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Abstract
This research proposes a model for early prediction of collapse incidents in rocks during tunnel boring machine (TBM) 
operation utilizing TBM and geological survey data. Uncertainties associated with tunnel geology can significantly hamper 
tunneling progress. So far, various research works have tried to reduce such uncertainties by predicting the geological con-
dition during tunnel excavation. However, specific tunneling responses caused by adverse geology are still poorly studied. 
In rocks, adverse geology such as karstic caves and fault zones can cause tunnel boundary collapse, a detrimental tunneling 
response causing unexpected interruptions and casualties. To identify and predict the potential collapse of TBM tunnels 
in rocks, three machine learning (ML) classifiers are used, namely: (1) multilayer perceptron, (2) support vector machine, 
and (3) random forest. The ML algorithms are trained and validated using data on collapse incidents in a water convey-
ance tunneling project in China. The prediction accuracy of the proposed model reached 98% for training data and 97% for 
validation data. Furthermore, the model can identify an “Influence Zone” for a collapse incident. A unique contribution of 
this research is that the “Influence Zone” enables the model to predict an impending tunnel collapse and the extent of that 
collapsed segment ahead of the excavation. Finally, to gain better insight into the ML-based predictions, the relationships 
between TBM-related features and tunnel geology are carefully analyzed.

Highlights

•	 Machine learning classifiers can detect a zone of influence for approaching ground collapse during tunnel excavations 
through disturbed rock.

•	 The zone of influence is found to be proportional to the continuation length of the collapsing ground.
•	 Cutterhead rotating speed of tunnel boring machine and rock mass ranks are the two most important indicators for col-

lapsing ground conditions.

Keywords  Tunnel boring machine · Operational parameters · Machine learning · Adverse geology · Collapse · Influence 
zone

1  Introduction

Geological uncertainties experienced during a tunneling 
project can pose severe threats to the construction progress 
by causing operational delay, casualties, cost overrun, etc. 
(Delisio and Zhao 2014; Li et al. 2017; Macias et al. 2014; 

Zhu et al. 2021). There is a financial limitation for conduct-
ing geological/geotechnical tests for a tunneling project. 
Therefore, the geological survey data collected before the 
tunnel construction are often insufficient when a tunnel 
boring machine operates through an adverse geologic con-
dition. At the same time, geological characterization tech-
niques such as seismic reflection, 3D polarization, resistivity 
method, electromagnetic method, etc. are often installed to 
get early warning on possible detrimental conditions ahead 
of the TBM (Alimoradi et al. 2008; Li et al. 2017, 2018; 
Mooney et al. 2012; Wang et al. 2019a, b). However, these 
monitoring systems require additional time, costing, and 
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maintenance for the tunneling operation. Therefore, recent 
research focused on using operational parameters recorded 
by the TBM data acquisition system to predict the geologic 
condition ahead of the tunnel face (Exadaktylos et al. 2008; 
Jung et al. 2019; Liu et al. 2019; Yamamoto et al. 2003).

TBM data acquisition system includes multiple sensors 
to collect data with high frequency during the tunneling 
operation (Girmscheid and Schexnayder 2003; Moreno et al. 
2015). Various sensors provide an extensive operational 
database suitable for performing machine learning and sta-
tistical analysis (Sheil et al. 2020). These data represent the 
interaction of the TBM with the excavated ground. Previous 
research works attempted to utilize the TBM collected data 
and its interaction with the surrounding ground to ensure 
better TBM operation and performance (Benato and Oreste 
2015; Chen et al. 2017; Gao et al. 2019; Gong et al. 2021; 
Gong and Zhao 2009; Hassanpour et al. 2011;  Khademi 
Hamidi et al. 2010; Salimi et al. 2016, 2017; Sapigni et al. 
2002; Sun et al. 2018; Yin et al. 2014).

Several researchers have developed prediction models 
based on statistical and machine learning methods to deal 
with the uncertainties of the ground conditions and response 
by utilizing the TBM operational data. Jung et al. (2019) 
used artificial neural network (ANN) with Levenberg–Mar-
quardt (L–M) minimization of back-propagation error to 
predict mixed face ground condition one ring ahead of the 
tunnel face using TBM data on torque (T), thrust (F), and 
penetration rate (P). The ANN algorithm used data from 
different tunneling projects with ground conditions vary-
ing from soft soil to hard rock. Zhang et al. (2019) used 
TBM operational data of four channels, namely, torque (T), 
thrust (F), cutterhead rotation (R), and advance rate (P), to 
predict rock mass type of the surrounding ground with ML 
classification algorithms (support vector machine, k nearest 
neighbor, random forest). Liu et al. (2020) used an ensem-
ble learning model based on classification and regression 
tree and the AdaBoost algorithm (Géron 2019) for real-time 
determination of Chinese hydropower class (HC) of the 
surrounding rock using TBM operational and performance 
parameters. Mito et al. (2003) used drill logging and TBM 
operational data to assess the geological conditions of the 
surrounding ground ahead of the tunnel face using geosta-
tistical techniques.

Despite the attempts made so far, detailed studies are still 
required to characterize different tunneling responses caused 
by various adverse geologic conditions in rock strata. Poten-
tial adverse geologies encountered during tunneling opera-
tion in rock strata include karst caves, faults or fractured 
zones, rockburst, blocky rock, etc. (Jeong et al. 2018; Macias 
et al. 2014; Rostami 2016). Rock tunneling in karst or fault 
fractured zones can cause detrimental tunneling responses, 
such as TBM blockage, tunnel boundary collapse, water 
inrush, etc. (Huang et al. 2018; Parise et al. 2008).

Tunnel boundary collapse is defined as the disintegra-
tion of collapsing blocks from the excavated tunnel bound-
ary due to the presence of weak or unstable rock caused 
by fault zones or karstic intrusions encountered along the 
tunnel alignment (Fraldi and Guarracino 2009, 2010; Wang 
et al. 2019a, b; Wang et al. 2017; Yang et al. 2017). Several 
research methods have been made to understand the col-
lapse mechanism in disturbed rock conditions and predict 
them during tunnel operation. Huang et al. (2020) utilized an 
analytical approach to predict collapse region during a deep 
highway tunnel excavation describing the conditions indu-
cive of rock mass collapse having a karstic cave above the 
excavated tunnel boundary. An upper bound theorem of limit 
analysis was utilized to develop an analytical expression 
of the surface of the collapsing block near the area of the 
karstic intrusion. This method depends on the knowledge of 
the exact location of the karstic cave concerning the tunnel 
excavation boundary, the local rock mass properties, such 
as compressive and tensile strength parameters, unit weight, 
material constants for the Hoek and Brown failure criterion, 
etc. The approach utilized available rock mass properties 
local to the vicinity of the karstic cave to represent the actual 
rock mass condition of that region. However, abundant data 
on rock mass properties would require frequent geological 
and geotechnical testing and investigation along the tunnel 
alignment, which is impractical for tunneling projects.

In addition, information gathered by geophysical sen-
sors is needed to prospect karstic cave locations along the 
tunnel alignment, which incurs additional time and cost. 
Moreover, this method mainly focuses on investigating the 
collapse mechanism's nature during the excavation rather 
than predicting collapses in advance during run-time. The 
latter could potentially benefit the tunneling crew in taking 
proper countermeasures in advance, thus avoiding unneces-
sary delay and economic losses. Xue et al. (2020) utilized 
an analytical hierarchy-process entropy method and fuzzy 
set theory to establish collapse risk indicators for soft rock 
tunnels based on eight selected influencing factors.

The evaluation model developed can evaluate the col-
lapse risk grade defined by the range of deformation of the 
support structure during tunnel construction in soft rock 
conditions. However, this analysis method is also depend-
ent on the geological and geophysical survey, and testing 
data as this method can only predict the risk grades of a 
tunnel section when these data are available. Moreover, 
the model is established and validated utilizing very few 
data points, making it more susceptible to outliers or excep-
tional conditions during tunnel construction. On the other 
hand, a data-driven prediction model established and vali-
dated on real-time data collected by the TBM sensors at a 
high frequency can be more robust and reliable. Chen et al. 
(2021) adopted such an approach, where a time-series fore-
casting method was combined with a deep belief network 
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to establish a neural network prediction model predicting the 
value of a parameter named as drilling efficiency index calculated 
utilizing TBM operational parameters. The predicted index can 
identify collapsing ground based on its deviation from the actual 
value. However, in a practical scenario, forecasting an upcom-
ing collapse incident ahead of the existing tunnel face and its 
entire length will be more beneficial for the tunnel operator to 
take necessary precautions and preventative measures. Guo et 
el. (2022) developed a three-stage method for forecasting tunnel 
ground collapse during TBM excavation by training deep learn-
ing algorithms and LSTM. The developed method can success-
fully forecast collapse ground condition based on anomalies in 
accuracy measure of predicted torque and thrust by the LSTM 
method and associated rock grade. Nevertheless, as opposed to 
a time series forecasting method, such as LSTM, a simple clas-
sification method is less time-consuming and independent of 
immediate previous measurements to make a prediction. There-
fore, this research aims to forecast collapse incidents during TBM 
tunneling in adverse rock conditions while providing a simple 
method to estimate the intensity of that upcoming collapse. The 
study used data from a water conveyance tunneling project with 
several collapse incidents, and thus developed prediction models 
for the early prediction of tunnel boundary collapses by training 
state-of-the-art machine learning classifiers. The proposed model 
can predict an upcoming collapse incident during tunneling and 
the extent of the collapsing ground ahead of the tunnel excava-
tion. Considering the level of uncertainties the proposed model 
can resolve, it is hoped that significant progress can be made 
for TBM tunneling through difficult ground conditions with the 
potential of frequent collapse incidents.

Following the description of the tunneling project used in 
this study, an “Influence Zone” for collapses, which provides 
new insight regarding ground conditions that lead to collapse, 
is described. Data pre-processing techniques are used to remove 
spurious data points, ensuring optimal utilization of TBM data 
for the input to the ML model. Three ML classifiers are trained 
to build prediction models consisting of multilayer perceptron, 
support vector machine, and random forest. Model predictions 
are tested and validated against the field data. Also, multiple ML 
models are trained and tested to verify and propose the optimal 
length of the “Influence Zone”. Finally, a detailed analysis of the 
TBM operational data is conducted to gain better insight into 
their variations in response to tunnel geology to reduce the black-
box nature of the ML-based models.

2 � Tunnel Project Overview and Data 
Description

This section provides an overview of the tunneling project 
and a detailed description of the geological and the TBM 
data used in the study.

2.1 � Geology

This study utilized data from a water conveyance tunneling 
project near Jilin Province, China. This project has a total 
tunnel length of 69.89 km for the first three sections, starting 
from the Fengman reservoir near Songhua River and running 
until the Shuangyang reservoir near the Yinma river. The 
tunnel was excavated by simultaneous TBM and drill-and-
blast (D&B) methods. The D&B method was applied, where 
TBM could not operate due to disturbed ground conditions. 
This study collected data from the third tunneling section, 
representing the most challenging construction segment due 
to complex geologic conditions. This tunnel segment has a 
total length of about 20 km (from chainage 71 + 476 m to 
51 + 705 m), in which 88% of excavation was done with an 
open mode gripper TBM manufactured by the China Rail-
way Engineering Equipment Group Co. Ltd (CREC). The 
rest of the excavation was performed with the D&B method.

The primary geology in this segment includes limestone, 
granite, tuff, and diorite. Among these rock types, limestone 
and granite are the most dominant lithologies. The detailed 
description of the excavation method and lithology along 
the tunneling alignment is shown in Table 1. The average 
overburden depth at this tunnel section is about 100 m. Fig-
ure 1 shows the longitudinal geologic profile of this tunnel 
section. The tunneling operation of this section continued 
for 803 days, including 76 days of construction shutdown.

The geological profile was characterized and recorded 
on-site during the excavation process (Jing et al. 2019). The 
surrounding rock mass was classified based on the HC (Chi-
nese Hydropower Class) System, which divides rock masses 
into five classes, I to V (Liu et al. 2017). Class I represents 
the strongest rock mass in the HC system, and Class V the 
weakest. Several rock characteristics are correlated with this 
classification system, including the uniaxial compressive 
strength, fracture intensity, discontinuity, groundwater con-
dition, etc. In the present study, the surrounding rock mass of 
the tunnel includes Class II to Class V, among which Class 
III is the dominant rock mass type (Table 2). The rock mass 
uniaxial compressive strength varies from 38 to 95 MPa, and 

Table 1   Information about lithology of tunnel alignment

Lithology Chainage (m) Total length (m) Percentage 
(%)

Start End TBM D&B

Limestone 71 + 476 63 + 266 8210 39 2
Diorite 63 + 266 62 + 978 288 1 0
Tuff 62 + 978 58 + 254 4724 15 10
Granite 58 + 254 51 + 705 6459 33 0
Summary 19,681 88 12



5908	 S. Sarna et al.

1 3

the volumetric joint count ranges from 3.8 to 25.68 per cubic 
meter (Zhu et al. 2021).

The tunneling project suffered frequent collapses caused 
by faulted and fractured zones and karstic caves. Most of 
these collapses are located at the tail of the TBM shield 
(Chen et al. 2021). There are 18 records of such locations, 
shown in Table 3.

2.2 � TBM Description

The TBM used in this project is an open mode gripper TBM 
with a 7.93 m face diameter and 8.03 m excavation diameter. 
A detailed description of the TBM specifications is provided 
in Table 4.

The data-driven approach of modern-day TBMs relies on 
a central data acquisition and monitoring system controlled 
by a programmable logic controller (PLC) (Gong et al. 2021; 
Mooney et al. 2012). This data acquisition system collects 
real-time data on various TBM operational parameters, such 
as cutterhead rotation, torque, axial force, and displacement 
of the thrust cylinders, which are eventually used to calcu-
late the total thrust force and an advance rate of the TBM. 
Figure 2 shows a schematic diagram of an open mode grip-
per TBM with some sensor locations. These sensors are 
connected to the PLC system for collecting the operational 
parameters mentioned above. The PLC system can trans-
fer these data through a communication interface provided 
by the equipment manufacturer. Hence, the parameters are 
accessible to the monitors of the TBM control cabin, where 
the operator can visually inspect the data to check against 
any unusual activity and initiate necessary action. These data 
are also stored in real-time in local and/or remote databases. 
For the current project, the TBM data acquisition system 

Fig. 1   Longitudinal geologic 
profile of tunnel Sect. 3 (Chen 
et al. 2021)

Scale: 0   1000m

71+476                                             63+266     62+978               58+254                                           51+705

Chainage (m)

Table 2   Rock mass 
classification according to the 
HC system with percentages

Rock mass 
class

Percentage of 
tunnel length 
(%)

II 5.6
III 75.1
IV 15.4
V 3.9

Table 3   Information on collapse locations

Lithology No Start Chainage (m) End Chainage (m) Collapse 
length 
(m)

Limestone 1 70 + 817 70 + 800 17
2 70 + 792 70 + 768 24
3 70 + 396 70 + 380 16
4 70 + 348 70 + 335 13
5 66 + 329 66 + 307 22
6 66 + 290 66 + 274 16
7 66 + 243 66 + 217 26

Tuff 8 60 + 334 60 + 328 6
Granite 9 56 + 602 56 + 597 5

10 56 + 574 56 + 556 18
11 56 + 495 56 + 474 21
12 56 + 313 56 + 303 10
13 56 + 291 56 + 281 10
14 56 + 241 56 + 231 10
15 55 + 003 54 + 963 40
16 54 + 954 54 + 944 10
17 54 + 900 54 + 847 53
18 54 + 216 54 + 170 46

Table 4   TBM specifications

Parameter Value

Type Open Mode Gripper TBM
Excavation diameter 8.03 m
Cutterhead diameter 7.93 m
Nominal disc-cutter spacing 89 mm
Cutterhead driving power 3500 kW
Maximum thrust of cutterhead 23,260 kN
Nominal torque of cutterhead 8410kNm @ 3.97 rpm
Maximum rotational speed of cutterhead 7.6 rpm
Maximum advancing speed 120 mm/min
TBM weight 180 t
Thrust cylinder stroke 1800 mm
Number of cutters on cutterhead 56 (48 face cutters (19 in),

8 edge cutters (17 in)
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collected data at a 1 Hz frequency. Figure 3 displays the raw 
TBM data as visualized in the control cabin.

The TBM excavation was performed in tunneling cycles. 
Each cycle is expected to excavate approximately equal to 
the TBM thrust cylinder stroke, which is 1.8 m. However, 
the surrounding ground condition affects the TBM perfor-
mance, resulting in different tunneling cycle lengths (vary-
ing from 0.5 to 1.8 m). During excavation, the TBM data 
acquisition system collected data automatically from 199 
sensors with a 1 Hz frequency, which resulted in a data 

volume of terabytes. These 199 sensors primarily represent 
TBM operational parameters.

A typical tunneling cycle includes four segments: (1) 
shutdown, (2) free rotation, (3) ascending, and (4) steady 
operation. Initially, the TBM starts with the free rotating 
segment, with the TBM rotating freely before hitting the 
ground. When the TBM hits the ground, the operational 
parameters gradually increase in the ascending or rising 
segment. Ultimately, the TBM excavation operation starts 
to stabilize as the fluctuation of the operational param-
eters reduces, which is regarded as the stable segment. The 

Cutterhead

Main DriveControl Cabin

PLC

Operator Input

123

Thrust Cylinder

Gripper

Collected and Calculated responses:
Torque, Thrust, Cutterhead Revolution, 

Penetration Rate etc.

Visual Monitoring

1 2 3
Cutterhead torque and
rotating speed

Displacement of thrust 
cylinders Thrust of cylinders

Fig. 2   Schematic diagram of gripper TBM with sensors’ arrangement
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TBM operates in the stable mode for a while performing 
the main excavation operation. Finally, the TBM stops for 
some time, called the shutdown segment, before starting 

the next tunneling cycle. A typical cycle is shown in Fig. 4 
with four segments for the above-mentioned operational 
parameters.

Fig. 3   Examples of raw TBM data

Fig. 4   Typical tunneling cycle showing four TBM operational parameters with time at different stages: (1) shutdown, (2) free rotating, (3) 
ascending, (4) stable operation segment
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3 � Influence Zone for Tunnel Collapse

In the case of a homogeneous rock mass, the TBM excava-
tion process continues regularly without significant devia-
tion in the responses of the TBM. However, when excavating 
through an adverse geologic condition, the TBM operates 
irregularly with frequent interruptions, such as machine 
blockage or water inrush, requiring unplanned machine 
shutdown and repair. These situations are unwanted for 
the TBM operator. In addition, the TBM operator has lim-
ited knowledge of the ground conditions that the TBM is 
excavating, as it is very challenging to predict the ground 
condition ahead of the TBM location. Therefore, an early 
warning for excavating through such ground conditions can 
help the construction team take better precautions. Hence, 
understanding the nature of the ground, while the TBM is 
operating is beneficial.

The nature of the ground surrounding the adverse geo-
logic condition can help the TBM operator anticipate the 
proximity of a potential difficult tunnel section. Any dis-
turbance in a homogeneous ground condition will have 
some boundary effects on its surrounding, affecting the 
ground resistance experienced during tunnel excavation. 
Hence, it is assumed that the ground surrounding the col-
lapse locations (representing adverse geologic conditions, 
e.g., karstic cave, fault fracture zone) will behave differ-
ently than the normal ground condition, while TBM exca-
vation continues. These ground locations are assumed as 
“Influence Zone.” This study focuses on identifying these 
locations from the normal ground conditions during TBM 
operation. Successful identification of these locations can 
warn the TBM driver of any approaching collapse ground 
while excavating.

The tunneling project utilized in this research has 18 
different collapse locations with varying lengths of col-
lapse experienced while operating the TBM (Table 3). It 
is commonly understood that these collapses are different 
in their level of influence on the adjacent ground. A longer 
collapse is expected to have a longer “Influence Zone” 
than a shorter length collapse. Hence, this study assumes 
two “Influence Zone” locations for each “Collapse Zone” 
location. One location is before the “Collapse Zone,” and 
another is after the “Collapse Zone.” The lengths of these 
“Influence Zone” locations are decided according to the 
lengths of their corresponding “Collapse Zone,” as shown 
in Fig. 5. For each “Collapse Zone” with length L, two 
“Influence Zones” having L/4 length each are assumed. 
The rest of the tunneling alignment is considered a “Nor-
mal Zone.” Later, machine learning classifiers are trained 
to categorize these three types of ground conditions.

4 � Data Pre‑processing

This section describes the pre-processing method of raw 
TBM data and features used for ML prediction models.

4.1 � TBM Data

The raw TBM data collected for each tunneling cycle 
include the shutdown, free rotation, ascending, and stable 
segments (Fig. 2). Among these segments, the stable seg-
ment represents the main excavation operation. Hence, only 
the stable segments’ data are collected from the tunneling 
cycles during the pre-processing of raw TBM data. Another 
source of data impurity is outliers. The outliers are sourced 
by the sudden jump of the sensors collected data due to 
sudden machine malfunction or other unforeseen reasons. 

Fig. 5   “Influence Zone” before and after “Collapse Zone”
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They are not representative of the surrounding condition and 
deserve to be removed from the database. This task applies 
the “three-sigma truncation rule” to the stable segment data. 
This method removes all the data farther apart from the three 
standard deviations of the mean of stable segment data of 
a tunneling cycle. These processes are illustrated in Fig. 6 
for the advancing speed, P (mm/min) of a typical tunneling 
cycle.

The TBM sensors’ collected data are preserved in original 
form after the above-mentioned pre-processing mechanism 
to avoid loss of information. Compressing the TBM data 
over the tunneling cycles (getting a single value, e.g., mean 
of a parameter for each cycle) is less representative of the 

ground condition along the tunnel alignment. Data compres-
sion is also less beneficial when the focus is required for 
specific locations which are scarce in number. In this study, 
very few collapse locations are recorded, comprising 363 m 
of tunneling operation. In this particular case, keeping the 
original TBM data without any compression benefits two 
ways: (1) sufficient data points are achieved representing 
the collapse locations, (2) optimal utilization of the high-
frequency data collection practice of the TBM data acquisi-
tion system is ensured.

4.2 � Feature Selection and Description

As mentioned in Sect. 1, several researchers (Jung et al. 
2019; Liu et el. 2019; Zhang et al. 2019; Liu et al. 2020, 
Chen et al. 2021) have successfully utilized four TBM 
operational parameters to detect the surrounding ground 
condition of the TBM, namely, cutterhead torque, T (kN-
m), cutterhead rotating speed, R (revolution per minute or 
rpm), advancing speed, P (mm/min), and thrust or propul-
sion, F (kN), as well as three TBM performance param-
eters (Liu et al. 2020; Yamamoto et al. 2003). Among 
them, R and P are driver operating parameters (Guo et al. 
2021). There are three major factors that come into play 
while TBM driving: the tunnel geology, the human deci-
sion, and the machine response. The R and P parameters 
are affected by all three of them, whereas T and F can 
represent machine–ground interaction only. Although, the 
human factor can’t be removed from R and P, they still 
include valuable information about the ground condition 
due to their sense of machine–ground interaction. Hence, 
in this study, these parameters are considered as adequate 
to detect the collapse ground condition and thus selected 
as input features for the ML prediction models. The three 
performance parameters are named as the Field Penetra-
tion Index (FPI) (kN.rev/mm), Torque Penetration Index 
(TPI) (kN.rev), and Specific Energy (ES) (kN.m/m3 or kJ/
m3), which are defined as follows:

where A is the cross-sectional area of the TBM cutting face; 
FPI and TPI indicate the thrust (F) per cutter and torque 
(T) per cutter, respectively, for unit penetration per revo-
lution; and ES indicates the energy required to excavate a 
unit volume (m3) of the rock mass. Besides the TBM-related 

(1)FPI =
F × R

no. of cutters × P

(2)TPI =
T × R

no. of cutters × P

(3)ES =
T × 2�R × 10

3

A × P
+

F

A

Fig. 6   Pre-processing of TBM data: (a) raw TBM data; (b) stable 
TBM data after removing shutdown (a (1)), free rotating and ascend-
ing segments (a (2)), and outliers with three-sigma truncations
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features, Rock Mass Rank (RMr) by the HC system is also 
incorporated as a geological feature variable for the ML pre-
diction models. To mention, the RMr values were assigned 

to uniform geological sections along the tunnel alignment 
using on-site logging data during TBM excavation. This fea-
ture indicates rock mass quality and is supposed to have a 

Fig. 7   Histogram plots with data statistics of the TBM-related features
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high potential in detecting collapse conditions of the ground. 
In total, eight input feature variables are considered for the 
classification task. Figure 7 shows the histogram plots of the 
TBM-related features for three standard deviations on either 
side of the mean, along with density distribution curves and 
some data statistics, which provide insight into the variabil-
ity and distribution of these features. Based on the exist-
ing literature and expert judgment, the selected parameters 
were considered sufficient to predict the collapse ground 
condition. Therefore, no additional feature selection method 
was applied to the TBM database. Also, the number of fea-
tures utilized did not challenge the computational or stor-
age capacity, hence considered without any dimensionality 
reduction to the data set.

5 � Machine Learning Classifiers to Build 
Prediction Model

5.1 � Data Set

As mentioned in Sect. 3 of this paper, this study aims to 
distinguish between the “Collapse Zone” and “Influence 
Zone” of the tunnel alignment from the “Normal Zone,” 
which will benefit the TBM pilot to mitigate the upcoming 
hazards by taking early informed decisions during exca-
vation operation. The data set used in this study includes 
nine feature variables in which eight are input feature vari-
ables (T, R, P, F, FPI, TPI, ES, and RMr). One is output/
target feature variable named as ‘label.’ Among the input 
features, seven (T, R, P, F, FPI, TPI, ES) are related to the 
operational parameters collected by the TBM data acqui-
sition system. The RMr is obtained by on-site geological 
survey. The input features are continuous variables (except 
RMr), and the output feature is a categorical variable. To 
mention, RMr values are assigned to representative tunnel 
sections (Liu et al. 2017), whereas the TBM data used in 
this study are in the form of direct sensor measurements in 
seconds. Hence, all the TBM data that are collected within 
the range of chainage location of such a tunnel section are 
considered to have that section’s RMr.

There are three labels or classes, namely, ‘Normal,’ 
‘Collapse,’ and ‘Influence Zone’ under the target feature. 
These classes are assigned to each data instance according 
to their chainage location (Fig. 5). In this study, machine 
learning classification algorithms are trained, where the 
data instances are independent of each other. However, 
the problem design expects the predicted classes to come 
sequentially as ‘Normal’ ground, ‘Influence Zone’, and 
‘Collapse’ ground condition in the field during tunneling 
operation while approaching a collapsing ground. Hence, 
the prediction to be made by the input parameters col-
lected at (n + 1)th second is technically independent from 

the prediction made by the input parameters collected at 
nth second. However, the predicted classes are expected to 
follow the spatial sequence mentioned above while tun-
neling, as the labels are assigned by the problem design 
following the field experience. For the ‘Normal’ class data, 
only a portion of the total available data is considered 
to avoid extreme data imbalance in the data set (as most 
of the tunneling alignment is represented by the “Normal 
Zone”). Hence, we collected a representative portion of 
the available ‘Normal’ class data by maintaining the over-
all ratio of four RMr (Class II–Class V) ranks available 
along the whole tunneling alignment (Table 2). Hence, 
the data set is a 9 × 264,666 matrix with nine columns and 
264,666 rows or instances. The data are distributed as fol-
lows: ‘Normal’ instances: 104,657; ‘Collapse’ instances: 
77,706; ‘Influence Zone’ instances: 82,303). This data set 
is used to train and test three ML classifiers for the multi-
class classification task. The training data set is prepared 
by a random split of 70% of the total data set, and the 
rest of the 30% is preserved as a test data set (train set: 
9 × 185,266; test set: 9 × 79,400).

5.2 � Machine Learning Classifiers

The purpose of an ML classifier is to classify data instances 
into a finite set of categories (Shalev-Shwartz and Ben-
David 2014). In this research, we adopted three different 
ML classifiers, namely: support vector machine (SVM), 
multilayer perceptron (MLP), and random forest (RF), for 
classifying the labels of the target feature. MLP and RF are 
inherently multiclass classifiers, whereas SVM is a strictly 
binary classifier (One vs. One) (Géron 2019; Pedregosa et al. 
2011). These classifiers are chosen for their robustness and 
outstanding performance for classification tasks. They are 
described briefly in the following sub-sections.

5.2.1 � Multilayer Perceptron Classifier (MLP)

The multilayer perceptron is a neural network-based clas-
sification algorithm. Artificial neural networks can handle 
complex nonlinear data patterns and trends (Géron 2019). It 
is shown that a two-layer back-propagation neural network 
with sufficient hidden neurons is a universal approximator 
(Hornik et al. 1989). The network of an MLP Classifier can 
be described as a structure of multiple layers of neurons. 
The connections between the neurons of the layers pass the 
output of a neuron of the previous layer to the neuron's input 
to the next layer (Shalev-Shwartz and Ben-David 2014). Ini-
tially, arbitrary weights are assigned to all the connections 
for each neuron of a hidden layer to get a weighted sum of 
input features. This weighted sum is then passed through an 
activation function (e.g., logistic, ReLU, tanh, etc.) (Géron 
2019) and used as the input for the neurons of the next layer. 
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Finally, the output layer provides an output compared to the 
target output to estimate error. The error gradients of multi-
ple iterations are then backpropagated to the previous layers 
to update the weights using gradient descent to reduce the 
errors. The activation function allows the gradient descent 
to get derivatives and progress with each iteration. For clas-
sification tasks between multiple (more than two) exclusive 
classes, the activation function used for the output layer is 
soft-max or multinomial logistic (Géron 2019).

5.2.2 � Support Vector Machine (SVM)

Support vector machine is a very powerful and versatile 
classification algorithm capable of performing nonlinear 
classification (Géron 2019). It is suitable for a small to 
medium size data set with high dimensionality. SVM has 
the advantage of increasing class separation, which reduces 
the expected prediction error (Xia 2020). The SVM classi-
fier aims to identify decision boundaries between classes 
that satisfy the “maximum margin.” This margin is defined 
by the distance of the boundaries from the closest training 
instances called the “support vectors.” A “hard margin” is 
applied in linearly separable classes without allowing any 
data instance inside the margin. However, a “soft margin,” 
more flexible and less sensitive towards outliers, is applied 
in a nonlinear data set. The application of “soft margin” is 
performed using a regularization hyperparameter C. In a 
nonlinear data set, the margin optimization is performed in 
a higher dimensional space instead of the original feature 
space by applying basis functions to get a linear separating 
hyperplane. The process is performed by initially using basis 
functions to the feature space and then optimizing, called 
the “kernel trick,” to avoid computational complexity. Thus, 
SVM can adopt different kernels (linear, ploy, radial basis 
function or rbf, etc.) (Géron 2019) to find the best margin 
and prediction for a classification problem (Kelleher et al. 
2020; Wu et al. 2008).

5.2.3 � Random Forest (RF)

Random forest is an ensemble learning algorithm built with 
multiple decision trees. The main benefits of using RF clas-
sifier are: (i) very fast with a large data set of high dimen-
sionality, (ii) robust to multicollinearity, noises, and outliers, 
(iii) less likely to overfit on training data set (better generali-
zation than a single decision tree), (iv) very high accuracy 
(Breiman 2001; Zhu et al. 2021). RF collects predictions 
from multiple decision trees trained with different random 
sample subsets prepared via bagging and random feature 
subsets. These predictions are averaged, and finally, the 
class with the highest average probability score is assigned 
(Ellis et al. 2014). CART (Classification and Regression 
Tree) algorithm is used to optimize the cost function of 

each decision tree, which recursively runs till the maximum 
depth or purity condition is reached. RF searches for the 
best feature among a random subset of features instead of 
searching for the very best feature that increases the trees' 
randomness and diversity. This provides a lower variance 
for a higher bias, thus yielding an overall better prediction 
model (Géron 2019).

While training the ML classifiers, the grid search method 
was adopted to select the best hyperparameter combination 
for each algorithm. The grid search method performs a 
search for the hyperparameter values for the best prediction 
on the trained data within a defined hyperparameter space 
(Pedregosa et al. 2011). The hyperparameter tuning can also 
address the overfitting issue in the model, if any, so that the 
model can perform well on both the “train set” and “test 
set” data. For the MLP classifier, the combination of hidden 
layers, nodes, activation function, and solver is considered 
for hyperparameter tuning, which is essential to decide the 
classifier's performance. For SVM, the regularization hyper-
parameter C, kernel, γ (for rbf kernel) are considered for grid 
search tuning. Finally, for RF, three important hyperparam-
eters, namely: n_estimators, max_depth, and max_feature 
are tuned through grid search (Table 5).

5.3 � ML Classifier Performance Measure

As mentioned in Sect. 5.1, the data set is split into a “train 
set” and a “test set.” The ML classifiers are initially fitted 
on the “train set” by following the tenfold cross-validation 
method. Finally, the trained models made predictions on the 
“test set” to validate their performance. Thus, the models 
are initially trained on tenfolds or disjoint sets of equal size 
collected from the “train set” using a bootstrap method and 
utilizing nine of them to train and one to test. The process is 
repeated for all the ten folds or sets. The performance of a 
model trained by tenfold cross-validation is an average result 
of all the tenfolds representing the model’s performance 

Table 5   Hyperparameter selection through grid search

* rbf = radial basis function

Classifier Parameters Optional values Best Parameter

MLP Hidden layer size 1,2,3,4 3
Activation logistic, ReLU, tanh ReLU
Solver lbfgs, sgd, adam adam
Kernel rbf*, poly, linear rbf

SVM C 0.5, 1, 10 1
γ 0.01, 0.1, 1, 5 5
n_estimators 25, 50, 75, 100 50

RF max_depth 5, 10, 15, 20 15
max_features 2, 4, 6 4
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on the overall “train set.” Finally, these trained models are 
tested on the “test set” to perform their validation test.

The prediction results of the classifiers are shown in con-
fusion matrices. Three classes are predicted, so each con-
fusion matrix has three rows and three columns. The total 
count for each row indicates the “True class” of each of the 
three classes. The columns indicate the “Predicted class” by 
the ML classifiers. Thus, each matrix cell shows the count 
for its “True class” and “Predicted class.” All the “True pre-
dictions” (“True class” = “Predicted class”) are along the 
diagonal of the matrix, whereas all the “False predictions” 
(“True class” ≠ “Predicted class”) are shown off-diagonal. 
The detail is shown in Table 6.

The performances of the ML classifiers are measured in 
terms of performance metrics. The most popular performance 
metrics for ML classifiers are adopted, namely, Accuracy, Pre-
cision, Recall, and F-1 score (Giussani 2020;  Shalev-Shwartz 
and Ben-David 2014; Sokolova and Lapalme 2009). For a spe-
cific class, four types of predictions are possible. They are true 
positive (tp), true negative (tn), false positive (fp), and false 
negative (fn). Parameters tp and tn are all the true/correct pre-
dictions, and fp and fn are all the false/incorrect predictions by 
a classifier. Let us consider the class ‘Normal.’ If the classifier 
predicts a ‘Normal’ class as ‘Normal,’ it is a tp prediction for 
that class. If a ‘Collapse’ class appears and the classifier can 
identify that it is not a ‘Normal’ class (predicts either ‘Col-
lapse’ or ‘Influence Zone’), it is a tn prediction. However, if 
the classifier predicts a ‘Collapse’ or ‘Influence Zone’ class as 
a ‘Normal’ class, it is a fp prediction. Finally, if the classifier 

fails to classify a ‘Normal’ class as such (i.e., predicts either 
‘Collapse’ or ‘Influence Zone’), it is an fn prediction.

The performance metrics are defined based on these pre-
diction counts. If there are c number of classes to predict, the 
metrics can be expressed as follows:

In the above, Eq.  (5) and (7) calculate Precision and 
Recall of an individual class, respectively. Equations (4), 
(6), (8), and (9) calculate a macro average of the metrics 
(an average of the metric calculated for all the classes). The 
macro averaging method treats all the types equally irrespec-
tive of the class size (Sokolova and Lapalme 2009).

As we can observe from Eq. (4) to (9), Accuracy indi-
cates the average class fraction of ‘total correct predictions’ 
among the ‘total number of predictions.’ This metric pro-
vides an excellent indication of the overall performance of 
a classifier. Precision indicates the rate of ‘correct’ positive 
class predictions among all the positive predictions made (tp 
ratio among all the predicted p). At the same time, Recall 

(4)Accuracy =

∑c

i=1

tpi+tni

tpi+fni+fpi+tni

c

(5)Precision =
tpi

tpi + fpi
(i = 1, 2, 3,…… ., c)

(6)Precision (macro avg.) =

∑c

i=1

tpi

tpi+fpi

c

(7)Recall =
tpi

tpi + fni
(i = 1, 2, 3,…… ., c)

(8)Recall (macroavg.) =

∑c

i=1

tpi

tpi+fni

c

(9)

F1 − score =
2 × Precision (macro avg.) × Recall (macro avg.)

Precision (macro avg.) + Recall (macro avg.)

Table 6   Confusion matrix for a three class-classification

*  + ve = True predictions, -ve = False predictions

True class Predicted class

Influence zone Collapse Normal

Influence zone  + ve − ve − ve
Collapse − ve  + ve − ve
Normal − ve − ve  + ve

Fig. 8   Accuracy (%) and 
F1-score (%) for tenfold cross-
validation on “train set”
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indicates the rate of ‘correct’ positive predictions among all 
the positive predictions that could have been made (tp ratio 
among all the t). F1-score is a metric that calculates the 
mean of Precision and Recall in a harmonic manner, which 
can penalize any extreme value of either metric (Géron 
2019).

6 � Results and Analysis

6.1 � Classifier Performances

The Accuracy and F1-score of the three classifiers trained 
by tenfold cross-validation are displayed in Fig. 8. The 
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Fig. 9   Precision (%) values for tenfold cross validation
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Fig. 10   Recall (%) values for tenfold cross-validation
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Accuracy measures are almost identical for the different 
bootstrap samples within a classifier, indicating that the sam-
ples are almost similar and representative of the “train set” 
population. The Accuracy range for all the three classifiers is 
between 93 to 98%, indicating excellent overall performance. 
The F1-scores vary between 94 and 98% between classifiers 
for ten folds. The maximum Accuracy and F1-score on the 
“train set” were achieved by the RF classifier.

The Precision and Recall measures on the tenfold cross-
validation for the three classes are shown in Figs. 9 and 
10, respectively. The Precision measures for all the classes 
and classifiers vary between 88 to 99%, indicating overall 
excellent positive prediction accuracy. It is observed that 
the ‘Normal’ class has the maximum Precision and Recall 
values for all the three classifiers for individual classes. On 
the other hand, ‘Collapse’ has less Precision but more Recall 
than ‘Influence Zone’ for most of the folds of the classi-
fiers. Although it is not desirable to have a lower Precision 
for ‘Collapse,’ falsely classifying ‘Collapse’ as ‘Influence 
Zone’ is less harmful than classifying that as ‘Normal’. It is 
expected that the ‘Normal’ class will be the best-predicted 
class as it has an abundance of data along the tunneling 
alignment, making it more representative of the popula-
tion. The Precision and Recall measures for all the classes 
are more than 85%, ensuring effectiveness in classifying 
each class. For the RF classifier, the Precision and Recall 
measures for the three classes are at least 95% and 96%, 
respectively.

The prediction results on the “test set” are shown in 
Tables 7 and 8. Table 7 shows the results in confusion 
matrices for the three classifiers. The high diagonal val-
ues indicate the excellent performances of the classifiers 
on the “test set.” Table 7 shows that the RF classifier pro-
vides an Accuracy of 97% on the “test set,” which indicates 

outstanding performance (almost equal to the “train set” 
Accuracy). Overall, no overfitting issue was observed for 
training and testing the three classifiers (e.g., the difference 
in Accuracy between “train set” and “test set” was mini-
mal). It can be seen that the number of ‘Influence Zone’ 

Table 7   Confusion matrices on “test set”

Classifier True class Predicted class Support

Influence 
Zone

Collapse Normal

SVM Influence 
Zone

22,536 1820 363 24,719

Collapse 1279 21,715 282 23,276
Normal 238 486 30,681 31,405
Influence 

Zone
23,134 1363 222 24,719

MLP Collapse 1673 21,237 366 23,276
Normal 419 469 30,517 31,405
Influence 

Zone
23,674 930 115 24,719

RF Collapse 466 22,586 224 23,276
Normal 111 361 30,933 31,405

Table 8   Prediction results on “test set”

Classifier Class Precision Recall F1-score Accuracy

SVM Influence Zone 0.94 0.91 0.92
Collapse 0.9 0.93 0.92 0.94
Normal 0.98 0.98 0.98
Influence Zone 0.92 0.94 0.93

MLP Collapse 0.92 0.91 0.92 0.94
Normal 0.98 0.97 0.98
Influence Zone 0.98 0.96 0.97

RF Collapse 0.95 0.97 0.96 0.97
Normal 0.99 0.98 0.99
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Fig. 11   Machine learning prediction results for “train set” and “test 
set” data
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predicted as ‘Collapse’ is higher than vice versa in the case 
of SVM and RF. However, MLP performs differently. Con-
sequently, for ‘Influence Zone,’ the Precision is higher than 
‘Collapse’ for SVM and RF but equal for MLP. Similarly, 
‘Collapse’ has higher Recall than ‘Influence Zone' for SVM 
and RF but lower Recall for MLP. Overall, RF outperforms 
the other classifiers in all the performance metrics for the 
three classes. The comparison of the performance metrics of 
the classifiers on the “train set” and “test set” are shown in 
Fig. 11. Hence, based on the overall assessment of the three 
classifiers, RF is proposed for the prediction model.

While choosing a machine learning classifier, the No-
Free-Lunch theorem (Wolpert 1996) states that one cannot 
prefer a specific classifier over the others without making 
assumptions, and the only way to know which one will work 
best is to evaluate them all. However, Fernández-Delgado 
et al. (2014) provided the results of classification tasks per-
formed over diverse types of data sets by 179 different clas-
sifiers. They showed that the classifier families belonging 
to RF, SVM, and MLP perform better than the others in the 
majority of the scenarios. They also showed that RF typi-
cally performs the best among these three families, followed 
by SVM for most of the data types. In the current study, RF 
and MLP classifiers performed well accordingly, which was 
not the case for SVM.

In this study, the data set utilized is nonlinear, scattered, 
and prone to noise as the TBM has some vibration accom-
panying the variability in the ground condition. SVM per-
forms better with a large number of features having fewer 
data instances. However, in the case of many data instances, 
the Gaussian rbf kernel of SVM, which deals with nonlin-
ear classification problems by adding similarity features, 
becomes computationally expensive (Géron 2019). In addi-
tion, rbf is a low-bias kernel, which can be substantially 
affected by noise inside the data set and perform poorly. 
On the other hand, RF performs better with a large data set 
having an excellent tolerance to noises (Zhu et al. 2021). 
SVM is a strictly binary classifier, whereas RF and MLP are 
inherently multiclass classifiers, making them more suitable 
for the current problem study.

Moreover, both RF and MLP can adapt better to highly 
nonlinear data sets. Structural risk minimization (utilized by 
SVM) is better than empirical risk minimization (utilized 
by MLP) to handle overfitting. However, proper tuning of 
the hyperparameters of MLP (e.g., number of hidden layers, 
solver, activation function) can alleviate this issue. Also, 
the vast number of data instances in the current data set 
is suitable for the MLP classifier to fine-tune the network 
architecture accordingly. In this study, the hyperparameters 
tuned through the grid search method (Table 5) successfully 
alleviated the issue of overfitting. Hence, the above discus-
sions provided insights into why SVM could not perform as 
expected compared to the other classifiers.

6.2 � Multicollinearity

In the case of machine learning, using collinear variables as 
input features might adversely affect the model performance 
(Garg and Tai 2013; Li et al. 2021). However, for RF, the 
effect of multicollinearity is trivial to the prediction perfor-
mance (Zhan et al. 2018). That being said, having collinear 
features can cause RF to misjudge the importance of its input 
features (Sect. 6.3). Also, MLP and SVM have sensitivity 
towards collinear features for their prediction performance. 
Hence, to take this issue into account, pairwise correlation 
coefficients were plotted for the input features utilized in this 
study, as shown in Fig. 12. The coefficients were plotted for 
the whole data set as well as data set segments belonging 
to each of the target feature labels (“Normal,” “Collapse,” 
and “Influence Zone”). The intention was to explore if the 
pairwise correlations differed between the data set seg-
ments, which might be informative for the machine learn-
ing models.

As we can see, the features ES and TPI exhibit maximum 
collinearity (correlation coefficient, r = 1) in all data set seg-
ments. On the other hand, FPI has a very high degree of 
collinearity with both ES and TPI for both the “Collapse” 
(r = 0.98) and “Influence Zone” (r = 0.97) data, but not as 
high in the case of “Normal” data (r = 0.77). Finally, there 
is a reasonable degree of correlation between F and T (for 
“Collapse” data, r = 0.93; for All data, r = 0.84).

The Variable Inflation Factor (VIF) was used to explore 
how these collinearities may have affected the prediction 
results by the classifiers. In this process, the most inflated 
factors were iteratively removed to check on their impact on 
the models. At first, we removed the feature ES (between the 
100% collinear feature ES and TPI) and retrained the models 
(RF, SVM, MLP). The newly trained models showed no dif-
ference in their performance from their original versions. 
However, further removal of any other potentially collinear 
features (e.g., FPI, F) resulted in a drop of all performance 
metrics across all the classifiers (e.g., Accuracy for RF, MLP, 
and SVM were reduced by 1.03%, 3.19%, and 4.25%, respec-
tively, on “test set”). This was somewhat expected, as we can 
observe the loss of information to some degree for removing 
the features FPI and F having correlation coefficients, r < 1. 
Also, the high collinearity is not similar across the data set 
segments for the same pair of elements. Thus, discarding 
a feature because of high collinearity in the whole data set 
might result in loss of information existing in individual data 
set segments, where the collinearity is not so high. There-
fore, without a penalty to prediction Accuracy, we could 
only remove one input feature (ES). Also, the classifiers’ 
performances were not affected before and after the feature 
removal, which indicated no effect of multicollinearity in the 
models’ prediction performance.
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Fig. 12   Correlation coefficients (r) representing pairwise correlation between the input features for, All Data, Normal Data, Collapse Data, and 
Influence Zone Data
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As mentioned earlier, the collinear features might impact 
the assessment of feature importance by the RF classifier. 
Hence, the following section calculates feature importance 
by RF classifier for the input features after removing ES.

6.3 � Feature Importance

As can be concluded, the random forest classifier is the 
best-performing classifier for the current research. Hence, 
we analyzed the contribution of each feature variable on the 
model’s performance based on a unique feature of this clas-
sifier, which is Gini impurity (Kelleher et al. 2020; Géron 
2019).

Random forest is an ensemble learning algorithm built 
with multiple decision trees. For a classification problem, 
each decision tree splits the data at each node by utilizing the 
value of an input feature and creating pure subsets. At each 
node, a feature variable is selected such that it optimally 
splits the data into homogenous groups and minimizes the 
level of impurity at the next node. The measure of how well 
a node has split the data can be obtained through the Gini 
index. The Gini index can be understood by how often the 
target levels of the instances in a data set would be misclas-
sified if predictions were made based only on the distribution 
of the target levels in the data set (Kelleher et al. 2020). The 
Gini index of a data set D is measured by

where t  is the target or output feature, l is the level of t  , 
and P(t = l) is the probability of target feature t = l for a 
randomly selected data instance. When the data set D is par-
titioned using the feature d , a subset of D is created for each 
level/threshold of that feature. Therefore, the Gini index of 
the partitioned data set for level k of the feature d is

where Pd=k(t = l) is the probability of the target feature t = l 
for a random data instance inside the subset, where d = k . 
The reduction in Gini impurity by feature d can be obtained 
by subtracting the weighted sum of the Gini indices of the 
partitions created by that feature from the initial Gini index. 
This is known as the Variable Importance Measure (VIM) 
of that feature, which is given by

(10)Gini(t,D) = 1 −
∑

l�levels(t)

(P(t = l))2

(11)Gini
(

t,Dd=k

)

= 1 −
∑

l�levels(t)

(

Pd=k(t = l)
)2

(12)

VIM = Ginigain(d,D) = Gini(t,D) −
∑

k�levels(d)

Gini
(

t,Dd=k

)

|

|

Dd=k
|

|

|D|

After partitioning the data set, a higher VIM indicates 
a higher reduction of misclassification if trying to predict 
the target levels of the data set using its distribution alone. 
In the case of an RF classifier, the total VIM of a feature 
from multiple decision trees are averaged to get the final 
VIM of that feature. Thus, the feature with the highest VIM 
will represent the highest sensitivity of the prediction model 
towards that feature.

The VIM values of the input features calculated by the 
RF classifier are shown in Fig. 13. The figure shows that 
the essential feature is R(rpm) having VIM of 0.36, whereas 
the second most important feature is RMr (VIM = 0.21). F 
(kN) and T  (kN.m) show equal importance with a VIM of 
0.12, whereas TPI shows a bit less importance having VIM 
of 0.09. Overall, all the features have VIM of at least 0.05 
(5%), indicating satisfactory contribution from all of them 
to the prediction model. As we can see, three of the TBM 
operational parameters ( R, T , and F ) belong to the first four 
critical features, indicating excellent performance by the 
direct measurements of the TBM sensors. Another essential 
feature (2nd best) is the RMr. This feature is directly related 
to the strength and quality of the excavated rock mass. Con-
sequently, it is expected to be a solid indicator of collapse 
ground condition or its influence zone. Another significant 
feature could be the lithology of the tunnel alignment. How-
ever, there are only two major lithologies (Limestone and 
Granite) along the tunnel alignment with many collapse 
incidents, making it a weak feature for the machine learn-
ing model (Table 3).
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Fig. 13   Variable Importance Measure (VIM) of input features by RF 
classifier
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7 � Impact of “Influence Zone” Length 
on Prediction Accuracy

The “Influence Zone” length (L/4) utilized in this research 
approximates the possible zone length around the collapse 
area. Hence, there is scope to try out different lengths of 
the proposed “Influence Zone” around each collapse to 

determine the optimal zone length. Therefore, “Influence 
Zone” lengths other than L/4 were considered to observe the 
models’ performances. The optimal length will be the one 
that yields the maximum possible zone length with optimal 
prediction Accuracy.

Lengths of L/2, 3L/4, and L in addition to L/4 for the 
“Influence Zone” were considered before and after each 
“Collapse” zone. Only lengths longer than L/4 were 
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considered as high prediction Accuracy (97%) was already 
achieved for length L/4. It is beneficial to get an increased 
“Influence Zone" length without sacrificing the prediction 
performance. Initially, the additional models were trained 
with similar hyperparameter values (Table 5), resulting in 
some overfitting issues. Therefore, a new hyperparameter 
was tuned to handle the problem of overfitting with RF, 
which is min samples leaf (the minimum number of data 
instances required to be at a leaf node). This hyperparam-
eter helps the RF classifier to generalize better and thus 
avoid overfitting. The value of this hyperparameter was 
increased from 1 to as high as 4000 to bring the “test set” 
Accuracy nearby to the “train set” Accuracy, thus avoiding 

the issue of extreme overfitting on the “train set” data. Fig-
ure 14a shows the schematic diagram of the four different 
“Influence Zone” lengths considered, and Fig. 14b shows 
the performance metrics (Precision, Recall, F1-score, 
Accuracy) on both the “train set” and “test set” data for the 
four “Influence Zone” lengths considered. In addition, the 
normalized confusion matrices are also shown in Fig. 15. 
As we can see, all the performance metrics were over 80%, 
but they gradually decreased for the increasing lengths of 
the “Influence Zone” on both the “train set” and “test set” 
data. Figure 15 shows high diagonal ratios of the normal-
ized confusion matrices for all, with L/4 having the highest 
diagonal ratios among the four.

Fig. 15   Normalized confusion matrices for different “Influence Zone” lengths
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The comparison of misclassification of “Influence 
Zone” as “Normal” for the different lengths is shown in 
Fig. 16. This figure is important, because the more the 
assumed length of the “Influence Zone” will be beyond 
the actual physical range, the more the misclassifica-
tion of “Influence Zone” instances as “Normal” will be 
observed. As can be seen, the percentage of misclassifica-
tion increased from 0.47% to as high as 6.55%, with an 
increase in the “Influence Zone” length considered.

Deciding an acceptable Accuracy to predict the “Influence 
Zone” during operation is a matter of expert judgment, project 
demand, and operational conditions. However, from the practi-
cal point of view, it is supposed to be the safest for any project 
that might suffer from frequent collapse incidents to detect 
the “Influence Zone” as early and accurately as possible with 
the highest Accuracy and the lowest misclassification rate as 
“Normal.” Also, Accuracy was reduced by 11% when L/4 was 
increased to L/2. A further increase in the “Influence Zone” 
length resulted in minimal Accuracy reduction (by 3%). Hence, 
it can be inferred that L/4 most closely resembled the actual 
physical range of the “Influence Zone” around collapse, thus 
posing the least number of threats while performing predic-
tions in the field. Hence, this research suggests this approach 
for practical use.

8 � Application of the Proposed Prediction 
Model

This prediction model is expected to be utilized by TBM 
operators performing excavation on rock strata with a high 
potential to encounter adverse geologic conditions inducive 
of tunnel boundary collapses. The TBM operator is expected 
to get predictions of ‘Normal’ class from the model for most 
of the tunnel excavation through intact rock conditions with-
out any disturbance. When approaching a “Collapse Zone,” 

the prediction model is expected to predict the surrounding 
ground condition as “Influence Zone” continually for a while. 
The length of this continual “Influence Zone” prediction will 
indicate the upcoming “Collapse Zone” length. With a more 
extended “Influence Zone,” the forthcoming “Collapse Zone” 
is expected to be proportionately longer according to their defi-
nition (Fig. 5). Thus, the TBM operator will know if there is 
any “Collapse Zone” approaching ahead of the existing tunnel 
face and for how long that specific “Collapse Zone” will con-
tinue. When faced with a slightly different operational condi-
tion, the current model can serve as a baseline. Then it can 
train itself further on the newly fed data and potentially adapt 
itself to make predictions according to the new conditions.

9 � Assessment of Features Against 
Geological Data

A detailed investigation is performed to observe the nature 
of TBM-related features on different lithologies and RMr. 
The scatter plots of the six TBM-related features of the 
proposed model concerning the primary two lithologies 
are shown in Fig. 17. It can be seen that the feature of 
maximum importance R (rpm) is not that different in 
Limestone and Granite. For F (kN), the ‘Collapse’ and 
‘Influence Zone’ classes mean values are 17% and 42% 
less in Granite than Limestone, respectively. This differ-
ence indicates that their characteristic difference for F is 
more prominent in Granite. For T (kN-m), the mean value 
for ‘Collapse’ decreases by 52% in Granite compared to 
Limestone, indicating a characteristic difference for ‘Col-
lapse’ class in different lithologies. An important thing to 
notice is the exceptionally high P (mm/min) values col-
lected for several data instances of Granite (near the end 
of both ‘Influence Zone’ and ‘Collapse’ class data). These 
P values are in the range of 50–200 mm/min, beyond the 
normal range of 60–80 mm/min. These data instances are 
collected from collapse No. 18 (Table 3), representing 
about 69 m of tunneling operation. The P values for this 
specific ‘Collapse’ and ‘Influence Zone’ data were much 
higher and did not match the other similar data instances. 
This discrepancy might be why P and the related derived 
features (FPI, TPI) were not as important as the other 
features in the prediction model (Fig. 13). Overall, all 
the feature values have higher mean values for ‘Normal’ 
data instances, except for P (mm/min) (‘Collapse’ and 
‘Influence Zone’ classes have higher P in both litholo-
gies). This result is expected as soil condition for both 
“Collapse Zone” and “Influence Zone” is supposed to be 
weaker than “Normal Zone.” Consequently, penetration 
should be easier.

It is observed that ‘Collapse’ only happened in weak 
rock conditions with RMr of IV and V. This explains the 
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Fig. 17   Scatter plots of TBM 
operational parameters with 
lithology (showing data 
instances of ‘Normal’, ‘Influ-
ence Zone’, and ‘Collapse’ 
classes)
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significance of RMr as an input feature (Fig. 13). Hence, 
it is essential to see how the TBM-related elements behave 
in different RMr ranks. For this reason, histogram plots 
of these features describing the three classes (‘Normal,’ 
‘Collapse,’ and ‘Influence Zone’) against RMr Classes III, 
IV, and V are shown in Fig. 18 (RMr Class II has only 
‘Normal’ data instances, hence not presented). It can be 
noticed that all the three classes (‘Normal,’ ‘Collapse,’ and 
‘Influence Zone’) have different peaks and spread under 
the same RMr class in the case of almost all the features. 
These differences indicate a characteristic variation of the 
TBM-related features for its class irrespective of the RMr. 
For example, in both RMr Class IV and V, the peak of F 
(kN) occurs in a lower value range for ‘Collapse’ than for 
both ‘Normal’ and ‘Influence Zone’ classes (around 7000 
kN in Class IV and 5000 kN in Class V for ‘Collapse’). 
Again, ‘Influence Zone’ and ‘Normal’ classes have differ-
ent peaks and spreads for F (kN) in all three RMr Classes 
(higher peak for ‘Normal’ in RMr Class III; for ‘Influence 
Zone’ higher peak in RMr Class V and multimodal peaks 
in RMr Class IV).

10 � Discussion

The proposed prediction model utilized both TBM opera-
tional parameters, which are direct measurements by the 
TBM sensors and performance parameters, such as field 
penetration index (FPI) and torque penetration index (TPI), 
which are extracted utilizing additional TBM properties, 
such as TBM diameter, cutter arrangements, etc. As shown 
in Sect. 6.3, some of the TBM operational parameters (R, T, 
and F) are more effective than the extracted parameters in 
predicting collapse incidents. Therefore, the model can be 
considered similarly effective with variation in excavation 
diameters or TBM properties.

Another important aspect of this study is the efficient use 
of the TBM data collected during each boring cycle. The 
data extraction method ensured real-time data collected from 
each boring cycle. This approach helped capture the actual 
ground condition as sensed by the TBM sensors. It provided 
the maximized utilization of the high-frequency data collec-
tion practice of TBM, which helped to acquire comprehen-
sive data to represent very few collapse incidents. This, in 

Fig. 17   (continued)
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Fig. 18   Frequency histograms 
of TBM-related features against 
RMr classes
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turn, helped the effective training of the machine learning 
classifiers avoiding data imbalance issues.

The physical understanding of the adverse geologic con-
dition during excavation was efficiently captured by consid-
ering the “Influence Zone” in the problem design. Machine 
learning methods successfully verified the concept by accu-
rately predicting the ‘Influence Zone’ labels. Overall, this 
model can be considered beneficial for tunnel engineers 
experiencing similar ground conditions during operation and 
researchers trying to simulate a collapsing ground's physical 
mechanism. The latter can be attributed to the fact that the 
researchers can gain insights from this study about a new 
way of understanding and verifying a physical mechanism 
besides analytical and numerical approaches. The proposed 
method introduces a more straightforward process of captur-
ing the inherent physical mechanism of collapsing ground 
without relying on a physical model built on assumptions.

An important aspect to discuss is the use of RMr as a geo-
logical input feature while predicting collapse ground con-
ditions. It would be ideal to use parameters directly related 
to the fracture condition of the rock mass (e.g., RQD, JV or 
JS) as input features instead of RMr to detect collapse ground 
condition. However, this would require the measurements of 
these features to be very frequent along the tunnel alignment 
to have sufficient data points to train machine learning algo-
rithms, which is not practical for a tunneling project. In addi-
tion, any individual parameter related to rock fracture does 
not deliver a suitable generalization of the overall quality of 
the rock mass (capturing the weakest link). On the other hand, 
RMr provides better abstraction through subjective judgment 
to the overall quality of the excavated rock mass along the 
tunnel alignment considering multiple rock mass properties 
(rock strength, intactness, discontinuity, groundwater condi-
tion, etc.). Finally, the utilization of RMr as an input feature 
was justified through the high Accuracy achieved by the pro-
posed prediction model and successfully established by RMr 
being the 2nd best feature in detecting the collapse ground con-
dition (Fig. 13). An important aspect about using RMr with 
TBM sensor data as collected in real-time frequency (1 Hz) 
deserves further attention. Since, RMr has its own tolerable 
range of variation within each assigned class (Liu et al. 2017), 
it is expected to be independent of the micro-scale variabilities 
of as-collected TBM sensor data. Hence, the use of on-site 
TBM data while assigning RMr in any form and the use of 
real-time TBM data for collapse prediction in this study are 
mutually exclusive.

Alongside the contributions of the current research, some 
limitations need further improvement. As the model is cur-
rently designed, it does not provide any information for the 
predicted “Influence Zone” instance to know which collapse 
area it belongs to, which might be ambiguous if two collapses 
are within proximity (i.e., overlapping “Influence Zone”). 
Therefore, extra caution should be exercised when the TBM 

is passing through the”Influence Zone” belonging to the tail 
of the current collapse and be prepared to have an upcoming 
collapse incident until reaching the end of the length expected 
for the “Influence Zone” belonging to the recent collapse. A 
multioutput ML model could be trained to understand current 
conditions to overcome such problems. Another significant 
limitation is that the proposed model is built to predict collapse 
incidents happening to specific lithologies and ground. Thus, 
the model can fail to perform equally well in a significantly 
different geological condition (e.g., predicting collapse inci-
dents in rock types other than Granite or Limestone). There-
fore, data collected on collapses from different projects with 
various geological conditions could help the model achieve 
better generalization by removing this bias.

11 � Summary and Conclusions

In this research, a prediction model based on machine learn-
ing (ML) was proposed to identify the collapse ground con-
ditions ahead of the tunnel face using TBM parameters and 
rock mass quality in RMr. According to the proposed model, 
the TBM operator can modify TBM control while operat-
ing through collapse-prone ground conditions based on the 
intensity of the expected collapse. Overall, the significant 
contributions of this research are as follows,

(1)	 The existence of an “Influence Zone” around the “Col-
lapse Zone” was established and verified by the ML 
classifier-based prediction model. Identifying these 
zones ensures the prediction of any upcoming collapse 
incident with its continuation length during TBM tun-
neling.

(2)	 An optimal length for the “Influence Zone” was pro-
posed by assessing the results of the models trained on 
four different “Influence Zone” lengths considered.

(3)	 A new data pre-processing technique was proposed 
for data collected by the TBM data acquisition sys-
tem. This technique will help generate sufficient data 
instances to establish ML classifiers with limited data 
as experienced with collapse ground condition (363 m 
in total in this case study) against the normal ground 
condition (more than 19 km in the same case study).

(4)	 The proposed machine learning prediction model could 
identify the “Collapse Zone” and “Influence Zone” 
from the “Normal Zone” ground conditions with at 
least 97% accuracy based on the “test set” data.

Despite some limitations, the proposed study can pro-
vide directions to ongoing tunneling projects experiencing 
collapse to build ML prediction models with the limited 
available data. The research also contributed to understand-
ing the collapse mechanism by the prediction success of 
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the ML-based models and by elaborating the characteris-
tics of the TBM-related features against the tunnel geology 
(lithology and RMr). Overall, the findings of this research 
are expected to be beneficial to the practicing researchers, 
tunnel engineers, operators, and experts to interpret better 
TBM response against collapsing ground conditions and 
choose appropriate measures of precautions.
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