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Abstract
The propagation properties of stress waves in rock masses are of great importance for exploring the internal structure of the 
Earth and avoiding earthquake disasters. Based on the modified displacement discontinuity method, the non-attenuation 
behavior of stress wave propagation through a rock mass with a large wave impedance to a rock mass with a small wave 
impedance was studied. The results show that the non-attenuation propagation of stress waves can occur when stress waves 
propagate from rock with a large wave impedance to rock with a small wave impedance. The non-attenuation propagation of 
stress waves is related to the incident wave frequency, the joint stiffness and the wave impedance ratio. The non-attenuation 
propagation of stress waves is most likely to occur when the incident wave frequency is low and the joint stiffness and wave 
impedance ratio are large. According to the critical condition for the non-attenuation propagation of stress waves, a thresh-
old surface was identified. The region corresponding to non-attenuation stress wave propagation exists below the threshold 
surface.
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•	 Non-attenuation behavior of stress wave propagation through a rock mass was explored.
•	 Effects of frequency, joint stiffness and wave impedance ratio on non-attenuation behavior was investigated.
•	 A threshold surface for non-attenuation behavior in the FKN space (frequency f0, joint stiffness kn and wave impedance 

ratio n) was identified.
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1  Introduction

Joints exist widely in rock masses, and the propagation of 
stress waves is always related to the characteristics of the 
wave source and the physical properties of the joint (Zhao 
et al. 2008a, b; Perino et al. 2010; Ma et al. 2011; Li et al. 
2015a; Zou et al. 2017; Chai et al. 2019; Fan et al. 2020a). 
For stress waves propagate in a rock mass with different 
wave impedance on either side of the joint, the propagation 
of stress waves is also related to the wave impedance ratio 

of the rock on either side of the joint. If the characteristics 
of the wave source, the physical properties of the joint and 
the wave impedance ratio are considered, particle vibration 
may be non-attenuated under certain conditions (Fan et al. 
2018a, 2020b). Thus, it is of significance to study the non-
attenuation phenomenon of stress waves.

In a general case, when a stress wave propagates across 
an interface between two different media, both transmis-
sion and reflection take place (Kolsky 1963; Wang 2005). 
The particle velocity and stress at the interface are continu-
ous. When the stress wave propagates from a medium with 
a small wave impedance to a medium with a large wave 
impedance, the particle velocity amplitude of the transmit-
ted wave is smaller than that of the incident wave. When the 
stress wave propagates from a medium with a large wave 
impedance to a medium with a small wave impedance, the 
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particle velocity amplitude of the transmitted wave is larger 
than that of the incident wave. For the special case of stress 
waves propagating across an interface between media with 
the same wave impedances, no reflection takes place at the 
interface, and a stress wave can be totally transmitted (Wang 
2005). Therefore, the non-attenuation propagation of stress 
waves can occur when the stress waves propagate from a 
medium with a large wave impedance to a medium with a 
small wave impedance or the stress waves propagate across 
an interface between media with the same wave impedances.

However, joints are different from connected interfaces, 
and a stress wave is always attenuated by a joint (Zhao et al. 
2008a, b; Zhu et al. 2011; Wu et al. 2013; Huang et al. 
2014a, b; Li et al. 2015b; Niu et al. 2018). Generally, dis-
continuous structural planes which are large in extent and 
thin in thickness relative to the wavelength can be physi-
cally viewed as joints in theoretical research (Zhao et al. 
2008a; b). When a stress wave was incident on a linear joint, 
the joint can be modeled via a displacement discontinuity 
boundary condition between two elastic half-spaces. The 
amplitude of the transmitted wave can be controlled by 
the joint stiffness, and the transmission coefficients were 
always smaller than 1.0 (Pyrak-Nolte et al. 1990a, b; Gu 
et al. 1996; Pyrak-Nolte 1996; Zhao et al. 2006). When a 
stress wave propagates across a single joint with nonlinearly 
normal deformational behavior, the transmission coefficient 
increases as the nonlinear coefficient increases. Although a 
nonlinearly deformable joint can transmit more energy than 
a linearly deformable joint, the transmission coefficient was 
still smaller than 1.0 (Zhao and Cai 2001; Li 2013; Chai 
et al. 2019). For a filled joint, the effect of joint thickness 
on wave propagation can be taken into consideration by a 
thin-layer interface model. The filling material was equiva-
lent to an elastic and continuum medium. The transmission 
coefficient decreases as the joint thickness increases. When 
the joint thickness approached zero, the transmission coef-
ficient approached 1.0 (Li et al. 2013). If the joint was filled 
with saturated sand or clay, the filling materials exhibited 
viscoelastic behavior, the transmission coefficient across 
a viscoelastic joint was smaller than that across an elas-
tic joint, and the transmission coefficient decreased with 
increasing viscosity, which indicated that the more viscous 
the filled medium is, the less wave energy transmitted (Zhu 
et al. 2012; Fan et al. 2018b). Therefore, the transmission 
coefficient is usually smaller than 1.0 when a stress wave 
propagates in a rock mass with the same wave impedance on 
both sides of the joint, and the transmission coefficient will 
approach 1.0 under only certain conditions.

Joints often exist between different rocks, and the propa-
gation of stress waves is affected by the wave impedance 
ratio, as shown in Fig. 1a. For a stress wave propagating 
across a joint in a rock mass with different wave imped-
ances on two sides of the joint, particle vibration may be 

non-attenuated under certain conditions (Fan et al. 2018b, 
2020b). The critical condition and the mechanism of the 
non-attenuation propagation of stress waves need to be stud-
ied for such a case.

This paper considers the case in which a stress wave prop-
agates from rock with a large wave impedance to rock with a 
small wave impedance, as shown in Fig. 1b. Combined with 
the displacement discontinuity model and the characteristic 
method, the particle velocity transmission coefficient of a 
stress wave passing through a joint was derived. The rela-
tionships between the particle velocity transmission coeffi-
cient and frequency of the incident wave, joint stiffness and 
wave impedance ratio were studied, and the non-attenuation 
propagation of the stress wave was observed. Parametric 
studies with respect to frequency, joint stiffness and wave 
impedance ratio on threshold frequency, threshold joint stiff-
ness and threshold wave impedance ratio were carried out. 
Furthermore, a threshold surface for the non-attenuation 
propagation of stress waves was identified in FKN space.

2 � Theory

Across a joint, the stress is continuous, but the displace-
ment is discontinuous (Schoenberg and Muir 1989; Pyrak-
Nolte and Nolte 1992; Gu et al. 1996; Pyrak-Nolte 1996). In 
most seismic investigations of jointed rock masses, the wave 
amplitudes are relatively small and insufficient to excite joint 
nonlinearity. Therefore, the linear displacement discontinu-
ity method is valid and adopted in this paper (Pyrak-Nolte 
et al. 1990a; Zhao et al. 2006; Li and Ma 2010). To focus 
purely on the effects of incident wave characteristics, joint 
characteristics and material characteristics on stress wave 

(a)

(b) 

Joint

vI vT “hard” rock “soft” rock

Fig. 1   Stress wave propagation. a Complex formation; b “hard” rock 
to “soft” rock
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propagation and the essential reasons for non-attenuation 
propagation of stress wave, the case of normal incidence of 
waves was studied.

In the present study, rock with a large wave impedance 
is referred to as “hard” rock, and rock with a small wave 
impedance is referred to as “soft” rock. Since the wave 
impedance represents the physical parameters of rock, the 
“hard” and “soft” here are used to represent the physical 
properties of rock (Wang 2005).

A stress wave in the x-direction is normally incident on 
the rock mass. The stress wave propagates from the rock 
with a large wave impedance to rock with a small wave 
impedance. When the stress wave propagates across the joint 
located at x = x1, reflected and transmitted waves appear, as 
shown in Fig. 2. According to the linear displacement dis-
continuity method, when waves propagate across a joint, the 
stress is continuous, but the displacement is discontinuous 
due to the joint deformation, the normal stress σ and normal 
displacement u in “hard” rock and “soft” rock at x1 are

where kn is the normal joint stiffness, σH (x1, t) and σS (x1, t) 
are the normal stresses in the “hard” rock and “soft” rock, 
respectively, and uH (x1, t) and uS (x1, t) are the normal dis-
placements in the “hard” rock and “soft” rock, respectively.
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Combined with the displacement discontinuity method, 
the characteristic method is often used to study stress wave 
propagation in jointed rock masses. In the conventional dis-
placement discontinuity method, the wave impendences on 
two sides of the joint are assumed to be the same. When 
the stress wave propagates from the rock with a large wave 
impedance to rock with a small wave impedance, the con-
ventional characteristic method is not applicable. Therefore, 
we improved the method, as shown in Fig. 2. The slopes of 
the characteristic lines on the two sides of the joint are not 
equal. In Fig. 2, lines ab and bc represent the left-running 
and right-running characteristic lines in “hard” rock. Line cd 
represents the left-running characteristic line in “soft” rock. 
The absolute value of the slope of the characteristic line is 
equal to the reciprocal of the wave propagation velocity in 
intact rock (Cai and Zhao 2000).

Along the left-running and right-running characteristic 
lines in “hard” rock

where zH is the wave impedance of the “hard” rock and vH 
and σH are the particle velocity and normal stress of the 
“hard” rock, respectively.

Along the left-running and right-running characteristic 
lines in “soft” rock

where zS is the wave impedance of the “soft” rock and vS and 
σS are the particle velocity and normal stress of the “soft” 
rock, respectively.

For a rock mass undisturbed at t = 0, the particle veloc-
ity and normal stress at each point on the x-axis are equal 
to zero. The left-running characteristic line ab and right-
running characteristic line bc intersect the t-axis at point 
(0, t − x1/CH). Therefore, based on Eq. (3), along the char-
acteristic line ab, the relation between the particle velocity 
and normal stress at points b and a is

Along characteristic line bc, the relation between the 
particle velocity and normal stress at points b and c is

Along characteristic line cd, the relation between the 
particle velocity and normal stress at points c and d is

Based on Eqs. (5), (6) and (7), the derivative of Eq. (2) 
becomes

(3)zHvH ± �H = constant,

(4)zSvS ± �S = constant,
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The derivative �vS(x1,t)
�t

 can be replaced by vS(x1,tj+1)−vS(x1,tj)
Δt

 
if Δt is sufficiently small. Therefore, Eq. (8) can be rewrit-
ten as

With known incident wave and parameter values, the 
particle velocity in the “soft” rock (transmitted wave) after 
a stress wave crosses the joint can be calculated based on 
Eq. (9).

The particle velocity transmission coefficient is defined 
as the peak particle velocity in the “soft” rock divided by 
the peak particle velocity of the incident wave

When the joint stiffness approaches infinite, the stress 
wave propagates at the interface of different materials, and 
the transmission coefficient is equal to that of the wave 
propagation at the interface of different materials (Wang 
2005). When the wave impedances on both sides of the 
joint are the same, the stress wave propagates in jointed 
rock mass. Therefore, Eq. (9) can be verified through these 
two cases.

3 � Transmitted Waves When Stress Waves 
Propagate from “Hard” Rock to “Soft” Rock

For the deformation of the joint is linear in this paper, the 
incident wave is assumed to be a half-sinusoidal wave with 
an amplitude of A0 = 0.02 m/s. The density of the “hard rock” 
in front of the joint is ρH = 2650 kg/m3, the wave velocity 
is CH = 5830 m/s (Zhao et al. 2006), the wave impedance 
is zH = ρH CH, and the wave impedance of the “soft rock” 
behind the joint is determined by the wave impedance ratio 
n (zS = zH/n).

Figure 3 shows the incident waves and the corresponding 
transmitted waves under different conditions. In Fig. 3a, the 
joint stiffness is kn = 1.00 GPa/m, and the wave impedance 
ratio of the rock mass is n = 3.00. When the frequency of the 
incident wave is f0 = 80 Hz, the transmitted wave is attenuated, 
and the particle velocity amplitude is smaller than that of the 
incident wave. However, when the frequency of the incident 
wave is f0 = 20 Hz, the transmitted wave is enlarged, and the 
particle velocity amplitude is larger than that of the incident 
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wave. Therefore, with the change in frequency of the incident 
wave, a threshold frequency is reached. At this threshold, the 
amplitude of the transmitted wave is exactly equal to that of 
the incident wave, and non-attenuation propagation of the 
stress wave occurs. Through calculations, the threshold fre-
quency is approximately f0 = 57 Hz. In Fig. 3b, the frequency 
of the incident wave is f0 = 50 Hz, and the wave impedance 
ratio of the rock mass is n = 3.00. When the joint stiffness is 
kn = 0.50 GPa/m, the transmitted wave is attenuated, and the 
amplitude of the particle velocity is smaller than that of the 
incident wave. However, when the joint stiffness is kn = 2.50 
GPa/m, the transmitted wave is enlarged, and the amplitude 
of the particle velocity is larger than that of the incident wave. 
Similar to the results in Fig. 3a, as the joint stiffness changes, 
a threshold joint stiffness is reached, and the non-attenuation 
propagation of stress waves is observed beyond this value. The 
calculated threshold joint stiffness is approximately kn = 0.88 
GPa/m. In Fig. 3c, the frequency of the incident wave is 
f0 = 50 Hz, and the joint stiffness is kn = 1.00 GPa/m. When 
the wave impedance ratio is n = 2.00, the transmitted wave is 
attenuated, and the particle velocity amplitude is smaller than 
that of the incident wave. However, when the wave imped-
ance ratio is n = 5.00, the transmitted wave is enlarged, and the 
particle velocity amplitude is larger than that of the incident 
wave. The threshold wave impedance ratio corresponding to 
the non-attenuation propagation of stress waves is approxi-
mately n = 2.72.

For a given joint stiffness and wave impedance ratio, the 
amplitude of the transmitted wave increases with decreasing 
frequency, so the non-attenuation propagation of stress waves 
is most likely to occur when the frequency is relatively low. 
Due to the existence of joints in the crust, the high-frequency 
components are usually quickly lost in the process of stress 
wave propagation, and the low-frequency components slowly 
attenuate; therefore, the main stress wave that reaches the 
ground is a low-frequency wave. When stress waves propa-
gate from deep rocks with a large wave impedance to weak 
rocks and soils with a small wave impedance, the amplitude 
of the particle velocity may increase, which will cause seri-
ous damage to the buildings above these areas. For a given 
frequency and wave impedance ratio, the amplitude of the 
transmitted wave increases as the joint stiffness increases, so 
the non-attenuation propagation of stress waves is most likely 
to occur when the joint stiffness is relatively large. When the 
joint stiffness approaches zero, the joint becomes weak, and 
the particle velocity transmission coefficient decreases to a 
minimum value. If the joint stiffness approaches infinity, the 
joint acts as an interface, the particle velocity transmission 
coefficient increases to a maximum value, and the non-atten-
uation property of the stress wave is the strongest. For a given 
frequency and joint stiffness, the amplitude of the transmitted 
wave increases with the wave impedance ratio. In fact, the 
wave impedance ratios in Fig. 3a–c are always larger than 1.00, 

which indicates that the non-attenuation phenomenon of the 
particle velocity only occurs when the stress wave propagates 
from the rock with a large wave impedance to rock with a 
small wave impedance.

Therefore, the threshold frequency ft, the threshold joint 
stiffness kt and the threshold wave impedance ratio nt are 
defined as the frequency, joint stiffness and wave impedance 
ratio for the case of a wave transmission coefficient equals 1.0

Therefore, the threshold frequency, threshold joint stiff-
ness and threshold wave impedance ratio can be used to 
evaluate the non-attenuation propagation of stress waves in 
rock masses.

4 � Discussion

4.1 � Variation in Threshold Frequency

Figure 4 shows the variation in the threshold frequency 
with respect to joint stiffness with wave impedance ratios 
of n = 1.50, 1.75, 2.00, 2.25 and 2.50, respectively. For a 
fixed wave impedance ratio and joint stiffness, the thresh-
old frequency can be obtained by Eqs. (9) and (10). It is 
seen that the threshold frequency increases linearly with 
increasing joint stiffness. When the joint stiffness is small, 
non-attenuation propagation of stress waves can occur when 
the frequency is low. When the joint stiffness is large, non-
attenuation propagation of stress waves can occur when the 
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frequency is high. It can also be seen that the threshold fre-
quency increases with increasing wave impedance ratio for a 
fixed joint stiffness. When the wave impedance ratio is small, 
the threshold frequency increases slowly with the joint stiff-
ness. As the wave impedance ratio increases, the threshold 
frequency increases rapidly with increasing joint stiffness.

Figure 5 shows the variation in the threshold frequency 
with respect to the wave impedance ratio with joint stiff-
nesses of kn = 1.5, 2.0, 2.5, 3.0 and 3.5 GPa/m, respectively. 
The threshold frequency increases linearly with increasing 
wave impedance ratio. For a fixed wave impedance ratio, 
the threshold frequency of the non-attenuation propagation 
of the stress wave increases as the joint stiffness increases, 
which is consistent with the result shown in Fig. 4. Figure 5 
also shows that the threshold frequency increases slowly 

with increasing wave impedance ratio when the joint stiff-
ness is small, while the threshold frequency increases rap-
idly with increasing wave impedance ratio when the joint 
stiffness is large.

4.2 � Variation in Threshold Joint Stiffness

Figure 6 shows the variation in the joint stiffness with 
respect to frequency with wave impedance ratios of n = 1.50, 
1.75, 2.00, 2.25 and 2.50, respectively. It is seen that the 
threshold joint stiffness increases linearly with increasing 
frequency. When a stress wave with a low frequency propa-
gates in the jointed rock mass, non-attenuation propagation 
of the stress wave can occur when the joint stiffness is small. 
With the increase of frequency, the non-attenuation propaga-
tion of stress waves occurs with an increasing joint stiffness. 
For a fixed frequency, the threshold joint stiffness increases 
with decreasing wave impedance ratio, and the threshold 
joint stiffness increases rapidly when the wave impedance 
ratio is large.

Figure 7 shows the variation in the threshold joint stiff-
ness with respect to wave impedance ratios with frequencies 
of f0 = 50, 100, 150, 200 and 250 Hz, respectively. It is seen 
that the threshold joint stiffness decreases with increasing 
wave impedance ratio. When the wave impedance ratio is 
small, the threshold joint stiffness decreases rapidly. Sub-
sequently, the threshold joint stiffness decreases slowly and 
tends to become stable as the wave impedance ratio further 
increases. In addition, the threshold joint stiffness increases 
with increasing frequency for a given wave impedance 
ratio, and these results are in accordance with those shown 
in Fig. 6.
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4.3 � Variation in Threshold Wave Impedance Ratio

Figure 8 shows the variation in the threshold wave imped-
ance ratio with respect to frequency with joint stiffnesses 
of kn = 1.5, 2.0, 2.5, 3.0 and 3.5 GPa/m, respectively. The 
threshold wave impedance ratio increases linearly with 
increasing frequency. When the stress wave with a low fre-
quency propagates in the jointed rock mass, non-attenuation 
propagation of the stress wave can occur when the wave 
impedance ratio of the rock mass is small. With increasing 
frequency, the wave impedance ratio of the non-attenuation 
propagation of stress waves increases. It can also be seen that 
the threshold wave impedance ratio increases with decreas-
ing joint stiffness for a fixed frequency and that the threshold 

wave impedance ratio increases rapidly when the joint stiff-
ness is small.

The variation in the threshold wave impedance ratio with 
respect to joint stiffness with frequencies of f0 = 50, 100, 
150, 200 and 250 Hz is shown in Fig. 9. It can be observed 
that the threshold wave impedance ratio decreases with 
increasing joint stiffness. When the joint stiffness is rela-
tively small, the threshold wave impedance ratio decreases 
rapidly as the joint stiffness increases. Subsequently, the 
threshold wave impedance ratio decreases slowly and finally 
tends to be stable as the joint stiffness further increases. In 
general, the joint is weak when the joint stiffness is small, 
so the attenuation of the stress wave is strong. To achieve 
the non-attenuation propagation of stress waves, the wave 
impedance ratio must be increased. When the joint stiff-
ness approaches infinity, the attenuation of the stress wave 
by the joint can be ignored. The non-attenuation propaga-
tion of stress waves can occur when the wave impedance is 
equal to 1.0. In addition, the threshold wave impedance ratio 
increases with increasing frequency for a given joint stiff-
ness, which is in accordance with the results shown in Fig. 8.

5 � A Threshold Surface in FKN Space

Figure 10 shows a threshold surface in FKN space (F refers 
to the frequency of the incident wave, K refers to the joint 
stiffness, and N refers to the wave impedance ratio). Arbi-
trary points on the threshold surface can keep the stress wave 
from attenuation, and the amplitude of the transmitted wave 
is exactly equal to that of the incident wave. Figure 10 shows 
that the region of attenuated stress wave propagation exists 
above the threshold surface. The region corresponding to the 
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non-attenuation propagation of stress waves exists below the 
threshold surface. The region of non-attenuation exists under 
the conditions of a low incident wave frequency, large joint 
stiffness or large wave impedance ratio. The amplification 
of stress wave has an important impact on the stability of 
underground engineering. The threshold surface can be used 
as a criterion for the attenuation or amplification behavior of 
wave propagation in jointed rock.

When a stress wave propagates in an isotropic and 
homogeneous rock mass with the same wave impedances 
on two sides of the joint, the energy can be transferred 
completely if the joint stiffness approaches infinity. When 
a stress wave propagates from rock with a large wave 
impedance to rock with a small wave impedance, the rela-
tion between the wave impedances inevitably leads to the 
particle velocity in the “soft” rock being faster than that 
in the “hard” rock. Additionally, the phenomenon of the 
non-attenuation propagation of stress waves occurs. How-
ever, the rock joint slows the propagation of a stress wave, 
which is why the particle velocity of the transmitted wave 
is not always faster than that of the incident wave when 
the stress wave propagates from rock with a large wave 
impedance to rock with a small wave impedance. When the 
amplification effect caused by the wave impedance ratio 
is stronger than the attenuation effect caused by the joint, 
the non-attenuation propagation of stress waves occurs.

6 � Conclusions

When a stress wave propagates from rock with a large 
wave impedance to rock with a small wave impedance, 
the non-attenuation propagation of stress waves may occur 
under certain conditions, and this process is related to 
the wave source, the properties of the joint and the wave 
impedance of the propagation medium.

The threshold frequency, threshold joint stiffness and 
threshold wave impedance ratio can be used to evaluate 
the non-attenuation propagation of stress waves in rock 
masses. The threshold frequency increases linearly with 
increasing joint stiffness and wave impedance ratio. The 
threshold joint stiffness increases linearly with increasing 
frequency and decreases with increasing wave impedance 
ratio. The threshold wave impedance ratio increases line-
arly with increasing frequency and decreases with increas-
ing joint stiffness.

When the amplification effect caused by the wave 
impedance ratio is stronger than the attenuation effect 
caused by the joint, the non-attenuation propagation of 
stress waves occurs. Similarly, when the amplification 
effect caused by the wave impedance ratio is weaker than 

the attenuation effect caused by the joint, the stress wave 
is attenuated.

In FKN space, the threshold surface divides the space 
into a region of attenuation and a region of non-attenua-
tion. Below the threshold surface, the stress wave’s propa-
gation displays obvious non-attenuation at low incident 
wave frequencies, large joint stiffnesses and large wave 
impedance ratios.

Usually, deep rocks in the Earth’s crust are “hard” rock, 
and shallow rocks are “soft” rock. Therefore, the non-
attenuation propagation of stress waves may occur, and 
particle motion is strengthened when the ground surface is 
reached, especially in areas of soft rock, soil and buildings.
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