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Abstract
Rock discontinuities fundamentally impact the mechanical and hydraulic behaviors of a rock mass, and thus it is a criti-
cally important task to characterize the geometrical parameters of these rock discontinuities. To measure the discontinuity 
orientation more accurately and efficiently, two well-known point clouds were taken as cases (a cube and a road cut), and 
an artificial neural network (ANN)-an machine learning algorithm-was established to identify discontinuities from point 
clouds through learning a small number of training samples, which had been manually selected from the raw point clouds. 
Four attributes associated with geometrical features of point clouds were specified as input parameters, namely, point XYZ-
coordinates, point normal, point curvature, and point density. Two main groups-discontinuity and non-discontinuity-were 
produced in the output layer, and the number of the discontinuity groups greatly depended on the sets of discontinuities in 
the real situation. Using principal component analysis (PCA) and density-based spatial clustering of applications with noise 
(DBSCAN), single discontinuities were extracted from the group discontinuities which were obtained using ANN, and the 
corresponding orientations were calculated. The results obtained with the proposed method in this study matched the field 
surveys and results calculated by a modified region-growing algorithm. The computational efficiency was significantly 
enhanced using the proposed method, only taking several seconds to process a huge data. More importantly, the accuracy 
of discontinuity detection was greatly improved by specifying the noise data as the non-discontinuity groups during train-
ing samples selection in ANN. The ANN approach does not require the engineers have a strong professional background in 
computer programming, which simplified the detection and characterization process of rock discontinuity. Furthermore, an 
APP-named DisDetANN-was developed to implement the rock discontinuity detection based on the proposed ANN model, 
and the full code of the DisDetANN has been freely shared on GitHub.

Highlights

• An artificial neural network was created by machine 
learning to detect group discontinuities from point 
clouds.

• Point coordinate, normal, curvature, and density were 
considered in input layers of the artificial neural network.

• A clustering algorithm was employed to subdivide group 
discontinuities into single discontinuities.

• Both efficiency and accuracy of the discontinuity detec-
tion was improved by the proposed approach.

• An APP and full codes of the proposed method were 
freely made available to the engineering community.
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1 Introduction

The rock mass referred to a complicated geological body of 
solid earth materials, containing different types and sizes 
of rock discontinuities, which are defined as all kinds of 
mechanical breaks and weakness planes within the rock 
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mass, including faults, bedding planes, joints, fractures, 
and other planes of physical weakness (Hudson and Priest 
1979; Priest 2012). The geometry of these rock discontinui-
ties had a significant influence on the mechanical behaviors 
and hydraulic properties of the rock mass (Ghosh and Dae-
men 1993; Kulatilake et al. 1995; Tang et al. 2019; Zhang 
et al. 2019). Several geometrical parameters were available 
to quantitatively describe the rock discontinuities: orienta-
tion, roughness, spacing, persistence, etc. (ISRM 1978). The 
first of these, the orientation-dip angle and dip direction-
was critical in the stability analysis of jointed rock mass 
(Sturzenegger and Stead 2009). For example, the orienta-
tion was an essential input parameter in the block theory 
(Goodman and Shi 1985), rock mass classification (Pante-
lidis 2009), and limited equilibrium method (Alejano et al. 
2011). Therefore, it is a very important task to accurately 
characterize the orientation of rock discontinuities in rock 
engineering (Mah et al. 2011).

It is noteworthy that the mechanical and physical prop-
erties of rock discontinuity are highly scale-dependent. 
According to the scale level, the rock discontinuities were 
classified into five major categories: Grade I, Grade II, 
Grade III, Grade IV, and Grade V (Table 1). Grade I rock 
discontinuities controlled the regional crustal stability, and 
the boundary conditions and failure modes of engineering 
rock mass were determined by Grade II & III rock disconti-
nuities. In the common rock engineering, few even no Grade 
I–III rock discontinuities were observed in the rock mass. 
Additionally, the distribution of these kinds of rock discon-
tinuities had strong regularity and was easy to measure. In 
contrast, many Grade IV rock discontinuities were randomly 
distributed in the rock masses. The Grade V rock discontinu-
ities were characterized by the laboratory scale of specimens 
and were difficult to be mapped due to technical limitations 
(Palmstrom 1995; Liu and Tang 2008; Vallier et al. 2010). 
The proposed approach was designed for medium size rock 
discontinuities during the field survey. Therefore, this pre-
sented study focus on the Grade IV rock discontinuities.

Traditionally, handheld devices-the compass and incli-
nometer-have been regularly used to measure the orientation 
of the rock discontinuities, requiring engineers to directly 
contact the outcrop (Priest and Hudson 1976). This conven-
tional measurement was characterized by simple operation 
and controllable precision. However, the disadvantages of 
the manual measurement are also obvious: (1) It was time-
consuming and laborious and not suitable for larger-scale 
field surveys. (2) It subjected engineers to significant safety 
risks, particularly when performing a survey in a hazard-
ous working condition; for example, on a slippery and steep 
slope. (3) Measurements, which are only made to easily 
accessible regions, may produce sampling biases (Guo et al. 
2017).

The limitations of the traditional surveys highlighted the 
advent of remote sensing techniques, which mainly include 
two categories: photogrammetry and laser scanning (Assali 
et al. 2014). Photogrammetry is a technique used to build a 
3D model of physical objects from their 2D images (Jiang 
et al. 2008). This technique was more vulnerable to lighting 
conditions, and as a result, it was difficult to use when the 
light source was minimal (e.g., in a tunnel or during cloudy 
weather). In addition, the measuring accuracy depended on 
the distance between the camera and the object; thus, only 
the close-range photogrammetry could be satisfactory for 
performing 3D outcrop modeling and rock discontinuity 
identification (Baltsavias 1999; Haneberg 2008). By con-
trast, due to the technique’s high resolution, high efficiency, 
and long measuring range, laser scanning was widely used 
to collect the point cloud of the object’s external surface in 
geohazards monitoring (Miller et al. 2008; Abellán et al. 
2014;), joint roughness estimation (Kulatilake et al. 2006; 
Tang et al. 2012; Ge et al. 2014), unstable rock mass deter-
mination (Gigli et al. 2014), granular deposition measure-
ment (Shen et al. 2018), etc. Several successful applications 
of laser scanning in rock discontinuity mapping have proven 
that this technique is feasible and effective (Umili et al. 
2013; Telling et al. 2017; Li et al. 2019).

Table 1  Characterization of different scales of rock discontinuity

Grade Description

Length Thickness Example

I From several kilometers to tens of kilom-
eters

From several meters to hundreds of meters Faults

II From hundreds of meters to several kilom-
eters

From tens of centimeters to several meters Faults, seams, shears, etc

III From tens of meters to hundreds of meters From several centimeters to 1 m Faults, seams, shears, bedding planes, joints, 
etc

IV From tens of centimeters to 20 or 30 m Several centimeters Faults, seams, shears, bedding planes, joints, 
fissures, cracks, partings, etc

V Less than ten centimeters Less than 1 cm Bedding planes, joints, cracks, partings, 
microcracks, etc
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Many attempts have been made to detect and measure the 
rock discontinuities from point clouds collected using laser 
scanning. In the manual approaches, at least three points 
belonging to the same discontinuity were selected to fit a 
plane through visual inspection, followed by an orienta-
tion calculation based on the normal vector of the fitting 
plane (Maerz et al. 2013). However, similar to the traditional 
measurement, it was inefficient, and the accuracy of this 
approach relied on the professional background and experi-
ence of engineers.

Consequently, there was an increasing interest in an auto-
mated approach, and several statistics and regression algo-
rithms have been developed to automatically detect the rock 
discontinuities from point clouds. Geometrically, a natural 
rock discontinuity approximated a plane with a certain ori-
entation and scale. Algorithms associated with the plane 
detection in computer vision were applied to the disconti-
nuity identification, which can be subdivided into three main 
classes: (1) Clustering-based methods, such as fuzzy k-mean 
clustering (Slob et al. 2005; Olariu et al. 2008; Vöge et al. 
2013), iterative self-organizing data analysis (Zhang et al. 
2018), and random sample consensus (RANSAC) cluster-
ing (Ferrero et al. 2009; Chen et al. 2016); (2) region-based 
segmentation methods, such as region-growing (Wang et al. 
2017; Ge et al. 2018), box analysis (Gigli et al. 2011), and 
voxelization (García-Cortés et al. 2012); (3) other methods, 
including kernel density estimation (Riquelme et al. 2014), 
Hough transform (Leng et al. 2016), principal component 
analysis (PCA) (Gomes et al. 2016), etc. Normally, millions 
or even tens of millions of points are contained in a high-
resolution point cloud of an outcrop, and the statistic and 
regression algorithms always take a long-running time for 
the huge data processing since the loop operation and judg-
ment operations. Therefore, it is essential to develop algo-
rithms with high efficiency to reduce the computing time to 
an acceptable level (Ferrero et al. 2009; Chen et al. 2016). 
Additionally, due to the geometric irregularity of the geolog-
ical environment and the influence of noise introduced dur-
ing scanning, the rock discontinuity identification was quite 
complicated using the statistic and regression algorithms, 
which in turn causes the measuring error. For instance, man-
made rock joints were probably produced during excavation, 
which was similar to natural discontinuities and character-
ized by near-flat surfaces in geometry. In this way, the sta-
tistic and regression algorithms cannot distinguish natural 
and man-made discontinuities. Therefore, it remains a chal-
lenge to extract discontinuities from point clouds quickly 
and accurately.

A notable increase in the application of artificial neural 
network (ANN)-one subset of machine learning (ML)-has 
been observed because of its effectiveness in solving com-
plex problems in the domain of rock mechanics and geohaz-
ards susceptibility assessment (Sonmez et al. 2006; Yılmaz 

and Yuksek 2008; Feng and Hudson 2010; Pradhan and Lee 
2010; Pham et al. 2017; Ge et al. 2018). Compared to statis-
tical and regression algorithms, it is not necessary to set up 
the precise criterion for pattern recognition and classifica-
tion and data clustering using ANN algorithms. Instead, the 
historical data (also known as input data or training data) 
was learned by ANN algorithms to extract the pattern of the 
historical data, and then a prediction model was constructed 
to forecast the pattern for the new data. Furthermore, the 
performance (e.g., accuracy and application scope) of the 
established ANN prediction model can be enhanced by 
learning new historical data, which mimics the learning pro-
cess of a human brain from experience (Merlin et al. 2016). 
In this manner, it is possible that engineers and geologists 
can detect and characterize the rock discontinuities easily 
and accurately, without requiring a high professional back-
ground in mathematics and computer programming. More 
importantly, similar to a biological neural network, the 
nodes were connected in an ANN to allow communication 
among them, and each node operated in parallel so that it 
can perform multiple computing tasks faster than statistical 
and regression algorithms. This is the reason that ANN was 
also called a parallel distributed processing system (Dongare 
et al. 2012).

Unfortunately, few studies have used ML and ANN algo-
rithms to identify the rock discontinuities to determine their 
orientation from the point clouds. The objective of this study 
was to enhance the accuracy and efficiency of discontinu-
ity identification using an ML algorithm (i.e., ANN). Two 
well-known point clouds were selected as the case study, 
which was conducive to the verification of the calculations. 
Considering four input parameters (point coordinates, point 
normal, point curvature, and point density), an artificial neu-
ral network was established to produce the automated iden-
tification of rock discontinuities based on a small number 
of the training samples, which were manually chosen from 
the raw point clouds.

2  Methodology

This method involved five primary steps: establishment 
of the artificial neural network, determination of the input 
parameters, selection of the training samples, extraction of 
the individual discontinuity, and calculation of the discon-
tinuity orientation. Figure 1 illustrates the flow chart of the 
proposed method in this study, and more details were pro-
vided in the following subsections.

2.1  Datasets Description

Two sets of point clouds-a cube and a road cut-were used 
as the case studies. The cube is a well-known polyhedron, 
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while intensive research associated with this road cut has 
been conducted using other methods (Lato et al. 2009; Lato 
and Vöge 2012; Guo et al. 2017), facilitating the verification 
of the algorithm proposed in this study.

A bench-top 3D digitizer (VIVID 9i) was employed to 
acquire the point cloud of a cube in the laboratory. This cube 
was placed on a fixed platform. The point cloud of its 5 sur-
faces was collected from 10 different scans with an average 
scan distance of 1.406 m and a scan-angle of 30°, except for 
the underside of the cube due to invisibility (Riquelme et al. 
2014). The raw point cloud of the cube was made available 
for download via the Personal website of Adrían Riquelme 
Guill (https:// perso nal. ua. es/ en/ ariqu elme/).

The road cut is located along state highway 15 between 
Brewers Mills and Kingston, Ontario, Canada. The lithol-
ogy of the outcrop was a quartzite with a high geological 
strength index ranging from 75 to 85. Three sets of rock 
joints were clearly developed within the rock mass. A ter-
restrial laser scanner (Optech ILRIS 3D) was employed to 
collect the point clouds of the road cut. The point cloud of 
this road cut is an open-source data, which is available in 
RockBench (www. rockb ench. org) (Kalenchuk et al. 2006; 
Lato et al. 2009).

Figure 2 shows the point cloud of the cube and the point 
cloud with the color information of the road cut, respec-
tively, exhibiting high resolution and quality. More details 
about two sets of point clouds are listed in Table 2.

2.2  Establishment of the Artificial Neural Network

A feed-forward neural network was trained to classify 
the input point clouds to discontinuities or non-discon-
tinuities, based on XYZ-coordinates, point normal, point 
density, and point curvature. Figure 3 shows the neural 
network architecture used in this study, consisting of three 
layers-an input layer, a hidden layer, and an output layer. 
The node of the input layer was related to the input param-
eters. Four parameters were considered for each point in 
the discontinuity identification, so accordingly, there were 
four nodes in the input layer. The node of the output layer 
varied with the sets of discontinuity and non-discontinu-
ity. For example, in the cube case, there were four classes 
of discontinuities (two vertical planes, a top horizontal 
plane, and a non-discontinuity-the edge). Therefore, four 
nodes were specified for the output layer. Similarly, four 
nodes were assigned in the road cut based on the sets 

Fig. 1  Flow chart of the pro-
posed method

https://personal.ua.es/en/ariquelme/
http://www.rockbench.org
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of discontinuities. For the hidden layer, ten nodes were 
involved in the neural network. The scaled conjugate gra-
dient and cross-entropy algorithms were selected as train-
ing and performance functions, respectively.

After the creation of the neural network, it was neces-
sary to select learning samples (training samples, validation 

samples, and testing samples) to train and test the neural 
network. To ensure the accuracy of the prediction model, 
a comparison between predicted values (discontinuity and 
non-discontinuity) and true values (discontinuity and non-
discontinuity) were performed to evaluate the performance 
of the neural network. If errors between them met the cal-
culation requirement (quite close to the 0), this network was 
accepted as the final model that could then be used to iden-
tify the discontinuities from point clouds in the future. More 
details were provided in the next subsections.

2.3  Determination of the Input Parameters

The point XYZ-coordinates, point normal, point curvature, 
and point density were the four input parameters associ-
ated with each point that were computed to serve for the 
creation of the learning samples.

2.3.1  XYZ‑Coordinates

A laser scanner is a powerful tool used to collect the geomet-
ric information of the discontinuities’ surface in the form of 
a point cloud, which was represented by a set of points with 
XYZ-coordinates. During the scanning, XYZ-coordinates 
were determined by emitting beams and measuring the ori-
entation parameters-such as distance, vertical angle, and 
horizontal angle-between the laser scanner and object. The 
XYZ-coordinates were related to the location of discontinui-
ties and treated as the basic input parameter in discontinuity 
detection. Figure 4a shows the rendering of point clouds 
in two cases based on XYZ-coordinates. Although the dis-
continuities can not be accurately distinguished from point 
clouds only based on XYZ-coordinates, they are practica-
ble for discontinuity detection in a particular situation. For 
example, the top plane of the cube was characterized by the 
same Z-coordinates.

2.3.2  Point Normal

The point normal is defined as the normal vector of the fit-
ting plane to a set of points consisting of the query point and 
surrounding points. The normal of each point was deter-
mined based on the k-nearest neighbors (k-NN) and least 
squares (LS) algorithms: k-NN was used to determine the 
neighbors of a given point based on the distance; then, the 
LS algorithm was employed to find the best fitting plane for 
these points and calculate the normal vector of the fitting 
plane.

The number of neighbors (k) had a significant impact on 
the point normal calculation, which was closely related to 
the identification of rock joints. If more surrounding points 
are selected, a fitting plane with a larger scale will be gener-
ated, indicating more global geometrical features of the point 

(a)

(b)

Fig. 2  The point clouds of two cases in this study: a a cube and b a 
road cut

Table 2  Summary of the basic information about two sets of point 
clouds

Case Cube Road cut

File size (MB) 2.36 84
Point count 60,488 2,167,515
Dimension 50 × 50 × 50 mm 13.27 × 4.21 × 3.71 m
Scanning area 12,500  mm2 53.988  m2

Average point interval 1.0 mm 7.7 mm
Laser scanner Konica Minolta Vivid 

9i
Optech ILRIS 3D
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cloud are considered and vice versa. Using the cube for an 
example, Fig. 5 illustrates the point normal distribution with 
a different number of surrounding points. It can be found 
that calculation errors were introduced to point normal cal-
culation as too many and too few neighbors were involved. 
Therefore, an appropriate k is required to be carefully speci-
fied before performing a k-NN search, allowing global and 
local geometrical features of the point cloud to be captured 
simultaneously. In this study, the k for the cube and road 
cut cases were set 50 and 60, respectively. Figure 4b shows 
that planes or rock joints with different orientations can be 
distinguished properly based on point normal distribution 
with the above-mentioned setting.

2.3.3  Point Curvature

The point curvature is a local descriptor that represents the 
second-order derivation of a surface consisting of the query 
point and its neighbors in a point cloud, which expresses 
the degree to which a surface deviates from being a plane 
(Magid et al. 2007). The curvatures-principal curvatures at a 
specified point in the point cloud was estimated by calculat-
ing eigenvalues and eigenvectors of a certain 3 × 3 matrix, 
which was related to the specified point and its neighbors. In 
this study, the minimum curvature at each point was selected 
as the input parameter, and the neighbor points were identi-
fied using a k-NN algorithm, considering the same number 
of neighbors with the point normal calculation (k = 50 & 60). 
The locations of sharp edges and curved areas feature high 

point curvature. Therefore, in Fig. 4c, it can be seen that the 
points with high curvature were located at the intersection 
lines of different discontinuities in both cube and road cut 
cases.

2.3.4  Point Density

The point density was defined as the number of points per 
unit area with respect to a query point, and it could be deter-
mined by calculating the ratio of the number of points that 
fall within the search circle of this query point to the area 
of the search circle. The number of points within the search 
circle with a specified radius was determined using a k-NN 
algorithm. Figure 4d shows the point density of point clouds 
in the cube and road cut cases. Multiple scans were con-
ducted to capture the point clouds of the entire cube; as a 
result, the top horizontal plane of the cube was measured 
in each scan, leading to high point density on the top plane. 
As for the road cut case, it can be found that the points were 
relatively evenly distributed on the outcrop.

2.3.5  Data Normalization

The scale and dimension vary with the above-mentioned 
input parameters, causing unreasonable predictions and a 
long training time during the application of artificial neu-
ral networks to data mining. Therefore, it was necessary to 
perform the data normalization prior to learning from the 

Fig. 3  The neural network 
architecture used in this study
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training data using an artificial neural network (Sola and 
Sevilla 1997; Nayak et al. 2014).

To eliminate the influence from the scale and dimension 
differences, the min–max normalization was used to re-scale 
the range of input five parameters into the range in [0,1] as 
follows (Jain 2005),

where P′
i
 is the normalized value of the ith input parameter, 

Pi is the original value of the ith input parameter, and min 

(1)P�

i
=

Pi −min
(
Pi

)

max
(
Pi

)
−min

(
Pi

) (i = 1,… , 5)

Fig. 4  Calculation of four input 
parameters of point clouds in 
two cases: a point XYZ-coor-
dinates, b point normal, c point 
curvature, and d point density

(a)

(b)

(c)

(d)
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(Pi) and max (Pi) is the minimum and maximum value of the 
ith input parameter, respectively.

2.4  Selection of the Learning Samples

The training samples were manually selected from the point 
clouds of two cases through visual judgment. In the cube 
case, there were four sets of planes observed according 
to their orientations: one horizontal-plane set, two sets of 
vertical planes (each set consists of two sides), and noise 

data which were generated during multi-angle scanning and 
mainly located on the edges. Fifteen points were handpicked 
for each set of the plane and 40 points for the noise data 
group. Note that the points should be selected randomly 
and uniformly from the point cloud of each group (Fig. 6a). 
Figure 6b shows that 51 points were selected as training 
samples in the road cut case. Three points (black dots) were 
located on a man-made rock joint due to road cutting, these 
were regarded as the non-discontinuity group. Two groups of 
points -30 red dots and 9 green dots-were chosen to represent 

Fig. 5  Point normal distribution 
of cube case with different sur-
rounding points: a k = 3; b k = 5; 
c k = 10; d k = 50; e k = 500; f 
k = 5000

(a)                                     (b)

(c)                                     (d)

(e)      (f)
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the vertical rock discontinuities. Nine points (blue dots) were 
selected as the fourth group to represent the bedding planes 
present in the road cut.

Seventy percent of the learning samples were appointed 
as training samples to be learned by the neural network. 
Fifteen percent of the learning samples were specified as 
validation and testing samples, respectively, which were 
used to conduct the comparative analysis between predicted 
values and true values. Additionally, the training process was 
set to stop when the errors between validation and predic-
tion increased for six iterations (epochs) to avoid overfitting.

2.5  Extraction of the Individual Discontinuity

The individual discontinuity must be further extracted from 
the different sets of rock discontinuities (group disconti-
nuities), which were identified from point clouds using the 
aforementioned neural network. In the same discontinuity 
group, individual rock discontinuities were characterized 
by similar orientation; however, there was no connection 
between them, indicating these individual rock joints were 
discontinuous in spatial distribution. A clustering algorithm 

called density-based spatial clustering of applications with 
noise (DBSCAN) was employed to separate the individual 
discontinuities from group discontinuities. DBSCAN is a 
density-based clustering algorithm and is capable of detect-
ing the points on the boundary of a single discontinuity 
(outlier points) where there is a low point density (Birant 
and Kut 2007; Tran et al. 2013; Schubert et al. 2017). Two 
parameters, the radius of the neighborhood (ε) and the 
minimum number of points forming a single discontinuity 
(minPts), had to be specified to classify the points as core 
points, reachable points, and outlier points. The core and 
reachable points composed the individual discontinuity. In 
this study, ε and minPts were carefully selected for each set 
of discontinuity in two cases, as summarized in Table 3.

2.6  Calculation of the Discontinuity Orientation

Fitting a plane to the points belonging to the same individual 
rock discontinuity was performed to calculate the normal vec-
tor, which was used to determine the corresponding orienta-
tion. The general plane equation can be written as,

where, A, B, C, and D are constants, and the normal of this 
plane is the vector of (A, B, C) can be determined using the 
PCA algorithm with respect to the set of points (Klasing 
et al. 2009). In the geological coordinate system, the posi-
tive y-axis indicates the north, the positive x-axis indicates 
the east, and the positive z-axis represents the up direction. 
The dip (α) of a given rock joint is defined as the acute angle 
between the rock joint and the horizontal plane, dip and the 
angle formed by the normal of a rock joint and the horizontal 
plane are complementary angles. The dip direction (β) is the 
angle between the normal projection and the north, which is 
measured clockwise from the north in the horizontal plane. 
The dip and dip direction of a rock joint can be derived from 
the normal vector of the rock joint as follows,

(2)Ax + By + Cz = D

(a)

(b)

Fig. 6  Training sample creation for artificial neural networks in two 
cases. a a cube (yellow dots were located on the non-plane positions-
edges); b a road cut (block dots on the upper right corner were on the 
artificial rock discontinuities)

Table 3  ε and minPts used for individual discontinuity extraction in 
both cases

Case studies Discontinuity set Point Count ε (mm) minPts

The cube Top face 37,965 1.0 500
Side face 1 12,094 1.0 500
Side face 2 10,423 2.0 100

The road cut Bedding 192,518 7.7 50
Joint 1 1,375,105 5.25 1000
Joint 2 504,697 7.7 300



1714 Y. Ge et al.

1 3

3  Results

Based on the above-mentioned analyses, the automated iden-
tification and orientation calculation were implemented for 
two cases.

Initially, neural networks used for discontinuity identifica-
tion were established through learning the training samples. 
The models were accepted because the differences between 
prediction and observation were close to 0. Figure 7 shows 
the performances of two neural networks for two cases. The 
best validation performance appeared at epoch 12 for the 
cube case (0.061586) and epoch 32 for the road cut case 
(0.030683). The validation and vesting curves tended to 
level with fewer fluctuations after the best epochs, indicat-
ing the robustness of the prediction models.

Figure 8a shows the group discontinuity detection using 
the neural network established according to the training 
samples. The points belonging to the same group were 
assigned to the same color. Four sets of planes were mapped 
in the cube case, and four sets of rock discontinuities were 

(3)� = arccos
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produced in the road cut case, including one non-disconti-
nuity group shown in black.

Figure 8b illustrates the individual discontinuity cluster-
ing of two cases using the DBSCAN algorithm with param-
eters specified in Table 3, coloring different discontinuities 
with different colors. Five individual planes were extracted 
in cube case and 515 individual rock discontinuities for 
road cut case, corresponding with the real situation in Fig. 2 
through visual comparisons.

Figure 8c provides the stereonets of two cases that were 
projected in the lower hemisphere with equal angles. It can 
be seen that three sets of discontinuities were extracted 
from all detected group discontinuities. According to 
Eqs.  (2–4), the orientation for each discontinuity was 
calculated. Table 4 presents the point count, discontinu-
ity count, and average orientation for each discontinuity 
set. In the cube case, the top face was an approximately 

(a) 

 

(b) 

Fig. 7  Performance plots of the ANN models for two cases: a a cube 
and b a road cut
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horizontal plane with a dip angle of 4.88° and a dip direc-
tion of 255.08° in the cube case. Two adjacent side faces 
were supposed to be vertical and perpendicular to each 
other. Their dip angles were 89.77° and 89.00°, which 
was close to vertical, while dip directions were 290.17° 

and 20.08°, respectively, with an approximate intersec-
tion angle of 270.09°. The orientations calculated in this 
case matched Riquelme’s (2014) findings. Furthermore, 
in the road cut case, the orientation calculations (bedding: 
196.88° ∠ 34.88°, Joint 1: 129.72° ∠ 78.27°, and Joint 2: 

Fig. 8  Discontinuity extraction 
from point clouds in two cases 
based on the ANN algorithm: a 
group discontinuity identifica-
tion (points colored in black 
on the upper right corner were 
identified as artificial rock 
discontinuities), b individual 
discontinuity identification, and 
c stereographic projections

(a)

(b)

(c)

Table 4  The summary of the 
orientation calculation for 
both cases using the proposed 
method

Case studies Discontinuity set Point count Discontinu-
ity count

Average orientation Average orienta-
tion in references

Cube Top face 37,965 1 232.24° ∠ 5.18° 223.87° ∠ 4.07°
Side face 1 12,094 2 290.21° ∠ 89.82° 290.91° ∠ 89.62°
Side face 2 10,423 2 20.10° ∠ 88.99° 21.03° ∠ 89.47°

Road cut Bedding 192,518 290 196.88° ∠ 34.88° 194° ∠ 34°
Joint 1 1,375,105 112 29.72° ∠ 78.27° 29° ∠ 76°
Joint 2 504,697 113 303.52° ∠ 89.07° 309° ∠ 90°
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303.52° ∠ 89.07°) were consistent with the recent studies 
(Lato and Vöge 2012), indicating the discontinuity iden-
tification and orientation calculation in this study were 
acceptable.

4  Discussions

To further validate the reliability of the proposed method, 
a statistic and regression method-the modified region-
growing (MRG) algorithm-was used to extract the dis-
continuities from point clouds of the same two cases, and 
then a comparison analysis of discontinuity identification 
between ANN and MRG algorithms was conducted.

The point normal was calculated as the membership 
criterion in the discontinuity detection using MRG, and 
the growth threshold-which is related to the normal dif-
ference between adjacent points-was set as 15° for both 
cases. Figure 9a, b illustrate the results of discontinuity 
identification and stereographic projections of two cases, 
respectively. It can be seen that the MRG algorithm pro-
duced a similar discontinuity detection with the ANN pre-
diction model (Fig. 8b, c).

Nevertheless, some differences between the two algo-
rithms were also presented: (1) a lot of noise data existed 
in the cube case, especially on the edge regions of the 
top plane and one side plane surface (Fig. 9c). If a larger 
growth threshold was specified (e.g., 50°), these noise 
points would be considered as plane points (blue points 
on the edges were classified into the group of the hori-
zontal plane), causing an identification bias as shown in 
Fig. 9d. However, the influence from noise data can be 
effectively eliminated through selecting the appropriate 
growth threshold (e.g., 15°). Therefore, careful selection 
was required to get this optimal threshold through trial 
and error, but this was time-consuming. Comparatively, it 
was simpler to quickly remove the noise data in the neural 
network algorithm by appointing these noise points as the 
non-discontinuity data; (2) in the road cut case, a plane, 
which was located at the top right corner, was a man-made 
plane, and should be not considered as the natural rock dis-
continuity. Due to meeting the membership criterion-nor-
mal difference being less than the threshold, points in this 
region were classified into the discontinuity group in the 
MRG algorithm, leading to measuring bias (Fig. 9a). In the 
ANN algorithm, during selecting learning samples, sev-
eral points in this region were chosen as non-discontinuity 
points and labeled with an output (1, 0, 0, 0). As a result, 
these points were removed according to the output that was 
predicted using the neural network. Therefore, compared 
to the MRG algorithm, a more accurate discontinuity 
identification can be obtained using the ANN algorithm, 
and the points on the upper right corner were identified as 

artificial rock discontinuities (black points in Fig. 8b); (3) 
only point normal was involved in the MRG algorithm, 
while four parameters (point XYZ-coordinate, point nor-
mal, point curvature, and point density) were considered 
during discontinuity extraction from point clouds using the 
ANN algorithm, allowing the closer matching of the actual 
orientation of discontinuities (Table 5); finally, (4) the 
computational efficiency was greatly enhanced during the 
processing of discontinuity identification using the ANN 
algorithm. The computation time for different algorithms 
was recorded and listed in Table 5. The MRG algorithm 
was characterized by a lower efficiency compared to the 
ANN algorithm, particularly the computational time was 
not acceptable for the road cut case with a large data vol-
ume (2,167,515).

5  Conclusions

Based on the above-mentioned analyses, the conclusions of 
this study were:

1. With the aim of discontinuity identification from 
unorganized point clouds, a semi-automated approach was 
proposed based on ANN. The artificial neural network com-
prised an input layer, a hidden layer, and an output layer. 
Four parameters-point XYZ-coordinates, point normal, 
point curvature, and point density-were considered for each 
point in the input layer. Ten nodes were specified in the hid-
den layer. The output of the network included two major 
sets: discontinuities (marked as ‘1’) and non-discontinuities 
(marked as ‘0’). The DBSCAN algorithm was employed to 
divide group discontinuities, which were the predictions 
of the neural network, into single discontinuities. All the 
groups of discontinuities were involved during the clustering 
analysis, except for the group of non-discontinuities. After-
ward, the PCA algorithm was performed to calculate the 
orientation of each discontinuity.

2. The computational efficiency of discontinuity detection 
from point clouds was greatly improved using ANN, because 
of the parallel operation. Only 1.34 s and 4.53 s were spent 
for the cube and road cut cases in discontinuity identification 
and measurement using ANN, respectively.

3. The discontinuity detection was more accurate using 
the ANN than the traditional MRG algorithm. To eliminate 
the noise data interference, the points in non-discontinuity 
regions were set as one of the outputs, such as the edges, 
noise data, and artificial rock discontinuities. Training 
samples were learned by the neural network, which were 
crucial for successful discontinuity identification. There is 
no need to select too many training samples from the raw 
point clouds (85 points for cube case and 51 points for road 
cut case). However, it was important to make sure that the 
selected points were representative. Eventually, the case 
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studies reveal that the rock discontinuity detection and char-
acterization using ANN corresponded to the field surveys.

4. The operation process of the ANN was simpler than 
the traditional method. Unlike the statistic and regression 
algorithms, it is not necessary to create a precise geometrical 

Fig. 9  Discontinuity extraction 
from point clouds in two cases 
using the RMG algorithm: a 
individual discontinuity iden-
tification and b stereographic 
projections, c noise data in the 
point cloud, and d plane detec-
tion with a 50 growth threshold

(a)

(b)

(c)

(d)
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criterion for point clustering based on ANN; as a result, the 
engineers and geologists do not need to have a professional 
background in mathematics and computer programming, 
making the rock discontinuity detection easier and faster. 
Furthermore, for the reproducibility of this study, an APP 
(DisDetANN) was designed to perform the rock discontinu-
ity detection based on the proposed ANN algorithms, and 
the full codes of the DisDetANN APP have been freely made 
available on GitHub (https:// Github. com/ DisDe tANN/ DIsDe 
tANNc ode).
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