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Abstract
Tunnel excavations in heavily fractured rock masses are often subjected to the high risk of face instability. To solve this 
problem, the probabilistic stability analysis of tunnel face is performed in this contribution, in which the fractured rock 
masses are modelled as spatially random media that follow the Hoek–Brown failure criterion. The method of Karhunen–
Loève expansion is adopted to characterize the spatial variabilities of Hoek–Brown parameters. Under this circumstance, 
the conventional tangent technique fails to integrate the Hoek–Brown failure criterion into the kinematical approach of limit 
analysis framework. Thus, the multi-tangent method which permits to use multiple tangent lines to represent the nonlinear 
Hoek–Brown failure envelope is proposed. A discretized three-dimensional failure mechanism of tunnel face is adopted to 
determine critical face pressures within the framework of limit analysis. Due to a large number of input variables required 
by the generation of random fields, the global sensitivity analysis and a sparsity scheme are employed to reduce the problem 
dimension. The method of spare polynomial chaos expansion is then employed to perform Monte Carlo simulation with a 
significant reduction of calls to the computationally expensive original model. Finally, the parametric analysis on the deter-
ministic model and probabilistic model is performed to gain an insight into the proposed approach.

Highlights

• The three-dimensional stability of a tunnel face driven in 
Hoek-Brown rock masses is evaluated by combining the 
limit analysis and random field theory.

• The method of Karhunen-Loève expansion is adopted 
to characterize the spatial variabilities of Hoek-Brown 
parameters.

• A multi-tangent method is proposed to determine the 
equivalent shear strength parameters of rock masses.

• A fast and accurate probabilistic model for tunnel face 
reliability analysis is obtained with the sparse polynomial 
chaos expansion method.

Keywords Probabilistic stability analysis · Hoek–Brown failure criterion · Random field · Multi-tangent method · Spare 
polynomial chaos expansion

List of symbols
σ1  Maximum principle stress
σ3  Minimum principle stress
σc  Uniaxial compressive strength
mi  Constant related to the hardness of the rock masses
GSI  Geological strength index
D  Artificial disturbance factor
ct  Equivalent cohesion of rock masses
φt  Equivalent internal friction angle of rock masses
Gi  Lognormal random field of parameter i
Glni  Normal random field of parameter lni
μi  Mean value of parameter i

 * Qiujing Pan 
 qiujing.pan@csu.edu.cn

 * Zhichao Shen 
 shenzhch@163.com

1 Faculty of Engineering, China University of Geosciences, 
Wuhan 430074, China

2 School of Civil Engineering, Central South University, 
Hunan 410075, China

3 Department of Civil and Environmental Engineering, 
National University of Singapore, Singapore 117576, 
Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-022-02821-y&domain=pdf


3546 T. Li et al.

1 3

σi  Standard deviation of parameter i
M  Number of truncation terms in Karhunen–Loève 

expansion
ξj  Independent variable of standard normal 

distribution
λj  Eigenvalue of the autocorrelation function
ψj  Eigenfunction of the autocorrelation function
εerr  Error of the Karhunen–Loève expansion
Ω  Domain of the random field
ρi  Autocorrelation function
ρi,j  Cross-correlation between random fields of i and j
θh  Horizontal autocorrelation distance
θv  Vertical autocorrelation distance
COV  Coefficient of variation
ω  Angular velocity of the failure mechanism
O  Rotation center
E  Center of the circular tunnel face
rE  Length of OE
βE  Rotation angle of OE
d  Tunnel diameter
δ  Side length of discretized element
[σ3]n  Minimum principle stress of the element n
γ  Unit weight of rock masses
l  Number of layers in the domain Ω
hn  Burial depth of the element n
F  Computational model
Y  Model response
L  Number of input variables
ψα  Multivariate polynomial
ηj  Unknown coefficients of the PCE
P  Number of terms in the truncated PCE
Hα  Univariate polynomial
α  Degree of the univariate polynomial
p  PCE order
||α||q  q-Quasi-norm of α
χ  Experimental design
N  Size of experimental design
Ψ  Space-independent matrix with dimensions of 

N × P
S  Sobol’s indices
R2  Coefficient of determination
εcut  Cutoff value:
Q2

tgt
  Target accuracy

pmax  Maximum PCE order
gT  Performance function
σU  Applied face pressure
σT  Critical face pressure
NMCS  Size of MCS population
I  Indicator function
Pf  Failure probability

1 Introduction

As tunnels often serve as important hubs of the highway 
or railway traffic, their safe and fast advancements are the 
guarantee of the whole project. However, tunnel construc-
tions often encounter problems such as floor heave, sur-
rounding rock instability, tunnel roof collapse and exca-
vating face failure. Among these issues, the tunnel face 
failure has attracted much attention from scholars in the 
geotechnical engineering field. The kinematical approach 
of limit analysis is considered as an efficient way to assess 
the stability of tunnel face whose basic idea is to construct 
a work-balance equation in terms of the internal energy 
dissipation and the external work rate in a kinematically 
admissible velocity field. The critical face pressure is equal 
to the one that brings the tunnel face to the ultimate limit 
state. Early studies considered the failure mechanism of 
tunnel face to be composed of several blocks. When tun-
nel collapses, the blocks move toward the inside of the 
tunnel according to a translational velocity field. Leca and 
Dormieux (1990) used one or two truncated conical blocks 
to describe the three-dimensional (3D) tunnel face failure. 
Subsequently, Mollon et al. (2009) extended this failure 
mechanism into a multi-block one where the number of 
blocks was determined by an optimization process. Mean-
while, a spatial discretization technique was proposed to 
generate the 3D failure surface using a “point by point” 
method. The extended failure mechanism showed a great 
advantage due to its ability to cover the entire circular tun-
nel face and give a strict estimation of critical face pres-
sures. Mollon et  al. (2011a) presented a 3D rotational 
failure mechanism for stability analysis of a pressurized 
tunnel face in combination with the spatial discretization 
technique. This method seems more convincing since it 
does not require pre-setting the shape of the failure mecha-
nism and takes into account the entire circular tunnel face 
instead of an inscribed ellipse to this circular area. Up to 
now, this method has been successfully used to assess the 
tunnel face stability in soils or fractured rock masses and 
proves to be an efficient way for quick estimations of criti-
cal face pressures in practical tunnel designs (Sun et al. 
2018; Li et al. 2021).

In recent years, tunnel face stability in weak rock masses 
has become a hot topic due to the large-scale infrastructure 
construction undertaken in developing countries. Hoek and 
Brown (1980) proposed the original version of Hoek–Brown 
failure criterion. After several revisions and additions, the 
state-of-the-art Hoek–Brown failure criterion is available 
for stability analysis of rock structures, such as rock slopes, 
underground caves and tunnels (Hoek and Brown 1997; 
Hoek et al. 2002). Saada et al. (2013) performed the pseudo-
static analysis of tunnel face stability in Hoek–Brown rock 
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masses. The influence of seismic loadings is taken into con-
sideration. Pan and Dias (2018) presented a probabilistic 
approach for face stability of a rock tunnel by using polyno-
mial chaos expansion (PCE) method. Luo and Yang (2018) 
proposed the analytical solution to stability of shallow tunnel 
roof with arbitrary profile under pore water pressure.

However, those studies treated the rock masses as a 
homogeneous medium while the properties of real rock 
masses are always spatially varying. Previously published 
works show that the spatial variability of geomaterials has a 
significant influence on geotechnical structures (Zhang and 
Goh 2012; Jiang et al. 2015; Yang and Wang 2011). Fenton 
and Griffiths (2003) presented an approach to predict the 
bearing capacity of a footing composed of spatially random 
cohesive-frictional soils. Pan and Dias (2017) performed 
the probabilistic stability analysis of tunnel face in spatially 
random soils, which is simulated by Karhunen–Loève (K–L) 
expansion. Guo et al. (2019) investigated the failure prob-
ability of the support lining of a shallow circular tunnel con-
sidering soil spatial variability. Traditional opinion holds 
that intact rock can be considered a homogeneous medium. 
However, for heavily fractured rock masses, the spatial vari-
ability of rock properties probably has a significant influence 
on the stability of a rock structure. Sow et al. (2017) pro-
posed a methodology for analyzing the spatial variability of 
shear strength along the joints of rock mass, and a case study 
involving the sliding stability of a rock dam was presented. 
Chen et al. (2019) calculated the failure probability of cross-
ing tunnels considering the spatial variability of rock prop-
erty where the numerical package FLAC3D was adopted as 
a deterministic computational model.

Although face stability assessment for tunnels excavated in 
Hoek–Brown rock masses have been reported in many stud-
ies, few attempts have been made to address the influence 
of spatial variabilities of Hoek–Brown parameters. For this 
purpose, an efficient method is developed for the failure prob-
ability assessment of a rock tunnel face considering the spatial 
variabilities of Hoek–Brown parameters. The 3D rotational 
failure mechanism proposed by (Mollon et al. 2011a) is intro-
duced to construct the deterministic computational model. 
The spare polynomial chaos expansion (SPCE) proposed by 
(Blatman and Sudret 2010, 2011) is employed to assess the 
failure probability of tunnel face. The innovation of presented 
methodology is mainly reflected in the following four aspects: 
(1) the Hoek–Brown parameters are modeled as spatially ran-
dom variables by means of the random field theory; (2) the 
multi-tangent method is proposed to integrate the nonlinear 
Hoek–Brown failure criterion into the kinematical approach 
of limit analysis; (3) the multi-tangent line method allows 
the rock masses at different locations to have different shear 
strength parameters according to their Hoek–Brown param-
eters and the stress state; (4) a SPCE-based surrogate model 

is constructed for probabilistic analysis with a significant 
reduction of calls to the computationally expensive original 
model. Thanks to its efficient computing capability, the pro-
posed method can be used as a tool for tunnel face stability 
analysis with a wide range of parameters. The obtained design 
charts or results can give much convenience and practicality in 
guiding engineering design and fast safety assessment.

2  Face Stability in Spatially Random Hoek–
Brown Rock Masses

2.1  Hoek–Brown Failure Criterion 
and Multi‑Tangent Method

The nonlinear Hoek–Brown failure criterion is extensively used 
to characterize the failure behavior of intact rock and heavily 
fractured rock masses (Renani and Martin 2020; Michalowski 
and Park 2020). The tangent technique is commonly used to 
extend the Hoek–Brown failure criterion into the kinematical 
approach of limit analysis (Yang and Yin 2010; Huang et al. 
2021). This method uses a single tangent line to represent the 
uniform stress distribution along the entire failure surface; how-
ever, it fails to consider that the stress distribution along the fail-
ure surface is not uniform, due partly to the spatial variability 
of rock properties and partly to the variation of burial depth of 
tunnels. To solve this issue, the multi-tangent method is intro-
duced. The principle idea is to use different tangent lines of the 
Hoek–Brown failure envelope to characterize the strength of 
rock masses at different locations. On this basis, the equivalent 
cohesions and equivalent internal friction angles at the failure 
surfaces can be obtained for the subsequent optimization cal-
culations (Dadashzadeh et al. 2017).

Before introducing the multi-tangent method, we first 
review the Hoek–Brown failure criterion which takes the 
form of

where σ1 and σ3 denote the maximum and minimum princi-
pal stresses, respectively; σc refers to the uniaxial compres-
sive strength of rock masses. The parameters of m, s and n 
are expressed as

(1)�1 = �3 + �c

(
m
�3

�c
+ s

)a

,

(2)m = mi exp
(
GSI − 100

28 − 14D

)
,

(3)s = exp
(
GSI − 100

9 − 3D

)
,
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where mi represents the hardness of the rock mass rang-
ing between 1 and 35; GSI indicates the geological strength 
index changing from 5 for heavily fractured rock masses 
to 100 for intact rock; D is the artificial disturbance factor 
which is suggested to take 0 for tunnels driven by the tunnel 
boring machine (TBM) due to its limited disturbance to the 
nearby rock masses. In the framework of limit analysis, the 
nonlinear Hoek–Brown criterion often involves the work rate 
computations in the form of a pair of equivalent parameters, 
namely the equivalent cohesion ct and the equivalent inter-
nal friction angle φt. Hoek et al. (2002) presents a strategy 
to cut the strength envelope of rock masses in the normal-
shear stress plane using a straight line whose intercept on 
shear stress axis and inclination are considered as ct and φt. 
However, this practice fails to yield the strict upper-bound 
solution because the strength of rock masses determined by 
a secant line can be smaller than the one by the convex enve-
lope. To solve this issue, researchers replaced the nonlinear 
strength envelope with tangent lines (Yang and Yin 2010; 
Senent et al. 2013). Pan et al. (2017) derived the analytical 
solution of ct and φt by analyzing plastic potential function 
along the rock failure surface, resulting in

where

It can be seen that ct and φt are the functions of the mini-
mum principal stress σ3. With the known Hoek–Brown param-
eters, the tangent line is determined by the minimum principal 
stress at any point inside the rock masses. It is the basis of 
the proposed multi-tangent method to determine the space-
dependent ct and φt. The implementation of multi-tangent 
method in a random field is detailed in Sect. 2.3

(4)a =
1

6

[
exp

(
−
GSI

15

)
− exp

(
−
20

3

)]
+

1

2
,

(5)�t = arctan

⎛⎜⎜⎜⎝

At

√
At + 1 + BtCt
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1∕2∕

√
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√
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�
At + 1

�
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,

(6)ct =
�cCt

√
1 + At

2 + At

−

�
�3 +

Ct

2 + At

�
tan�t,

(7)At = am

(
m�3
�c

+ s

)a−1

,

(8)Bt = a(a − 1)m2

(
m�3
�c

+ s

)2(a−1)

,

(9)Ct =

(
m�3

�c
+ s

)a

.

2.2  The Random Field Representation Using K‑L 
Expansion

The fractured rock masses often show a nature of spatial vari-
ability which can be effectively modelled by the random field 
theory. As a TBM usually makes a minimal disturbance to the 
surrounding rock masses, it is only necessary to consider the 
spatial variability of mi, GSI and σc. In many practical engi-
neering problems, the lognormally distributed random field is 
more advisable than the normally distributed one to represent 
the non-negative parameters of rock masses. μi, σi, respectively, 
refer to the mean value and the standard deviation of parameter 
i, where i can be mi, GSI or σc. By referring to the correspond-
ing standard normal random field (zero mean and unit vari-
ance), the lognormal random field is given as

where x is a vector representing the spatial location, Glni 
is the standard normal random field, and μlni, σlni can be 
obtained by

The standard normal random field is often approximately 
represented by a M-term K–L expansion,

where M is the number of truncation terms; ξj is a set of 
independent variables that follow the standard normal distri-
bution; λj and ψj(x) are, respectively, the eigenvalues and the 
eigenfunctions of the autocorrelation function whose ana-
lytical solutions can be found in (Phoon and Ching 2014).

In practical applications, the error of Eq. (13) is inevi-
table, but it can be controlled within an acceptable limit 
by error estimation. The commonly used approach for error 
estimation on the K–L expansion is given as

(10)Gi(�) = exp
[
�ln i + �ln iGln i(�)

]
, i = mi,GSI, �c,

(11)�ln i =

√√√√ln

(
1 +

�2
i

�2
i

)
,

(12)�ln i = ln�i −
�2
ln i

2
.

(13)Gln i(�) ≈

M∑
j=1

√
�j�j�j(�),
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where Ω is the domain of random field. The larger the value 
of M is, the higher the accuracy of K–L expansion will be.

In the context of random field theory, the autocorrela-
tion function is introduced to define the correlation between 
two arbitrary spatial points. In natural deposits, it can be 
expected that the correlation between two certain points in 
physical space decreases with the increase of the distance 
between them. This characteristic can be taken into consid-
eration by the squared exponential autocorrelation function 
in a 3D random field which is given as

(14)�err =
1

Ω ∫Ω

[
1 −

M∑
j=1

�j�
2
j
(�)

]
dΩ,

where (x1, y1, z1), (x2, y2, z2), respectively, denote the spatial 
coordinates of two points, θh and θv, respectively, denotes 
the horizontal and vertical autocorrelation distances. It is 
necessary to distinguish the horizontal and vertical autocor-
relation distances since the natural deposits usually show 
much stronger spatial variability along vertical direction.

In addition to the autocorrelation of a random field, there 
probably exists the cross-correlation between two random 
fields which should be fully considered in the random field 
generations. Let �i,j denote the cross-correlation between the 
random fields of i and j. The lognormal random field of j can 
be obtained as

(15)

�i = exp

{
−

[(
x1 − x2

�h

)2

+

(
y1 − y2

�h

)2

+

(
z1 − z2

�v

)2
]}

,
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Fig. 1  Schematic diagram for a 3D failure mechanism of tunnel face 
with a vertical stress field, b 3D random fields representing the spa-
tially varying Hoek–Brown parameters mi, GSI, σc, c converting the 

Hoek–Brown failure criterion to Mohr–Coulomb failure criterion for 
element n with a multi-tangent method
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where �ln i,j is the cross-correlation coefficient between lni 
and lnj. Fenton and Griffiths (2008) gave the relationship 
between �i,j and �ln i,j as follows:

where COV(i) represents the coefficient of variation of ran-
dom field i.

2.3  The 3D Rotational Failure Mechanism 
with Multi‑tangent Method

The advanced 3D rotational failure mechanism proposed by 
(Mollon et al. 2011a) is adopted to characterize the face fail-
ure of a tunnel in spatially random Hoek–Brown rock masses. 
The 3D lognormal random field is employed to model the 
spatial variability of Hoek–Brown parameters, mi, GSI and 
σc. As shown in Fig. 1a, a tunnel with a diameter of d and a 
burial depth of C is excavated in fractured Hoek–Brown rock 
masses. The projection of the failure mechanism on its sym-
metry plane is outlined by curves AF and BF, where points A, 
B denote the tunnel roof and the tunnel invert, respectively. 
O is the rotation center and ω is the angular velocity of the 
failure mechanism. E is the center point of the circular tun-
nel face; βA, βB, βE, respectively, represent the inclinations of 
OA, OB and OE, rE representing the length of OE. A global 
coordinate system X–Y–Z is built with its origin at the point 
A. For the realization of a random field, the domain Ω that 
covers the possible range of tunnel face failure is discretized 
into rectangular elements with the side length equal to δ in 
both the horizontal and vertical directions. The magnitudes 
of Hoek–Brown parameters at each grid point are calculated 
by the K–L expansion, so the magnitudes at any element can 
be obtained by taking the average value of its eight nodes.

In previously published works, the strength of rock masses 
was characterized by a single tangent line to the Hoek–Brown 
failure envelope (Yang and Yin 2004; Yang and Huang 2011). 
This can be reasonable for homogeneous rock masses, but not 
for spatially random rock masses. As shown in Fig. 1b, the 
potential failure domain ahead of tunnel face is discretized 
into numerous elements where the parameters mi, GSI and σc 
are represented by the corresponding random fields. In order 
to highlight the spatially varying properties of rock masses, the 
tangent line to the Hoek–Brown strength envelope is defined 
for each element in terms of the Hoek–Brown parameters as 
well as the current stress state (see Fig. 1c). Equations (5) and 
(6) show that the tangent line is dependent on the minimum 

(16)Gj(�) = exp
{
�ln j + �ln j

[
Gln i(�)�ln i,j + Gln j(�)

√
1 − �2

ln i,j

]}
, j = mi, GSI, �c, j ≠ i,

(17)�ln i,j =
ln
[
1 + �i,jCOV(i)COV(j)

]
√

ln
[
1 + COV2(i)

]
ln
[
1 + COV2(j)

] ,

principle stress of the element. For this purpose, the rock 
masses of interest are divided into several layers with equal 
spacing along burial depths. The minimum principle stresses 
of all elements in one layer is considered to be the same. The 
number of layers is artificially determined according to the 
calculation accuracy while the minimum principle stress for 
each layer is obtained by an optimization procedure which will 
be elaborated in the following. This process to calculate the 
equivalent shear strength parameters of spatially random rock 
masses in each element is called the multi-tangent method.

Incorporating with the discretization-based 3D rotational 
failure mechanism, the tunnel face stability can be assessed 
with an analytical representation. The critical face pressure 
of a tunnel in spatially random Hoek–Brown rock masses is 
formulated as

where mi, GSI, σc and D are input parameters related to 
the random fields; the remaining parameters are subjected 
to the constraints of Eq. (19) and numerically determined 
by an optimization procedure coded within the MATLAB 
platform; βE and rE are geometric parameters defining the 
rotational failure mechanism; 

[
�3
]
n
 denotes the minimum 

principle stress of the element n in the vertical stress field 
which is associated with ct, φt; γ is the unit weight of rock 
masses; l is the number of layers in the domain Ω; hn is 
the burial depth of the element n. More explanations about 
Eq. (18) are given in Appendix.

3  Sparse Polynomial Chaos Expansion 
Method

3.1  The Polynomial Chaos Expansion

The PCE method is an effective tool to implement proba-
bilistic analysis. It usually works as a surrogate model to 
predict the responses of a complex system with a signifi-
cant reduction of computational time and cost (Mollon 
et al. 2011b; Su et al. 2018; Gong et al. 2021). Suppose 

(18)�T = f
(
mi,GSI, �c,D|�E, rE,

[
�3
]
n
, n = 1, 2, ..., l

)
,

(19)

⎧⎪⎪⎨⎪⎪⎩

0 < 𝛽E <
π

2
d

2
< rE < 10d

−𝜎c <
�
𝜎3
�
n
< 𝛾hn

.
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a computational model F contains L independent random 
variables denoted as ξ = [ξ1, ξ2,…, ξL], the response Y can 
be represented by a PCE:

where ψα(ξ) are the multivariate polynomials; ηj are the 
unknown coefficients of the PCE; P is the number of terms 
in the truncated PCE. The multivariate polynomial is equal 
to the product of a series of univariate polynomials H�i

(
�i
)
 , 

namely

where α = [α1,…, αi,…, αL], �i ∈ ℕ indicating the degree of 
the univariate polynomial whose form depends on the distri-
bution type of random variables (Phoon and Huang 2007; Xu 
and Wang 2019). For independent normal random variables, 
the Hermite polynomials can be used to build the analytical 
representation of the computational model. For correlated 
non-normal random variables, the Nataf transformation or 
Cholesky transformation can be used for de-correlation and 
the isoprobabilistic transformation for standard normaliza-
tion. The details about the family of multivariate Hermite PC 
expansions can be found in (Mollon et al. 2011b).

For practical applications, a PCE must be reasonably 
truncated according to a certain rule in order to maintain 
a balance between the accuracy and the computational effi-
ciency. A common truncation scheme suggests that only 
those multivariate polynomials whose total degree is not 
bigger than the given PCE order p are retained in Eq. (20), 
which can be expressed in the form of a collection as

This truncation scheme can be effective for a computa-
tional model with low-dimensional input random variables. 
However, for a high-dimensional problem with 100 to 200 
random variables, it becomes computationally expensive. 
The hyperbolic truncation scheme is proposed for high-
dimensional problems by defining the q-quasi-norm of α as 
(Blatman and Sudret 2010)

The hyperbolic truncation scheme requires that the q-quasi-
norm is not bigger than p which can be presented as

(20)Y = F(�) ≅

P∑
j=1

�j��(�),

(21)��(�) =

L∏
i=1

H�i

(
�i
)
,

(22)A =

{
� =

[
�1,⋯ , �i,… , �L

]
∶

L∑
i=1

�i ≤ p

}
.

(23)‖�‖q =
�

L�
i=1

𝛼
q

i

� 1

q

, 0 < q < 1.

The smaller the value of q is, the less the PCE terms are 
retained.

Then the least-square regression method can be used 
to determine the unknown coefficients of the PCE. Con-
sidering an experimental design (ED) χ with a size of N, 
� =

[
�1,⋯ , �i,⋯ , �N

]T  where �i =
[
�i
1
, �i

2
,⋯ �i

L

]
 ,  the 

responses of the model can be obtained by running the origi-
nal computational model, say the model used for determining 
necessary face pressures in Eq. (18), for each sample in the 
ED, denoted as Y =

[
Y1,⋯ , Yi,⋯YN

]T . According to the 
least-square minimization method, the PCE coefficients are 
obtained as

where �̂ =
[
�̂1, �̂2,⋯ �̂P

]T  and Ψ is a space-independent 
matrix with dimensions of N × P computed from the basis 
of the polynomials. The size N of the ED must ensure that 
the matrix ΨTΨ is well conditioned, otherwise the ED should 
be enriched.

3.2  The PCE‑Based Global Sensitivity Analysis

Even though the hyperbolic truncation scheme can effectively 
reduce the retained PCE terms, the computational time could 
still be huge when handling high-dimensional problems. The 
global sensitivity analysis (GSA) helps to identify the impor-
tant random variables among a large number of random vari-
ables and discards the less important ones, thereby reducing 
the problem dimension. The Sobol’s indices are widely used in 
the GSA which are capable of providing the influence of one 
or a group of random variables on the variance of the model 
responses. Based on the PCE method, the analytical solution 
for Sobol’s index of a single random variable is expressed as

where ηj is the coefficient of the PCE; Ai is a subset of A 
defined by

and

(24)A =
�
� =

�
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�
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�
.
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� =
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]
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}
,

(28)E
[(
��
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Since the PCE order has little influence on the Sobol’s 
indices, it is possible to reduce the problem dimension by 
finding the important variables with a low-order PCE, such 
as second or third order, and then building a high-order PCE 
with the reduced dimension (Al-Bittar and Soubra 2014). 
An effective scheme to discard the less important random 
variables was proposed by (Al-Bittar and Soubra 2014). The 
value of 2% of the Sobol’s index of the first important ran-
dom variable is regarded as a threshold. Only random vari-
ables with Sobol’s indices bigger than this threshold are kept 
to build the high order PCE. Other random variables that 
cannot reach this threshold are considered as deterministic 
parameters and replaced by their mean values.

3.3  The Adaptive Sparse PCE Method

To further improve computational efficiency of the PCE, 
a sparsity scheme was proposed by (Blatman and Sudret 
2010) to approximate the computational model with a small 
number of significant basis functions in the PCE. This is 
called as a SPCE. In this paper, an adaptive regression-based 
algorithm is used to automatically detect the significance of 
each term for building a SPCE and the leave-one-out cross-
validation is employed to check the accuracy of a SPCE 
model. This algorithm roughly consists of the following two 
steps: the forward step and the subsequent backward step. 
The forward step aims to select the significant candidate 
terms from the PCE basis determined by Eq. (24). In this 
step, the coefficient of determination R2 is considered as an 
indicator, by which a term leading to a significant increase 
of R2, greater than εcut, can be retained. In the backward step, 
the less important terms in the retained PCE basis, namely 
those leading an insignificant reduction of R2, smaller than 
εcut, are discarded. These two steps are alternately performed 

until either the target accuracy Q2
tgt

 or the maximum PCE 
order pmax is reached. The details about the stepwise regres-
sion algorithm and the SPCE are available in (Blatman and 
Sudret 2010).

4  Probabilistic Model for a Rock Tunnel Face 
with Spatial Variability

4.1  Statistics of Hoek–Brown Parameters 
for Fractured Rock Masses

The latest version of Hoek–Brown failure criterion is able to 
characterize the tunnel face failure varying from the intact 
rock to the heavily fractured rock masses. To give reasonable 
ranges of the Hoek–Brown parameters in low-quality rock 
masses, the researchers have made a large number of statisti-
cally based estimations of Hoek–Brown parameters (Hoek 
et al. 2002; Sari et al. 2010; Li et al. 2012; Senent et al. 
2013). It is reported that in heavily fractured rock masses, 
the mean value of mi ranges from 4 to 15, GSI from 10 to 30 
and σc from 1 to 30 MPa. Due to the inherent uncertainties in 
nature rock deposits, the coefficients of variations (COVs) of 
Hoek–Brown parameters are of great importance for tunnel 
face stability assessment. In addition, studies considering 
the spatial variability of rock masses should emphasize the 
values of autocorrelation distances which are crucial param-
eters in building a random field.

Table 1 summarizes the commonly used statistical prop-
erties of Hoek–Brown parameters as well as the correspond-
ing research methods and topics in previously published 
works. Totally speaking, COV(mi) is bounded between 10 
and 20% while COV(GSI) ranges from 3 to 25%. COV(σc) 

Table 1  A summary of COVs and spatial variability of Hoek–Brown parameters in previous studies

Refs Method Topic COV/% Autocorrelation 
distance/m

mi GSI σc D θh θv

Al-Bittar and Soubra 
2017)

Proabilistic analysis; SPCE; Random field Bearing capacity of a 
strip footing

0 5–10 12.5–37.5 0 0.5 ~ 100 0.5 ~ 100 

Lü and Low 2011) Probabilistic analysis; Response surface 
method; Second-order reliability method

Tunnel convergence of 
rock excavations

13 10 25 0 – – 

Sari et al. 2010) Stochastic modeling technique; Monte 
Carlo simulation

Rock mass properties 
estimation

15.4–24.6 7.7–15.3 74.7–44.3 0 – – 

Pan and Dias 2018) Probabilistic analysis; Limit analysis; PCE Tunnel face stability in 
rock masses

11 18 22 15 – – 

Li et al. 2012) Probabilistic analysis; Monte Carlo simula-
tion; Limit analysis

Rock slope failure 12.50 3.3–5.6 25 0 – – 

Lü et al. 2018) Probabilistic analysis; Response surface 
method; Random field

Rock tunnnel convergence 17 8 37.50 0 4–40 4–40 

Song et al. 2011) Deterministic analysis; FLAC3D simula-
tion; Random field

Rock tunnel behaviors – 6–25 18–43 0 0.1–10 0.1–0
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has a relatively wide range from 10 to 40%. (Sari et al. 2010) 
presented a COV(σc) as big as 74.7% which came from the 
statistical analyses of Ankara andesites at three distinct 
weathering grades. D often takes 0 for underground exca-
vations representing a minimal disturbance to surrounding 
rocks, such as a shield-driven excavation.

4.2  Probabilistic Stability Analysis

Based on the above analysis, an analytical metamodel can 
be constructed with the SPCE method for the representation 
of tunnel face failure in spatially random Hoek–Brown rock 
masses. In combination of Monte Carlo simulation (MCS), 
this method can give the probabilistic density function 
(PDF) of critical face pressure with only a few calls to the 
original computational model. It is assumed that a uniform 
pressure σU is applied on the tunnel face, so the performance 
function can be given as

where σT is the critical face pressure computed by Eq. (18) 
or by the obtained metamodel. gT ≥ 0 indicates a stable tun-
nel face while gT < 0 corresponds to an unstable tunnel face. 
In this paper, σU is modelled as a random variable that fol-
lows the lognormal distribution with the COV equal to 15%. 

(29)gT = �U − �T ,

Generate a MCS population with a size of
N  using Latin Hypercube sampling MCS

Evaluate the samples with the obtained
metamodel and compute P with Eq. (30) f

COV(P )<0.05f

Enrichment of NMCS

No

Yes

No

Build a low-order PCE with the hyperbolic
truncation scheme using Eq. (24)

Perform the PCE-based GSA to reduce the
dimension of input random variables

The accuracy
 Q or the order p  isgtg max

reached

Yes

Increase the order of SPCE

Generate m , GSI, σ  for the domain Ωi c

based on K-L expansion 

Determine the domain Ω that can
cover the entire failure mechanism

Error estimation using
Eq. (14)

Enlargement of M

Unacceptable

Acceptable

3D random field
generation

Initialize [σ ]  ( n=1,2,...,l )3 n

for the domain Ω

Calculate the values of c , φ  usingt t

Eq. (5) and Eq. (6) for the domain Ω

    Implementation of
multi-tangent method

Generate the 3D discretized failure
mechanism

Build the work equation within the
framework of limit analysis method

Execute the optimization program

    Determination of
critical face pressure

Analytical metamodel
construction

Failure probability
     calculation

Input data

Responses

Start

End

Initialize Q , ε , p  and built the SPCEgtg cut max

with the  stepwise regression algorithm  
2

2

Step 1
Step 2

Step 3

Step 4
Step 5

Deterministic Analysis
Probabilistic Analysis

Fig. 2  Flow chart of the proposed probabilistic model

Table 2  Statistical properties of input variables

Random 
variable

Mean value COV (%) Distribution type Cross-correla-
tion coefficient

mi 5 11 Lognormal �
m

i
,GSI = −0.25

GSI 15 18 Lognormal �
GSI,�

c
= 0.3

σc 1 MPa 22 Lognormal �
m

i
,�

c
= −0.4

σU – 15 Lognormal -
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The failure probability of tunnel face Pf can be obtained by 
a metamodel-based MCS as follows.

where NMCS denotes the size of MCS population; i refers to 
the i-th individual in the MCS population; I(x) is an indica-
tor function with I(x) = 1 for x < 0 and I(x) = 0 for x ≥ 0. The 
COV of Pf can be computed by

where COV(Pf) < 0.05 means a reliable result for practical 
applications.

Figure 2 presents the detailed process to perform the 
probabilistic stability analysis of tunnel face in spatially 
random Hoek–Brown rock masses with a multi-tangent 
method. It consists of five steps with a progressive relation-
ship between them. The first three steps focus on a deter-
ministic computational model of tunnel face failure using 
the kinematical approach of limit analysis and the last two 
steps aim to compute the failure probability of tunnel face 
by combining SPCE method with MCS.

1.  3D random field generation. The 3D random fields are 
generated using K–L expansion to model the spatial var-
ying Hoek–Brown parameters of rock masses ahead of 
tunnel face. Based on the literature given in Table 1, the 
basic parameter settings for input variables in this paper 
are provided in Table 2. The lognormal distribution is 
used to exclude the negative values of variables that may 
be generated in stochastic sampling. The diameter of 
tunnel face d is taken as 10 m. The domain of random 
field is bounded in the range of Ω: − 5 m < X < 5 m, 
− 10 m < Y < 10 m, 0 < Z < 10 m, which can guarantee 
that the failure mechanism does not exceed this range. 
The element size δ is set to 0.5 m which is fine enough 
for good results. The unit weight of rock masses γ is set 
to 25 kg/m3. Shokri et al. (2019) gave the reference val-
ues of the autocorrelation distances θh, θv by collecting 
data from different published papers. Based their recom-
mendations, this paper considers the autocorrelation dis-
tances of θh = 10 m, 20 m, 30 m, 40 m and θv = 4 m, 6 m, 
8 m, 10 m. Three lognormal random fields, respectively 
corresponding to mi, GSI and σc, are generated based on 
the K–L expansion. One realization of the three random 
fields will assign values of mi, GSI and σc to each grid 
point of the elements which constitutes the basis of sub-
sequent calculations.

2.  Implementation of multi-tangent method. As mentioned 
above, the single tangent line to represent the rock 

(30)Pf =
1

NMCS

NMCS∑
i=1

I
[
gT (i)

]
,

(31)COV
(
Pf

)
=

√
1 − Pf

NMCSPf

,

strength of the whole failure mechanism is not effective 
any more for spatially random rock masses. To take into 
account this issue, a series of tangent lines are employed 
to determine the equivalent shear strength parameters 
ct and φt for each element in the random fields. In each 
element, the Hoek–Brown parameters can be calculated 
by averaging the values of mi, GSI or σc at the eight grid 
points of the element. With the initialized value of mini-
mum principle stress σ3 of each element, the equivalent 
shear strength parameters can be obtained by Eqs. (5) 
and (6). Here the value of σ3 is a parameter dependent 
on an optimization procedure. To avoid excessive com-
puting burden, the rock masses are divided into several 
layers with equal spacing of hst along the depth and σ3 
takes the same value for one layer. In this paper, hst is 
set to 1 m. As a consequence, there are 20 parameters, 
namely [σ3]n (n = 1,2,…,20), to be optimized for the rock 
masses from Y = − 10 m to Y = 10 m. The optimization 
procedure will be introduced in the next step.

3.  Determination of critical face pressure. With the deter-
mined Hoek–Brown parameters at each element, the 
equivalent shear strength parameters of rock masses can 
be calculated. Then the 3D rotational failure mechanism 
of tunnel face is generated point by point. Details about 
this process can be found in (Mollon et al. 2011a). An 
optimization procedure coded within the framework 
of MATLAB platform is used to search the critical face 
pressures with the object function of Eq. (18) where the 
value of l is 20. It is noted that there are 22 optimiza-
tion variables in total which seems to be intractable for 
the traditional optimization scheme. In this study, the 
Genetic Algorithm (GA) is combined with the Sequence 

Table 3  Values of M for cases with different autocorrelation distances

No θh/m θv/m �
err

 in Eq. (14) M

1 10 4 9.90 ×  10–2 225
2 10 6 9.85 ×  10–2 175
3 10 8 9.87 ×  10–2 135
4 10 10 9.96 ×  10–2 110
5 20 4 9.97 ×  10–2 95
6 20 6 9.91 ×  10–2 65
7 20 8 9.95 ×  10–2 50
8 20 10 9.47 ×  10–2 45
9 30 4 9.68 ×  10–2 60
10 30 6 9.81 ×  10–2 40
11 30 8 9.94 ×  10–2 30
12 30 10 9.90 ×  10–2 25
13 40 4 9.59 ×  10–2 50
14 40 6 9.38 ×  10–2 35
15 40 8 9.85 ×  10–2 25
16 40 10 8.77 ×  10–2 25
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Quadratic Programming (SQP) to search for the optimal 
set of parameters which maximize Eq. (18).

4.  Analytical metamodel construction. Once the random 
fields of Hoek–Brown parameters and the correspond-
ing model responses are determined, they can be used 
to build the SPCE metamodel. This process has been 
elaborated in Sect. 3. The SPCE that satisfies the stop-
ping criterion is taken as an analytical metamodel for 
evaluating the failure probability of tunnel face. In this 
step, the involved parameters for the SPCE construction 

are initialized as: the target accuracy Q2
gtg

 of 0.999, the 
cutoff value εcut of 5 ×  10–5, the maximal order pmax of 5 
and q = 0.7.

5.  Failure probability calculation. This step is a traditional 
MCS process by replacing the original deterministic 
model with the obtained analytical metamodel. The 
Latin Hypercube Sampling is used to generate the MCS 
samples as evenly as possible in the sampling space. 
The failure probability of tunnel face is calculated with 
Eq.  (30). The result that satisfies COV(Pf) < 0.05 is 
accepted as the final failure probability.

(a) (b) (c)

(d) (e) (f)

Fig. 3  Illustration for a tunnel face failure, one realization of random fields of, b mi, c GSI, d σc, and the computed random fields of, e ct, f φt



3556 T. Li et al.

1 3

5  Results and Discussions

5.1  Determination of M in the K–L Expansion

The number of retained terms in a K–L expansion M should 
be determined prior to the random field generation. It can 
be achieved by checking the error produced by the trun-
cated K–L expansion iteratively until the error is less than 
a prescribed one. In this paper, the prescribed error is set to 
10%. The error estimation is performed using Eq. (14) which 
should be satisfied to determine the value of M. The results 

are given in Table 3 where θh ranges from 10 to 40 m and θv 
from 4 to 10 m. It can be seen that less terms are retained in 
the K–L expansion with a bigger autocorrelation distance.

5.2  Discussions on the Deterministic Computational 
Model

The deterministic computational model of tunnel face failure 
is analytically expressed as an implicit function of Eq. (18), 
which is involved with the random fields, the multi-tangent 
method and the kinematically admissible velocity field. 

Table 4  Comparison with the 
results given by (Senent et al. 
2013)

Case Rock parameters Critical face pressure/kPa Difference between two 
limit analysis method (%)

mi GSI σc/MPa γ/kN·m−3 FLAC3D 
from 
(Senent 
et al. 
2013)

Limit 
analy-
sis by 
(Senent 
et al. 
2013)

Presented limit 
analysis solu-
tion

1 5 10 1 25 61.9 52.0 56.5 7.96
2 5 15 1 25 38.6 36.8 39.19 6.10
3 5 20 1 25 26.3 26.8 29.36 8.72
4 5 25 1 25 18.9 20.3 22.03 7.85
5 5 10 5 25 15.3 17.1 18.78 8.95
6 5 15 5 25 8.30 9.80 10.26 4.48
7 5 20 5 25 5.30 5.20 5.29 1.70
8 5 25 5 25 2.40 2.30 2.47 6.88
9 10 10 1 25 26.4 27.6 29.97 7.91
10 15 10 1 25 17.1 18.9 20.69 8.65

(a) (b) (c)

Fig. 4  Views of the critical failure mechanisms of Case 1 in Table 4 a 3D view, b side view, c front view
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Figure 3a illustrates the tunnel face excavation in spatially 
random Hoek–Brown rock masses. Figure 3b–d shows one 
realization of random field generations, respectively, for 
mi, GSI, and σc with their statistical properties in Table 2 
and the autocorrelation distances of θh = 10 m, θv = 4 m. 
In this model, the total number of parameters that need to 
be optimized is up to 22, including 2 parameters determin-
ing the geometrical pattern of the failure mechanism and 
20 parameters involved with the equivalent shear strength 
parameters of rock masses in the domain Ω. By performing 
the above-mentioned optimization program, the final result 
can be obtained with the corresponding random fields of ct 
and φt as shown in Fig. 3e, f.

In order to validate the proposed deterministic model, 
the cases studied in (Senent et  al. 2013) are revisited 
here. This literature did not consider the spatial vari-
ability of Hoek–Brown rock masses, but assumed a linear 

stress distribution with depth. In each case, the values of 
Hoek–Brown parameters in (Senent et al. 2013) are used to 
replace the mean values in Table 2. The COVs are set to 0 
which indicates a uniform rock mass without spatial vari-
ability. These settings guarantee the same input data with 
the study of (Senent et al. 2013). A further comparison with 
the finite difference method of FLAC3D has been performed 
in (Senent et al. 2013) which will be referred to but not 
to reproduced. The comparison results are summarized in 
Table 4. It can be observed that the critical face pressures 
estimated by the presented approach are bigger than the 
ones given by (Senent et al. 2013) in all cases. The results 
are relatively in good agreement with each other despite 
the biggest difference of 8.95%. This is partly because the 
equivalent shear strength parameters are derived from the 
plastic potential function analysis in the presented research 
(see Eqs. (5) and (6)), and partly due to the vertical stress 
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field optimization rather than a predefined stress distribu-
tion in (Senent et al. 2013). Figure 4 presents the views of 
the failure mechanism of Case 1 in Table 4 provided by the 
presented approach. It is of interest to see that the failure 
surface is not as smooth as the one plotted by (Senent et al. 
2013). This is attributed to the spatial variability of rock 
masses considered in this study.

5.3  The Probability Density Functions of Critical 
Face Pressures

Figure 5 shows the PDFs of the normalized critical face 
pressure σT/γd with different autocorrelation distances. The 
statistical properties of input variables listed in Table 2 are 
used for the following studies. By comparing Fig. 5a, b, 
we can know that the variation of vertical autocorrelation 
distance has a stronger influence on the PDF curves than 
that of the horizontal one. Both the two plots show that the 

increase of autocorrelation distances leads to a lower but 
wider PDF curve of the normalized critical face pressure. In 
other words, the decrease of autocorrelation distances results 
in a more concentrated distribution of critical face pressures 
which indicates a smaller required face pressure for a target 
failure probability.

Figure 6 presents the Sobol’s indices of mi, GSI and σc 
with the autocorrelation distances corresponding to the 
cases in Fig. 5. According to the Sobol’s indices, the most 
important Hoek–Brown parameter influencing tunnel face 
stability is the GSI, which is followed by σc and mi. Besides, 
it is interesting to see that the autocorrelation distance has 
a limited influence on the Sobol’s indices. As we known, 
the random field gradually approaches a random variable 
as the autocorrelation distance increases. This implies that 
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taking soil parameters as random fields or random variables 
has no significant difference in sensitivity analysis of input 
parameters.

5.4  The Failure Probability of Tunnel Face

By giving a series of mean values of applied face pressure 
σU, the failure probabilities of tunnel face are calculated and 
plotted in Fig. 7. σU is considered as a lognormally distrib-
uted random variable with COV(σU) = 15% and normal-
ized by γd. It is not surprising that the failure probability 
decreases with the increase of σU. By referring to this figure, 
one can find out the necessary face pressure corresponding 
to a target failure probability. The increase of autocorrelation 
distance generates a bigger failure probability of tunnel face, 
which is consistent with the conclusions from Fig. 5. Thus it 
can be speculated that ignoring the spatial variability of rock 
properties leads to a conservative result in the engineering 
design. It is of interest to find a similar observation with 
Fig. 5 that the vertical autocorrelation distance has a more 
obvious effect on the failure probability than the horizontal 
one.

5.5  The Influence of Cross‑Correlations of Random 
Variables

An extensive database of rock triaxial tests shows that mi, 
GSI and σc are correlated rather than completely independ-
ent (Zeng et al. 2016; Shen and Karakus 2014). Zeng et al. 
(2016) proposed a correlation relationship among these 
parameters by analyzing several data groups of mi, GSI 
and σc for different rock types. The cross-correlation coef-
ficients of the input variables are given in Table 2. This 
section is devoted to the influence of cross-correlations of 
Hoek–Brown parameters on the PDF curves and the fail-
ure probability of tunnel face. Figure 8 presents the PDF 
curves of normalized critical face pressures, respectively, 
corresponding to the correlated and uncorrelated conditions 
with θh = 10 m and θv = 4 m. The correlated condition take 
into consideration the cross-correlations among the random 
fields of mi, GSI and σc while the uncorrelated condition 
does not consider the cross-correlations. It is observed that 
ignoring the cross-correlations leads to a more spread-out 
distribution which suggests a bigger variability of the criti-
cal face pressures. Figure 9 gives the failure probability of 
tunnel face versus normalized applied face pressure. It can 
be seen that the uncorrelated condition requires a bigger face 
pressure than the correlated one for a target failure probabil-
ity. So it can be inferred that ignoring the cross-correlations 
of mi, GSI and σc can result in a conservative design for 
practical engineering.

6  Conclusion

This paper presents an efficient approach for probabilistic 
stability analysis of tunnel face driven in heavily fractured 
rock masses that follow Hoek–Brown failure criterion. The 
random field theory is used to model the spatial variabilities 
of mi, GIS and σc. The multi-tangent line method allows the 
rock masses at different locations to have different equivalent 
shear strength parameters according to their Hoek–Brown 
parameters and the stress state. The discretized rotational 
failure mechanism is used to estimate the critical face pres-
sure of a rock tunnel. The SPCE method is combined with 
GSA for establishment of the analytical metamodel with a 
reduced dimension of input variables. The following conclu-
sions can be drawn:

The deterministic computational model is compared with 
that proposed by (Senent et al. 2013) which shows that the 
presented solutions are bigger than those given by (Senent 
et al. 2013). The maximum difference in the 10 selected 
cases is 8.95%. It is partly because the equivalent shear 
strength parameters are derived from the plastic potential 
function analysis in the presented research (see Eqs. (5) and 
(6)) and partly due to the vertical stress field optimization 
rather than a predefined stress distribution in (Senent et al. 
2013).

The PDF curves of critical face pressure and the failure 
probability of tunnel face are affected by the spatial vari-
abilities of mi, GSI and σc. Results show that the decrease 
of autocorrelation distance results in a big peak value of the 
PDF curve, which indicates a concentrated distribution of 
critical face pressure. It can be speculated that ignoring the 
spatial variabilities of rock properties (infinite autocorrela-
tion distances) leads to a conservative result in the engineer-
ing design.

Studies on the influence of cross-correlation of random 
variables show that ignoring the cross-correlations leads to a 
less concentrated distribution of critical face pressure which 
can produce a conservative design for practical engineering.

Appendix: Work rate equation for face 
stability analysis

Let σT denotes the pressure provided by the shield machine 
to retain tunnel face stability, so its work rate can be calcu-
lated by

(32)W𝜎T
= ∬S

���⃗𝜎T ⋅ ��⃗v dS = −𝜔𝜎T
∑
j

(
Sj0Rj0 cos 𝛽j0

)
,
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where Sj0 is the area of the j-th element on tunnel face; Rj0 is 
the corresponding rotation radius; βj0 is the angle between 
the rotation radius and the negative direction of the Y-axis.

The work rate done by gravity of rock masses can be 
calculated as

where γ is the unit weight of rock masses; Vij is the volume 
of the element determined by local coordinate system; Rij is 
the corresponding rotation radius; βij is the angle between 
the rotation radius and the negative direction of the Y-axis.

The internal energy dissipation can be expressed by

where [ct]ij and [φt]ij represent the corresponding equiva-
lent cohesion and internal friction angle of the element; Sij 
denotes the elementary area on the failure surface and Rij is 
the corresponding rotation radius.

By equating the internal energy dissipation and external 
work rate, the required face pressure can be obtained as

where Nγ, Nc are non-dimensional coefficients as

The expressions of [ct]ij and [φt]ij are specified by Eqs. (5) 
and (6). They are determined by the Hoek–Brown param-
eters and the stress state of the element of interest. More 
details for the derivation can be obtained from (Mollon et al. 
2011a).
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