° had the 
largest creep deformation and creep rate. The axial creep rate 
of carbonaceous slate in vertical bedding plane was higher 
than that in horizontal bedding plane (Wang et al. 2018c). By 
replacing the Newtonian component of Burgers model with the 
fractional derivative Abel dashpot, and introducing Poisson's 
ratio matrix of transversely isotropic rock, Li et al. (2021b) 
derived a creep constitutive model, which could describe the 

steady-state creep for transversely isotropic rock. However, 
the existing models cannot adequately characterize the creep 
properties for transversely isotropic rock, especially the accel-
erating creep process.

To describe the accelerating creep process for transversely 
isotropic rock more truly and accurately, based on the frac-
tional calculus theory, the fractional nonlinear damage creep 
model for isotropic rock was first derived with a simple form 
by introducing a damage variable D. Assuming that Poisson's 
ratio was constant, the Poisson's ratio of transversely isotropic 
rock was used to replace the Poisson's ratio in the proposed 
creep model, so the fractional nonlinear damage creep model 
for transversely isotropic rock was established. Through the 
step-wise loading triaxial creep tests of phyllite specimens 
with three kinds of bedding angles (0°, 45° and 90°), the creep 
characteristics of phyllite with different bedding angles were 
analyzed, and the reliability and accuracy of the model were 
verified.

2  Fractional Nonlinear Damage Creep 
Model

2.1  Definition of Fractional Calculus

Fractional calculus is developed on the basis of integral cal-
culus, and many definitions have evolved (Lakshmikantham 
and Vatsala 2008). Among them, Riemann–Liouville (R–L) 
defined the fractional integral of a function f (t) with order β 
(0 ≤ β ≤ 1), which is the most widely used, and the definition 
is as follows (Zhou et al. 2011):

where Γ(�) is the gamma function and is defined as 
Γ(�) = ∫ ∞

0
t�−1e−tdt ; � is an integral variable of [0, t].

The fractional derivative of R-L is the inverse operation 
of fractional integral, then the fractional derivative of order β 
function f (t) can be given by

where m is the smallest integer greater than β.

2.2  Fractional Abel Dashpot

Abel dashpot is a viscous component between ideal Hooke 
elastomer and Newtonian dashpot, a typical application of 
fractional calculus, which can reflect the nonlinear creep phe-
nomenon of rock materials. The constitutive equation of an 
Abel dashpot is defined as (Zhou et al. 2011)

(1)
d−�[f (t)]

dt−�
=

1

Γ(�) ∫
t

0

(t − �)�−1f (�)d�

(2)

d�[f (t)]

dt�
=

dm

dtm

[
d−(m−�)[f (t)]

dt−(m−�)

]
=

1

Γ(n − �)

dm

dtm

[
∫

t

0

f (�)

(t − �)�−m+1
d�

]
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where η is the viscosity coefficient; �(t) is the axial stress 
and �(t) is the axial strain.

When β = 0, η = E, � = E� , representing linear elastomer, 
namely Hooke elastomer; When β = 1, � = �d�∕dt , corre-
sponding to Newtonian dashpot and satisfying the ideal fluid. 
Therefore, by adjusting the fractional order β, a satisfactory 
time-dependent strain curve can be obtained in the steady-state 
creep stage.

If �(t) is a constant stress, the Eq. (3) is integrated with R-L 
fractional operator, and the creep equation of fractional Abel 
dashpot can be expressed as follows:

2.3  Fractional Nonlinear Damage Dashpot

The conventional fractional Abel dashpot cannot reflect the 
accelerating creep stage, which often happens in rock under 
high stress. To describe the phenomenon of accelerating 
creep, Xue et al. (2021) proposed the accelerating creep 
constitutive model for salt rock, the formula is as follows:

Several basic mechanical components are shown in Fig. 2. 
Considering the damage of rock during long-term loading, 
we introduce the damage variable D to describe the damage 
process. It is assumed that the probability of rock damage 

(3)�(t) = �
d��(t)

dt�
(0 ≤ � ≤ 1)

(4)�(t) =
d−�

dt−�
�

�
=

1

Γ(�) ∫
t

0

�

�
(t − �)

�−1
d� =

�t�

�Γ(� + 1)

(5)�(t) = �
d��(t)

dt�
(� ≥ 1)

obeys the exponential distribution with parameter λ. The 
damage variable D can be described as (Chen et al. 2021)

where λ is the parameter to characterize the evolution law of 
time-dependent damage.

Considering �(t) = � , let f (t) = �

�
e�t , and e�t can be 

expressed in the form of series as follows:

From Eqs. (1), (4) and (8), the creep equation of frac-
tional nonlinear damage dashpot can be deduced as

where E1,1+� (�t) is Mittag–Leffler function, which is defined 
as

(6)D = ∫
t

0

�e−�tdt = 1 − e−�t

(7)�(t) = �(1 − D)
d��(t)

dt�
= �e−�t

d��(t)

dt�

(8)e�t =

∞∑
i=0

(�t)i

i!
=

∞∑
i=0

(�t)i

Γ(i + 1)

(9)

�(t) =
d−�

dt−�

[
∞∑
i=0

�(�t)i

�Γ(i + 1)

]
=

∞∑
i=0

��iti+�

�Γ(i + 1 + �)
=

�t�

�
E1,1+� (�t)

(10)E�,�(x) =

∞∑
i=0

xi

Γ(�i + �)

E η η γ Dη β

(a) (b) (c) (d) 

Fig. 2  The basic mechanical components: a Hooke elastomer; b Newtonian dashpot; c fractional Abel dashpot; d fractional nonlinear damage 
dashpot

Fig. 3  Schematic view of creep 
constitutive model: a classical 
Burgers model; b fractional 
nonlinear damage creep Model
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2.4  Establishment of the Fractional Nonlinear 
Damage Creep Model

The classical Burgers creep model consists of Hooke elasto-
mer and Newtonian dashpot connected in series and in paral-
lel (Fig. 3a), which can only reflect the creep characteristics 
of clay, asphalt and some rock, but cannot fully describe 
the creep process of rock, especially the accelerating creep 
stage (Behbahani et al. 2016; Lin et al. 2020). Therefore, we 
establish a fractional nonlinear damage creep model based 
on Burgers model, as shown in Fig. 3b. When the rock is in 
the steady-state creep stage without plastic yield, it can be 
described by the series connection of a Hooke elastomer and 
a fractional Abel dashpot, and the elastic deformation and 
visco-elastic deformation can be characterized, respectively. 
When the rock is in the accelerating creep stage with plastic 
flow, the fractional nonlinear damage dashpot is introduced 
to replace the Newtonian dashpot in Burgers model, and 
Hooke elastomer is substituted for a switch component. 
When � ≥ �s , the switch is active, and the nonlinear damage 
element starts to work to describe the visco-plastic defor-
mation. This model can well describe the entire process of 
rock creep.

The above model is composed of a Hooke elastomer, a 
visco-elastic body and a visco-plastic body in series, and the 
corresponding strains are �e , �ve and �vp individually, so the 
total creep strain can be deduced as

Part 1. �e is the elastic strain, independent of time. It can 
be given as

Part 2. �ve is the visco-elastic strain, and the creep defor-
mation derived from the fractional Abel dashpot Eq. (4) can 
be described as

where �1 is the viscosity coefficient of visco-elastic body and 
� is the derivative order of visco-elastic body.

Part 3. �vp is the is visco-plastic strain, triggered by yield 
stress �s . The creep deformation obtained by the fractional 
nonlinear damage dashpot Eq. (9) can be expressed as

(11)� = �e + �ve + �vp

(12)�e =
�

E

(13)�ve =
�t�

�1Γ(� + 1)

(14)𝜀vp =

{
0, 𝜎 < 𝜎s
𝜎t𝛾

𝜂2
E1,1+𝛾 (𝜆t), 𝜎 ≥ 𝜎s

where �2 is the viscosity coefficient of visco-plastic body and 
� is the derivative order of visco-plastic body.

By combine Eqs. (11)–(14), the fractional nonlinear dam-
age creep model considering accelerating creep stage can 
be derived as

Equation (15) gives the creep constitutive equations of 
steady-state creep and accelerating creep. When 𝜎 < 𝜎s , let 
� = 14 MPa, E = 11 GPa, �1 = 20 GPa·hβ, we draw a series 
of creep curves with different fractional orders β (Fig. 4a) 
and with different viscosity coefficients �1 (Fig. 4b). It 
shows that the β is related to the creep rate and the �1 is 
associated with the creep deformation. The larger β, the 
greater the creep rate, and the larger �1 , the smaller the 
creep deformation. When � ≥ �s , let � = 85 MPa, �2 = 1 
GPa·hγ, � = 0.2, � = 1, we get a series of creep curves with 
different fractional orders γ (Fig. 4c) and with different 
viscosity coefficients �2 (Fig. 4d). The γ represents the 
moment when the rock changes from the steady-state creep 
stage to the accelerating creep stage, and the larger γ, the 
later it will reach the accelerating creep failure state. The 
�2 denotes the rate of accelerating creep, and the larger �2 , 
the steeper the curve. It shows that this model can well 
describe the characteristics of various creep stages of rock.

3  Fractional Nonlinear Damage Creep 
Model for Transversely Isotropic Rock

3.1  Fractional Nonlinear Damage Creep Model 
for Isotropic Rock

Let the creep compliance J(t) in Eq. (15) is given as

Then, Eq. (15) can be described as

Based on the creep constitutive equation estab-
lished under one-dimensional condition, the equation 
can be extended from one-dimensional stress state to 

(15)𝜀 =

⎧
⎪⎨⎪⎩

𝜎

E
+

𝜎t𝛽

𝜂1Γ(𝛽+1)
, 𝜎 < 𝜎s

𝜎

E
+

𝜎t𝛽

𝜂1Γ(𝛽+1)
+

𝜎t𝛾

𝜂2
E1,1+𝛾 (𝜆t), 𝜎 ≥ 𝜎s

(16)J(t) =

⎧⎪⎨⎪⎩

1

E
+

t𝛽

𝜂1Γ(𝛽+1)
, 𝜎 < 𝜎s

1

E
+

t𝛽

𝜂1Γ(𝛽+1)
+

t𝛾

𝜂2
E1,1+𝛾 (𝜆t), 𝜎 ≥ 𝜎s

(17)� = J(t)�
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three-dimensional. It is assumed that Poisson's ratio does 
not change with time and stress, and is equivalent to the 
value of elastic stage, �(�, t) = � . For isotropic rock, the 
creep compliance substitution method can be used to 
obtain the basic form of the three-dimensional creep equa-
tion of rock as follows (Li et al. 2021b):

where [A] is Poisson's ratio matrix for isotropic material; [�] 
and [�] are strain tensor and stress tensor, respectively.

3.2  Fractional Nonlinear Damage Creep Model 
for Transversely Isotropic Rock

For layered rock with transversely isotropic mechanical 
properties, as shown in Fig. 5, in the local coordinate 

(18)[�] = J(t)[A][�]
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system x'y'z', the stress–strain relationship for the trans-
versely isotropic rock is as follows:

Therein,

where  
[
�′
]
 , 
[
�′
]
  and 

[
S′
]
  are strain tensor, stress tensor and 

flexibility matrix of local coordinate system, respectively; 
E and � are elastic modulus and Poisson's ratio parallel to 
foliation plane, individually; E′ and �′ and G′ are elastic 
modulus, Poisson's ratio and shear modulus perpendicular 
to foliation plane, correspondingly.

According to the transformation relationship between local 
coordinates and global coordinates, Eq. (19) can be described as

Therein,

The transversely isotropic rock has five independent elas-
tic parameters. Gonzaga et al. (2008) reduced the independ-
ent elastic parameters to four, and put forward the approxi-
mate elastic parameters as follows:

By matrix multiplication, Eq. (20) can be expressed as 
Eq. (22). Considering that the tangential stress is zero under 
conventional triaxial compression (Fig. 6), it can be further 
simplified as Eq. (23).

(19)
[
��
]
=
[
S�
][
��
]

�
S
′
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E
−

��

E�
−

�

E
0 0 0

−
��

E�

1

E�
−

��

E�
0 0 0

−
�

E
−

��

E�

1

E
0 0 0

0 0 0
1

G�
0 0

0 0 0 0
2(1+�)

E
0

0 0 0 0 0
1

G�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)[�] = [Q]
[
S�
]
[Q]T[�]

[Q] =

⎡⎢⎢⎢⎢⎢⎢⎣

cos2 � sin2 � 0 0 0
sin 2�

2

sin2 � cos2 � 0 0 0 −
sin 2�

2

0 0 1 0 0 0

0 0 0 cos � − sin � 0

0 0 0 sin � cos � 0

− sin 2� sin 2� 0 0 0 cos 2�

⎤⎥⎥⎥⎥⎥⎥⎦

(21)1

G�
=

1

E
+

1

E�
+

2��

E�

Assuming E� = nE and combining Eq. (19), Eq. (20) 
and Eq. (21), sij can be expressed as

The flexibility matrix can be written as

(22)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x
�y
�z
�yz
�zx
�xy

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x
�y
�z
�yz
�zx
�xy

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(23)

⎧⎪⎨⎪⎩

�x
�y
�z

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤
⎥⎥⎦
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Fig. 6  Diagram of cylinder specimen for transversely anisotropic rock 
under confining pressure



838 H. Kou et al.

1 3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u11 = cos4 � + sin4 � +
sin2 2�

4

�
1 +

1

n

�

u12 = u21 = −
��

n

�
sin4 � + cos4 � +

sin2 2�

2

�

u13 = u31 = −

�
� cos2 � +

��

n
sin2 �

�

u22 = sin4 � +
cos4 �

n
+

sin2 2�

4

�
1 +

1

n

�

u23 = u32 = −
�
� sin2 � +

��

n
cos2 �

�

u33 = 1

Using differential operator substitution method, keeping 
Poisson's ratio matrix unchanged, and replacing Poisson's 
ratio matrix [A] of the isotropic rock in Eq. (18) with Pois-
son's ratio matrix [U] of the transversely isotropic rock 
shown in Eq. (24), the three-dimensional creep consti-
tutive equation for transversely anisotropic rock can be 
obtained as follows:

Therefore, the fractional Abel dashpot and fractional 
nonlinear damage dashpot considering bedding angle can 
be shown as Fig. 7. The fractional nonlinear damage creep 
model for transversely isotropic rock can be represented 
as Fig. 8. It can embody the instantaneous elastic, steady-
state creep visco-elastic and accelerating creep visco-plas-
tic deformation of rock with different bedding angles. The 
creep deformation can be obtained by expanding Eq. (25), 
and the axial creep equation is shown as follows:

(25)[�] = J(t)[U][�]

If 𝜎 < 𝜎s, then:
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If � ≥ �s, then:

η β θ η γ D θ

(a) (b) 

Fig. 7  Fractional components for transversely isotropic rock: a frac-
tional Abel dashpot; b fractional nonlinear damage dashpot

E η1  β θ
σs

η2  γ D θ

ε
εe εve εvp

accelerated creep

steady-state creep

Fig. 8  Schematic view of fractional nonlinear damage creep model 
for transversely isotropic rock

Fig. 9  Experimental equipment: a MTS815 rock servo-controlled equipment; b Rock triaxial rheological equipment
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4  Model Verification Based on Triaxial Creep 
Test for Layered Phyllite

4.1  Triaxial Creep Test for Layered Phyllite

We prepared phyllite rock specimens with a diameter of 
50 mm, a height of 100 mm and bedding angles of 0°, 45° 
and 90° respectively. First, the triaxial compression test 
with the circumferential stress of 10 MPa was carried out 
on the phyllite specimens using MTS815 rock servo-con-
trolled equipment (Fig. 9a). As shown in the stress–strain 
curve in Fig. 10a, the strength of θ = 0° and θ = 90° rock 
specimens were similar and higher, while that of θ = 45° 
rock specimen was lower, and the strength of phyllite 
showed obvious anisotropy. According to the method to 
determine the yield stress, we set the stress at the inflec-
tion point of the volume stress–strain curve as the yield 
stress (Liu et al. 2021a). The yield stress of θ = 0° and 
θ = 90° rock specimens was 91 MPa, and the yield stress 
of θ = 45° rock specimen was 28 MPa. Then, according to 
the obtained yield stress, the creep test of the same cir-
cumferential stress was carried out using the rock triaxial 

(27)
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rheological equipment (Fig. 9b). We adopted the method 
of multi-stage loading, each stage of loading lasted for 
48 h, divided equally according to the yield stress, and the 
rock specimens are loaded step by step until they failed.

The creep curves of the phyllite specimens with three 
kinds of bedding angles are shown in Fig. 10b. There are 
obvious differences in creep characteristics of phyllite with 

(b)(a)

Fig. 10  Experimental data of phyllite with different bedding angles: a Triaxial compression test, σ3 = 10 MPa; b Triaxial creep test, σ3 = 10 MPa

Fig. 11  Failure characteristics of phyllite: a θ = 0°; b θ = 45°; c 
θ = 90°

Table 1  Elastic parameters of phyllite

E (GPa) E'(GPa) G'(GPa) μ μ'

26.55 29.31 10.38 0.29 0.36
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different bedding angles. Overall, when θ = 45°, the defor-
mation is the largest, when θ = 0°, the deformation is the 
smallest, and when θ = 90°, the deformation is in between. 
In the first few stages of loading, the specimens were in the 
steady-state creep, which consists of transient and time-
dependent deformation. In the last stage of loading, the 
specimens entered the state of nonlinear accelerating creep 
and failed. The accelerating creep process of phyllite with 
bedding angle of 45° and 90° is more obvious and the 
duration is shorter, while the accelerating creep curve with 
bedding angle of 0° is steeper and the duration is longer.

The failure characteristics of the phyllite specimens 
are quite different (Fig. 11). The time-dependent defor-
mation process of phyllite is explained from the failure 
mechanism. When θ = 0°, the rock is subjected to com-
bined tensile–shear failure through bedding and paral-
lel bedding planes, and the deformation is controlled 
by the weak plane of horizontal bedding, which is rela-
tively large, and the accelerating creep occurs later. When 
θ = 90°, the rock is subjected to splitting tension parallel 
to bedding planes, and the deformation is dominated by 
vertical matrix, which is relatively small, and the acceler-
ating creep occurs earlier. When θ = 45°, the rock shears 
and slips along the weak bedding plane, with the largest 
deformation and the earliest accelerating creep. There are 
significant differences in phyllite failure modes with dif-
ferent bedding angles.

4.2  Parameter Identification and Model Verification

The elastic parameters of phyllite obtained from rock 
mechanics experiments are shown in Table 1. According 
to the triaxial creep data of layered phyllite, the parameters 
of the fractional nonlinear damage creep model with each 
bedding angle are identified by Universal Global Optimiza-
tion (Table 2). To show the influence of bedding direction 
on model parameters more clearly, we get the approximate 
relationship between the model parameters and bedding 
angles by polynomial fitting for better practical application 
(Fig. 11). With the increase of bedding angle, the fractional 
order β becomes larger, and the viscous parameter η1, the 
fractional order γ, the parameter λ first decrease and then 
increase, and the viscous parameter η2 first increase and then 

decrease. According to the fitted curve relationship, we can 
roughly get the model parameters β, η1, γ, η2 and λ, corre-
sponding to other bedding angles (Fig. 12).

By bringing the above identified parameters into Eqs. 
(26) and (27), the calculation curves of time-dependent 
creep deformation for three kinds of bedding angles under 
different load levels can be obtained. The comparisons 
between experimental data and calculation curves are 
shown in Fig. 13. The fractional nonlinear damage creep 
model for transversely isotropic rock can not only reflect 
the deformation law of layered rock in the steady-state 
creep, but also describe the nonlinear accelerating defor-
mation characteristics in the accelerating creep stage. The 
calculated curves are highly consistent with the experi-
mental data under different bedding angles, load levels 
and creep stages, which shows that the model is accurate 
and reasonable.

To better verify this model, it is compared with the classi-
cal Nishihara model and the modified Nishihara model with 
damage which can describe the accelerating creep (Wang 
et al. 2018a, 2021) (Fig. 14). Equation (28) is the creep equa-
tion of Nishihara model, and Eq. (29) is the creep equa-
tion of Nishihara model modified by Wang et al. (2018a), 
as follows:

where E1 is the instantaneous elastic modulus, E2 is 
the visco-elastic modulus, η1 and η2 are the viscosity 
coefficients.

where η3 is the viscosity coefficient of the nonlinear viscous 
dashpot, εa is the triggered strain of accelerating creep stage, 
ta is the time corresponding to the strain εa, D is the damage 
variable, the same as Eq. (6), D = 1 − e−λt.

The parameters of the modified Nishihara model were 
obtained by fitting the phyllite creep experimental data, 
as shown in Table 3. By substituting the parameters into 
Eq. (28), the calculation curves for the primary creep and 
steady-state creep stages can be drawn (Fig. 15). Comparing 
the fractional nonlinear damage creep model in this paper, it 
is found that the both describe the creep process well under 
low stress conditions. However, as the stress increases, the 

(28)

⎧⎪⎨⎪⎩

𝜀(t) =
𝜎

E1

+
𝜎

E2

�
1 − e−(E2∕𝜂1)t

�
, 𝜎 < 𝜎s

𝜀(t) =
𝜎

E1

+
𝜎

E2

�
1 − e−(E2∕𝜂1)t

�
+

𝜎−𝜎s

𝜂2
, 𝜎 ≥ 𝜎s

(29)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(t) = �
E1

+ �
E2

(

1 − e−(E2∕�1)t
)

, � < �s

�(t) = �
E1

+ �
E2

(

1 − e−(E2∕�1)t
)

+ �−�s
�2

, � ≥ �s, � < �a

�(t) = �
E1

+ �
E2

(

1 − e−(E2∕�1)t
)

+ (�−�s)(1−D)
�2

t + �
�3
(t − ta), � ≥ �s, � ≥ �a

Table 2  Fitted parameters of fractional nonlinear damage creep 
model for phyllite

Bedding angles β η1 (GPa  hβ) γ η2 (GPa  hγ) λ

θ = 0° 0.023 23.56 137.94 1.67 3.78
θ = 45° 0.024 3.98 23.97 4.26 1.08
θ = 90° 0.036 22.81 45.75 1.04 4.44
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(a) (b)

(c) (d)

(e)

Fig. 12  Fitted parameters and polynomial fitting curve: a β; b η1; c γ; d η2; e λ 
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difference between the calculated results of the Nishihara 
model and the experimental data becomes larger and larger, 
which is mainly reflected in the primary creep stage. The 
fractional nonlinear damage creep model in this paper also 
describes the creep process well under high stress condi-
tions, and the fitting results are good.

Similarly, by substituting the parameters into Eq. (29), 
the calculation curves of the accelerating creep stage can 
be obtained (Fig. 16). We compare the calculation curves 
of the Nishihara model, the modified Nishihara model, and 
the fractional nonlinear damage model in this paper. It shows 

that the classical Nishihara model cannot reflect the acceler-
ating creep process. Although the modified Nishihara model 
could describe the accelerating creep process, it is relatively 
different from the experimental results, and the nonlinear 
deformation process is poorly described. Moreover, it is nec-
essary to determine the time when accelerating creep occurs, 
which is not practical and has many parameters. The frac-
tional nonlinear damage creep model in this paper is simple, 
and the entire nonlinear accelerating creep process can be 
described clearly with five simple parameters.
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Fig. 13  Comparison between experimental data and calculation curve: a θ = 0°; b θ = 45°; c θ = 90°

Table 3  Fitted parameters of the 
modified Nishihara model for 
phyllite

Bedding angles E1 (GPa) E2 (GPa) η1 (GPa h) η2 (GPa h) η3 (GPa h) λ ta

θ = 0° 26.55 21.69 2.88 222 22.4 3.78 47.3
θ = 45° 27.86 3.62 0.47 220 9.3 1.08 7.9
θ = 90° 29.31 20.00 2.13 576 21.6 4.44 13.0
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Fig. 14  Schematic view of Nishihara model: a classical Nishihara 
model; b modified Nishihara model
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Fig. 15  Comparison with the Nishihara model in the primary creep and steady-state creep stages: a θ = 0°; b θ = 45°; c θ = 90°
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5  Discussion

The creep model in this paper was verified and its parameters 
were identified, and it was also compared with the Nishihara 
model and the modified Nishihara model with damage. The 
modified Nishihara model could not describe the nonlin-
ear process of accelerating creep well, and the accelerating 
creep time needed to be fitted. In this paper, the combination 
of fractional derivative, transversely isotropic constitutive 
model and damage variable could better describe the non-
linear accelerating creep process for layered rock, and the 
accelerating creep time could also be determined by taking 
the derivative of the creep equation as 0. The creep rate is 
calculated as follows:

(30)
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The above fitted creep parameters of phyllite rocks with 
different bedding angles are substituted into Eq. (30), and 
the relationship curves of strain rate with time are calculated 
respectively. As shown in Fig. 17, it clearly shows that the 
strain rate begins to increase rapidly after reaching the mini-
mum value, which indicates that accelerating creep begins to 
occur. The time-dependent strain rate curve is basically con-
sistent with the experimental strain rate, and the accelerating 
creep time for bedding angles of 0°, 45°, 90° are 45.6, 6.9, 
12.6 h respectively, which indicates that this method can deter-
mine the accelerating creep time. Compared with the modified 
Nishihara model, the accelerating creep time by this method is 
earlier and the result is more accurate.

6  Conclusion

Based on fractional calculus, a nonlinear creep damage 
model for transversely isotropic rock is established and its 
analytical solution is given. Through step-wise loading tri-
axial creep tests on phyllite specimens with three kinds of 

(a) (b)

(c)

Fig. 17  The accelerating creep time: a θ = 0°; b θ = 45°; c θ = 90°
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bedding angles of 0°, 45° and 90°, the parameters of the pro-
posed creep model are identified and verified, and the creep 
deformation characteristics of rock with different bedding 
angles are analyzed. The major conclusions are as follows:

1. Based on fractional calculus and introducing the dam-
age variable D, a fractional nonlinear creep damage 
model is established, which can describe the accelerat-
ing creep process of isotropic rock. Sensitivity analysis 
of the creep model parameters shows that the fractional 
order β is positively related to the creep rate, and the 
viscosity coefficient �1 is negatively associated with the 
creep deformation; The fractional order γ represents the 
moment when the accelerating creep state occurs, and 
the larger it is, the later it will be; The viscosity coef-
ficient �2 is positively correlated with the speed of accel-
erating creep.

2. Assuming that Poisson's ratio is constant, the Poisson's 
ratio matrix of transversely isotropic rock is substituted 
for the Poisson's ratio matrix of the three-dimensional 
creep equation expressed by the nonlinear damage creep 
model, so as to establish the fractional nonlinear dam-
age creep model for transversely isotropic rock. It can 
effectively describe the characteristics of primary creep, 
steady-state creep and accelerating creep of layered rock 
with different bedding angles.

3. Through the triaxial creep test for phyllite, it is found 
that the creep deformation and failure characteristics 
of rock with different bedding angles are significantly 
different. When θ = 0°, the rock is subjected to com-
bined tensile–shear failure through bedding and paral-
lel bedding planes, with moderate deformation and the 
latest acceleration of creep. When θ = 45°, the shear slip 
failure of the rock along the bedding plane leads to the 
largest deformation and the earliest accelerating creep. 
When θ = 90°, the rock is subjected to splitting tensile 
failure parallel to bedding plane, with the smallest defor-
mation and earlier accelerating creep time.

4. According to the experimental data, the parameters of 
the fractional nonlinear damage creep model are identi-
fied by Universal Global Optimization. By comparing 
the experimental data with the calculation curve, it is 
shown that the calculation curves are highly consist-
ent with the experimental data under different bedding 
angles, load levels and creep stages. Compared with the 
Nishihara model and the modified Nishihara model, the 
fractional nonlinear damage creep model established in 
this paper can better describe the creep and nonlinear 
accelerating creep process under high stress conditions, 
and the fitting effect is good, which indicates that the 
model is accurate and reasonable. In addition, the creep 
model in this paper can also determine the time of accel-
erating creep.
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