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Abstract
To accurately estimate the rock shear strength parameters of cohesion (C) and friction angle (φ), triaxial tests must be car-
ried out at different stress levels so that a failure envelope can be obtained to be linearized. However, this involves a higher 
budget and time requirements that are often unavailable at the early stage of a project. To address this problem, faster and 
more inexpensive indirect techniques such as artificial intelligence algorithms are under development. This paper first aims 
to utilize four machine learning techniques of Gaussian process regression (GPR), support vector regression (SVR), decision 
trees (DT), and long-short term memory (LSTM) to develop a predictive model to estimate parameters C and φ. To this aim, 
244 datasets are available in the RockData software for intact Sandstone, including three input parameters of uniaxial com-
pressive strength (UCS), uniaxial tensile strength (UTS), and confining stress (σ3) are employed in the models. The dropout 
technique is used to overcome the overfitting problem in LSTM-based models. A comprehensive evaluation is adopted for 
the performance indices of the prediction models. In this step, the most accurate results are produced by the LSTM model 
(C: R2 = 0.9842; RMSE = 1.295; MAPE = 0.009/φ: R2 = 0.8543; RMSE = 1.857; MAPE = 1.4301). In the second step, we 
improve the performance of the proposed LSTM model by fine-tuning the LSTM hyper-parameters, using six metaheuristic 
algorithms of grey wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine 
cosine algorithm (SCA), multiverse optimization (MVO), and moth flame optimization (MFO). The developed models' 
prediction performance for predicting parameter C from high to low was PSO-LSTM, GWO-LSTM, MVO-LSTM, MFO-
LSTM, SCA-LSTM SSO-LSTM, and LSTM with ranking scores of 34, 29, 24, 21, 14, 12, and 5, respectively. Also, the 
models' prediction performance for predicting parameter φ from high to low was PSO-LSTM, GWO-LSTM, MVO-LSTM, 
MFO-LSTM, SCA-LSTM SSO-LSTM, and LSTM with ranking scores of 34, 31, 23, 18, 15, 14, and 5, respectively. However, 
the most robust results are produced by the PSO-LSTM model. Finally, the results indicate that applying a metaheuristic 
algorithm to tune the hyper-parameters of the LSTM model can significantly improve the prediction results. In the last step, 
the mutual information test method is applied to sensitivity analysis of the input parameters to predict parameters C and φ. 
Finally, it is revealed that parameters σ3 and UCS have the highest and lowest impact on the parameters C and φ, respectively.

Highlights

• Employing a large dataset consists of 244 data.
• Using six ML algorithms that most of them had not been 

tested before for this issue.
• Applying 5-fold CV to validate the results.

• Application of feature selection to find the most effective 
parameters on the water inflow into tunnels.

• Recognition of the best prediction method.
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N  Number of tests
yi  Actual value
y
′

i
  Predicted value

yi  Mean of actual value
y
′

i
  Mean of predicted value

�
(
xi
)
  Mean

k(xi, xi)  Kernel
S  A group of samples that is not separated yet
St  A group of separated samples with true result
Sf  A group of separated samples with a false result

1 Introduction

In geotechnical and geological engineering, one of the most 
crucial parameters that can evaluate a rock's mechanical 
behavior is the strength of the intact rock with the discon-
tinuities’ presence (Grima and Babuška 1999; Gokceoglu 
2002). Even though it is clear that the strength envelopes of 
an intact rock are a nonlinear function of the level of stress, 
because of its simplicity, still the linear model of Mohr–Cou-
lomb for the shear strength of rocks is used in the actual 
engineering applications (Shen and Jimenez 2018).

The criterion of Mohr–Coulomb includes two parameters 
of cohesion (c) and friction angle ( � ). Parameter c is related 
to the bond between crystals or particles of rock, and param-
eter � is related to the friction internally created along the 
shear surface (Singh et al. 2020). Before the employment of 
the Mohr–Coulomb criterion in practice, parameters c and 
� should be estimated (Adrien et al. 2020).

The popularity of triaxial tests conducted on rocks at dif-
ferent confining pressures to evaluate the Mohr–Coulomb 
parameters of c and � is quite obvious. However, because 
of the high time and cost associated with the triaxial tests, 
the need for alternative methods to achieve the Mohr–Cou-
lomb parameters is fully felt (Ulusay et al. 1994; Kahraman 
et al. 2009; Cai 2010; Beiki et al. 2013; Shen and Jime-
nez 2018). To this end, many attempts have been made to 
develop faster and cheaper indirect tests to estimate the uni-
axial compressive strength (UCS) of rocks, such as Schmidt 
hammer (Mohammed et al. 2020; Howarth and Rowlands 
1986), point load index (Şahin et al. 2020), impact strength 
(Jing et al. 2020), sound velocity (Kurtulus et al. 2018), and 
Los Angeles abrasion (Teymen 2019). Other researchers 
have conducted studies on the achievement of rock shear 
strength parameters with the help of UCS and uniaxial ten-
sile strength (UTS) when the triaxial test data are not avail-
able (Beyhan 2008; Farah 2011; Karaman et al. 2015; Shen 
and Jimenez 2018).

Recently, non-traditional regression-based methods, and 
soft-computing artificial intelligence (AI) based techniques 
such as group method of data handling (GMDH)-type neural 
networks (NN) have been successfully used in a wide range 

of geotechnical fields (Zendehboudi et al. 2018; Cevik et al. 
2011; Mahmoodzadeh and Zare 2016; Yin et al. 2017; Liu 
et al. 2018; Mahmoodzadeh et al. 2019; Elbaz et al. 2019; 
Miah et al. 2020). However, AI techniques have not yet been 
widely used to predict the shear strength parameters of rocks. 
Recently, in their study, Shen and Jimenez (2018) applied 
genetic programming (GP) to predict the Mohr–Coulomb 
parameters of c and � for Sandstone rocks. Their proposed 
model provided good forecasting performance in the absence 
of triaxial data. It was concluded that their model could be 
employed to estimate the practical strength of intact Sand-
stones at the pre-construction phase of geotechnical projects 
or data unavailability for the triaxial test.

Since there are many different AI algorithms, evaluating 
other algorithms' prediction performance can be impera-
tive. For this purpose, this work aims to estimate the shear 
strength parameters (c and � ) of intact rocks using three 
parameters of UCS, UTS, and confining stress σ3 by three 
AI methods of Gaussian process regression (GPR), sup-
port vector regression (SVR), decision trees (DT), and 
long-short term memory (LSTM). Parameters UCS and 
UTS are direct indicators of strength under uniaxial stress 
conditions. These parameters can be obtained in the labo-
ratory using relatively normalized and straightforward 
procedures without requiring more specialized techniques. 
The UCS can be measured using the uniaxial compression 
test. The UTS can be estimated using the Brazilian test; 
the International Society has recommended procedures for 
both tests for Rock Mechanics (ISRM). In addition, to con-
sider the non-linearity of failure envelopes and increase 
the reliability of predictions, we account for the influence 
of the stress range under which the shear failure will occur, 
as indicated by σ3.

A database including 244 datasets previously employed 
by Shen and Jimenez (2018) in their research is employed 
in the AI models. The K-fold cross-validation (CV) method 
is considered to evaluate the prediction performance of the 
models. Finally, through analyzing the results of several 
statistical indices, the most accurate forecasting model is 
specified.

In the next step, to improve the predictions made by the 
proposed ML model between the four applied models, six 
hybrid models that are a combination of the proposed model 
and six metaheuristic optimization algorithms of grey wolf 
optimization (GWO), particle swarm optimization (PSO), 
social spider optimization (SSO), sine cosine algorithm 
(SCA), multiverse optimization (MVO), and moth flame 
optimization (MFO), are developed to fine-tuning of the 
LSTM hyper-parameters. Then, the prediction performance 
of the developed models for predicting parameters C and � 
is investigated. Finally, the most robust model between the 
developed hybrid models is suggested.
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This application demonstrates that LSTM-based 
metaheuristic optimization algorithms have advantages in 
solving the following problems: many complex parameters 
will affect the process and results, and the understanding of 
the process and results is not enough, and where there are 
historical or experimental data. The prediction of parameters 
C and � is also of this type.

To determine the most influential factors between the 
three inputs of σ3, UCS, and UTS on the parameters C and 
� , the mutual information test method is applied.

With the above explanations, the following are the main 
novelties of this work to predict parameters C and �.

1. Investigating four ML-based models of GPR, SVR, DT, 
and LSTM to predict C and � . These models have not 
been studied for this purpose before.

2. Six metaheuristic algorithms of GWO, PSO, SSO, SCA, 
MVO, and MFO are developed to fine-tune the hyper-
parameters of the proposed model in the prediction of 
parameters C and �.

3. The dropout technique is used to overcome the issue of 
overfitting, which has not been considered in the previ-
ous ML methods for predicting C and �.

4. The mutual information test is used for sensitivity analy-
sis of the input parameters on the parameters C and �.

The overall flowchart of the study is presented in Fig. 1.

2  Database

To predict the shear strength parameters (c and � ) of intact 
rocks in this article, according to the literature and data 
availability, three effective input parameters of UCS, UTS, 
and σ3 are considered. Parameters UCS and UTS are direct 
indicators of strength under uniaxial stress conditions. To 
apply σ3, a cylindrical rock specimen is placed in a specifi-
cally designed cell and the lateral pressure is applied through 
a liquid (usually oil) which is pumped into the cell.

A database including 244 datasets previously employed 
by Shen and Jimenez (2018) in their research is employed 
in this study. They investigated the use of linear correla-
tions for Sandstone. To that end, they gathered extensive 
datasets from RocData software, presented by the company 
Rocscience (2012), which contains various rock properties 
of different rocks collected from published references. The 
UCS and UTS values were provided in the RocData data-
base. They calculated the values of c and � using Eqs. 1–4 
with the triaxial tests available for datasets.

(1)sin� =
k − 1

k + 1

(2)c =
�cif itted

2
√
k

(3)k =

∑
(�3�1) −

∑
�3

∑
�1

N

∑
�2

3
−

(
∑

�3)
2

N

Uniaxial compressive strength Uniaxial tensile strength

GPR LSTMSVR DT

RMSE

GWO

    Test (20%)

R2 MAE RMSE MAPE

Metaheuristic optimization

Database

Con?ning stress Friction angle

Data normalization

AI algorithms

Statistical indices

Results comparison

Propose the most accurate model

Cohesion

K-fold CV (K=5)

SCA PSO SSO MVO MFO

Identify the most robust hybrid model

Training (80%)

Fig. 1  Overall procedure of shear strength parameters prediction 
using AI techniques

Table 1  An overview on the database

UCS UTS �3 c �

Count 244.00000 244.0000 244.00000 244.00000 244.00000
Mean 87.328115 5.777787 30.301516 20.949795 43.977869
Std 49.342145 4.259844 21.861209 10.225738 4.8608620
Min 26.000000 1.200000 1.470000 7.2300000 33.600000
25% 62.970000 3.157500 14.257500 14.305000 40.920000
50% 64.500000 4.050000 25.000000 17.685000 43.310000
75% 96.920000 6.190000 42.875000 24.350000 46.897500
Max 266.46000 18.10000 150.00000 55.170000 56.020000
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where �1 and �3 are the maximum and minimum principal 
stresses, k is an intermediate auxiliary parameter, �ci_f itted is 
the fitted UCS value from regression analysis, and N is the 
number of tests.

An overview of the database is presented in Table 1.

3  Statistical Evaluation Indices

To evaluate the accuracy of the forecasting models, some 
statistical evaluation indices, including coefficient of 
determination (R2), mean square error (MSE), root mean 
square error (RMSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE) are taken into 
account. The following formulas for calculating these indi-
ces are presented (Eqs. 5–9).

where yi is the actual value, y′

i
 is the predicted value, yi and 

y
′

i
 are the means of actual and predicted values, and n is the 

number of samples.

4  Prediction Models of Shear Strength 
Parameters (c and ')

4.1  GPR

A Gaussian procedure (GP) is a gathering F of arbitrary 
factors Fx1

,Fx2
,… for which any finite subset of the fac-

tors has a joint multivariate Gaussian conveyance. The fac-
tors are listed by components x of a set X . For any finite 
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∑
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length vector of lists x = [x1, x2,… , xn]
T , we have a com-

paring vector Fx = [Fx1
,Fx2

,… ,Fxn
]T of factors that have 

a multivariate Gaussian (or ordinary) distribution (Eq. 10) 
(Mahmoodzadeh et al. 2021a):

where the components of �(x) are given by an earlier 
mean capacity �

(
xi
)
 , and k is the portion work. The portion 

uses two files xi and xj that provides the covariance between 
their comparing factors Fxi

 and Fxj
 . Given vectors of lists xi 

and xj , k returns the framework of covariances between all 
sets of factors where the first in the pair originates from Fxi

 
and the second from Fxj

 . Each Fxi
 is barely Gaussian, with a 

mean of �
(
xi
)
 and difference of k(xi, xi) (Mahmoodzadeh 

et al. 2021b).
Assume there has a capacity f (x) that would want to 

upgrade. In addition to that, suppose that f  could not be 
watched legitimately, yet that an arbitrary variable Fx can 
be seen that is listed by the same space as f  and whose 
normal esteem is f  , i.e., ∀x ∈ X,E[Fx] = f (x) . Notably, it 
is accepted that the earlier conviction about the capacity f  
complies with a Gaussian procedure with earlier mean � and 
part k . Furthermore, assume that Fx is a perception of f (x) 
that has been tainted by zero-mean, i.i.d. Gaussian clamor, 
i.e., Fx = f (x) + � , where � ∼ N(0, �2

�
) . Consequently, f (x) is 

a shrouded variable whose back appropriation and could be 
able to derive in the wake of watching tests of Fx at different 
areas in the space. The following subtraction is called Gauss-
ian procedure relapse (Mahmoodzadeh et al. 2021c, d).

Give x a chance to be the arrangement of perceptions 
focuses and Fx be the subsequent genuine esteemed percep-
tions. This required to process the back appropriation of 
some new point x̂ ∈ X . The appropriation will be Gaussian 
with mean and difference (Eqs. 11 and 12).

The key features of the GPR model, which motivate us to 
use it, are as follows:

• GPR directly captures the model uncertainty. For exam-
ple, in regression, GPR directly distributes the prediction 
value rather than just one value as the prediction. This 
uncertainty is not directly captured in neural networks.

• We can add prior knowledge and specifications about 
the model's shape by selecting different kernel functions 
when using GPR. For example, based on the answers to 
the following questions, we may choose different pri-
ors. Is the model smooth? Is it sparse? Should it be able 
to change drastically? Should it be differentiable? This 

(10)Fx ∼ N{�(x), k(x, x)}

(11)�
(
x̂|x) = �( x̂

)
+ k

(
x̂, x

)
k(x, x)−1(Fx − �(x))

(12)�2
(
x̂|x

)
= k

(
x̂, x̂

)
− k

(
x̂, x

)
k(x, x)−1k(x, x̂)
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capability gives researchers flexible models, which can 
be fitted to various kinds of datasets.

In the regression learner app embedded in MATLAB 
software 2018, four different GPR models are provided: 
squared exponential, rational quadratic, exponential, and 
Matern 5/2. After modeling by this program, the model type 
with the most accurate results is taken into account. Also, 
the optimization mode is considered in the app, so that the 
app itself optimizes the amount and type of hyper-parame-
ters of the GPR model. The optimized type and value of the 
GPR hyper-parameters produced by the regression learner 
app are presented in Table 2.

Table 2  The optimized parameters of the GPR model

Output parameter Parameter Type/Value

Cohesion (c) Kernel function ‘Exponential’
Beta 34.5763
Fit method Exact Gaussian process 

regression
Sigma 1.1287
Basis function ‘Constant’

Friction angle ( �) Kernel function ‘Exponential’
Beta 42.6303
Fit method Exact Gaussian process 

regression
Sigma 1.9409
Basis function ‘Constant’
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Fig. 2  Comparison of the cohesion results predicted by the GPR model with the actual ones
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Fig. 3  Comparison of the friction angle results predicted by the GPR model with the actual ones
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The fivefold CV results of cohesion and friction angle 
predicted by the GPR model are shown in Figs. 2 and 3, 
respectively. For both actual and predicted values of param-
eters C and � in Figs. 2 and 3, the smoothing spline method 
is used to fit a curve on the data. As in Figs. 2 and 3, both 
actual and predicted curves change together and agree well. 
Similar changes in these graphs and their proximity to each 
other indicate the proper training of the GPR model. There-
fore, it can be said that the GPR model has acted correctly 
and accurately in predicting parameters C and � . With the 
help of Figs. 2 and 3, it can be seen that in the high values 
of parameters C and � , the accuracy of the predictions has 
decreased compared to the low values of these parameters. 
This may be due to the lack of data in the ranges with high 
values of C and � . Therefore, the number of data and their 
range are very effective in predicting the accuracy of a ML 
model. The R2 results produced by the GPR model for both 
output parameters of c and � are shown in Fig. 4. Accord-
ing to Fig. 4, in the GPR model, the R2 values are 0.9615 
and 0.7206 for both c and � , respectively. Clearly, the GPR 
model has shown a higher ability to predict parameter c than 
parameter � . The other statistical indices results presented 
in Table 3, also confirm this assessment. The reason can be 
due to the type of input parameters considered in the forecast 
model. This means that parameters UCS, UTS, and σ3 have 
a higher effect on parameter c. However, to achieve higher 

accuracy in predicting the parameter � , it may be necessary 
to consider other effective parameters on the parameter �.

4.2  SVR

Vapnik (1995) modified his first version model (ε-support 
vector regression, SVR) by changing the ε-insensitive loss 
function. This modification permits the SVR model to use 
the margin idea in the regression process. Margin in the 
modified model can be described as the summation of the 
hyperplane's distances from the two classes' closest points. 
Minimizing errors between the actual training data and 
the hyperplane are the main target of the SVR. The kernel 
function idea has introduced by Vapnik (1995) for nonlinear 
SVR. Readers are directed to Vapnik (1995) to understand 
more about SVR (Mahmoodzadeh et al. 2021e).

The key features of the SVR model, which motivate us to 
use it, is as follows:

SVR is characterized by kernels such as linear, polyno-
mial and Radial basis function (RBF), sparse solution, and 

R² = 0.9615
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Fig. 4  Shear strength parameters results produced by the GPR model vs. the actual results (Left: Cohesion, Right: Friction angle)

Table 3  Statistical evaluation indices results for the GPR model

Parameter R2 MAE MSE RMSE MAPE [%]

Cohesion 0.9615 1.191 4.023 2.005 0.0012
Friction angle 0.7206 1.692 6.596 2.568 1.8277

Table 4  The optimized parameters of the SVR model

Output parameter Parameter Value or type

Cohesion Kernel function ‘Linear’
Solver ‘SMO’
Epsilon 0.7569
Bias 20.7396

Friction angle Kernel function ‘Fine Gaussian’
Solver ‘SMO’
Epsilon 0.4496
Bias 42.4528
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Vapnik–Chervonenkis (VC) control of the margin and the 
number of support vectors. One of the main advantages of 
SVR is that its computational complexity does not depend 
on the dimensionality of the input space. It performs lower 
computation compared to other regression techniques. Addi-
tionally, it has excellent generalization capability, high pre-
diction accuracy, and is robust to outliers (Awad and Khanna 
2015).

The regression learner app embedded in the Matlab 2018 
software was applied to get the SVR model predictions. Six 
model types, including cubic, linear, medium Gaussian, 
quadratic, fine Gaussian, and coarse Gaussian, are provided 
for the SVR method in MATLAB 2018. ThSVR hyper-
parameters' type and values were obtained type and values 

of the SVR hyper-parameters were obtained through the 
optimization mode in the regression learner app in Table 4.

The fivefold CV results of Mohr–Coulomb parameters 
of cohesion and friction angle predicted by the SVR model 
are shown in Figs. 5 and 6, respectively. As in Figs. 5 and 6, 
the actual values of parameters c and � are very close to the 
ones predicted by the SVR model. As the GPR model, the 
SVR model has also presented good and acceptable predic-
tions. As discussed for the first model, the number of data in 
certain ranges of the input and output parameters has shown 
its effect on the prediction curves. However, looking at these 
figures, it can be seen that the training of the SVR model is 
also done correctly. The R2 results produced by the SVR 
model for both output parameters of c and � are shown in 
Fig. 7. According to Fig. 7, the SVR model has produced R2 

0

2

4

6

8

10

12

0

20

40

60

80

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Er
ro

rs
 [M

Pa
]

Co
he

si
on

 [M
Pa

]

Data no.

Errors
SVR
Actual

Fig. 5  Comparison of the cohesion results predicted by the SVR model with the actual ones
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values of 0.9510 and 0.6981 for both c and � , respectively. 
Clearly, as in the GPR model, the accuracy produced by the 
SVR model for the prediction of parameter c is higher than 
the prediction of parameter � . This achievement can also be 
concluded from other statistical indices results presented in 
Table 5. Therefore, for the SVR model, it can be said that 
parameter c is more sensitive to changes in input parameters 
than parameter � . The correlation between parameter c and 
inputs is greater than the correlation between parameter � 
and model inputs.

4.3  DT

1. The DT is one of the classifications and regression meth-
ods based on the non-parametric survived learning tech-
nique. Furthermore, it consists of a set of if–then-else 
decision rules. The best perdition of the model occurs 
when the DT goes deeper and deeper to make the best 
fit with the actual data. There are several advantages 
of the DT. First, the distribution of explanatory vari-
ables does not require assumption. Second, strong rela-
tions among independent variables do not affect the DT 
outcomes. Third, various dependent variables such as 

survived data, categorical and numerical can be covered 
by DT. Fourth, this technique comprises the influential 
variables and eliminates the least powerful variables 
which describe the dependent variable. For the DT, it 
is possible to predict small and large datasets well, even 
though this technique was initially developed to only 
well predict extensive data (Mahmoodzadeh et al. 2020a, 
b, c).

The algorithm of DT can be explained as follow:

1. First, the calculation of the targeted variance is per-
formed.

2. Based on the various attributes, the database is divided 
into distinct parts, and the variance of each sectioned 
part is deducted from the variance before the division. 
This can be defined as variance reduction.

 The decided node of the attribute is based on the 
highest VR.

  Node N can be defined by the variance reduction as 
Eq. 13:
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Fig. 7  Shear strength parameters results produced by the SVR model vs. the actual results (Left: Cohesion, Right: Friction angle)

Table 5  Statistical evaluation 
indices results for the SVR 
model

Parameter Method R2 MAE MSE RMSE MAPE [%]

Cohesion SVR 0.9510 1.599 5.182 2.276 0.0032
Friction angle SVR 0.6981 1.316 8.281 2.877 2.9980
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  S is a group of samples that is not separated yet, St is 
a group of separated samples with true result and Sf is a 
group of separated samples with a false result. Without 
referring to the mean, each of the summands presented 
above is variance estimates written in a form. Variance 
estimation is required in each summation term in Eq. 10 
so the mean is not referred to directly.

(13)IV(N) =
1

|S|2
∑

i∈S

∑

j∈S

1

2
(xi − xj)

2 −

(
1

||St||
2

∑

i∈St

∑

j∈St

1

2

(
xi − xj

)2
+

1

||Sf ||
2

∑

i∈Sf

∑

j∈Sf

1

2

(
xi − xj

)2
)

3. Depending on the values of selected attributes, the data-
sets are separated. If the variance of a part is more than 
zero, it is separated once more.

4. Keep another trial going until all the data is evaluated.

The key features of the DT model, which motivate us to use 
it, are as follows:

Decision trees (DTs) are supervision learning algo-
rithms that repeatedly split the sample based on certain 
sample questions. These are very useful for prediction 
problems. They are relatively easy to understand and 
very effective. DTs represent several decisions followed 
by different chances of occurrence. This technique helps 
us to define the most significant variables and the rela-
tion between two or more variables. In our problem, the 
variables are related to each other, so we select DT to 
compare models. In other words, a e decision tree's sig-
nificant advantage is that it forces the consideration of all 
possible outcomes of a decision and traces each path to 
a conclusion. It creates a comprehensive analysis of the 
consequences along each branch and identifies decision 
nodes that need.

Key advantages:

• No preprocessing is needed on data.
• No assumptions on the distribution of data.
• Handles collinearity efficiently.
• DT can provide an understandable explanation for the 

prediction.

Table 6  The optimized model type and hyper-parameters of the DT 
method

Output parameter Parameter Type/Value

Cohesion Prune on
Model type Fine tree
Maximum number of splits 243
Predictor selection allsplits
Minimum leaf size 4
Split criterion mse
Minimum ParentSize 10

Friction angle Prune on
Model type Fine tree
Maximum number of splits 243
Predictor selection allsplits
Minimum leaf size 4
Split criterion mse
Minimum ParentSize 10
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Fig. 8  Comparison of the cohesion results predicted by the DT model with the actual ones
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In the DT approach, three models, medium, coarse, and 
fine, are embedded in the MATLAB 2018. The Mohr–Cou-
lomb parameters predictions were performed through these 
three models and eventually considered the model that pro-
vided more precise results. The information about the opti-
mized DT's hyper-parameters considered in this analysis is 
provided in Table 6.

The fivefold CV results of Mohr–Coulomb parameters of 
cohesion and friction angle predicted by the DT model are 
shown in Figs. 8 and 9, respectively. As in Figs. 8 and 9, the 
actual values of parameters c and � are in good agreement 
with the ones predicted by the DT model. The R2 results 
of the DT model for both output parameters of c and � are 
shown in Fig. 10. According to Fig. 10, the DT model has 
produced R2 values of 0.9459 and 0.5950 for both param-
eters c and � , respectively. Clearly, as in the GPR and SVR 
models, the accuracy produced by the DT model for the 
prediction of parameter c is higher than the prediction of 
parameter � . This achievement can also be concluded from 
other statistical indices results presented in Table 7. There-
fore, as the GPR and SVR models, for the DT model, it 
can be said that parameter c is more sensitive to changes 
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Fig. 10  Shear strength parameters results produced by the DT model vs. the actual results (Left: Cohesion, Right: Friction angle)

Table 7  Statistical evaluation indices result for the DT model

Parameter R2 MAE MSE RMSE MAPE [%]

Cohesion 0.9459 1.700 5.652 2.377 0.0043
Friction angle 0.5950 2.243 9.880 3.143 5.1387



1731Machine Learning Techniques to Predict Rock Strength Parameters  

1 3

Table 8  Type of parameters 
considered in the LSTM model

Parameter Value or type

Hidden layers no 4
Batch_size 10
Activation function ‘reLu’
Number of neurons Input layer: 3, 1st hidden layer: 160, 2nd hidden layer: 

80, 3rd hidden layer: 40, 4th hidden layer: 20, Output 
layer: 1

Loss ‘mse’
Kernel_initializer ‘he_normal’
Epochs 100
Validation_split 0
verbose 1
Optimizer ‘Nadam’
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Fig. 11  Comparison of the cohesion results predicted by the LSTM model with the actual ones
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in input parameters than parameter � . The correlation 
between parameter c and inputs is greater than the correla-
tion between parameter � and model inputs.

4.4  LSTM

The LSTM method is a form of repeat-neural network 
(RNN), and the final step output data is used in this step. 
It is utilized for the storing, prediction and classification 
of time series results. A standard LSTM system comprises 
an input gate, a cell, a forgotten gate, plus an output gate. 
Data are recalled by the cell through unspecified times, 
then the information flows into and out of the cell through 
the three gates. The problem of long-term RNN depend-
encies has been solved by LSTM, where the RNN does 
not expect the word kept in the long term, but it can more 
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Fig. 13  Shear strength parameters results produced by the LSTM model vs. the actual results (Left: Cohesion, Right: Friction angle)

Table 9  Statistical evaluation indices result for the LSTM model

Parameter R2 MAE MSE RMSE MAPE [%]

Cohesion 0.9842 0.846 1.677 1.295 0.0009
Friction angle 0.8543 1.336 3.448 1.857 1.4301
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precisely expect the latest data. With increasing the dura-
tion gap, the RNN can not achieve good outcomes, and 
LSTM can retain details for a long time by default.

The type and value of the LSTM hyper-parameters con-
sidered in this research are presented in Table 8.

The fivefold CV results of cohesion and friction angle 
predicted by the LSTM model are shown in Figs. 11 and 
12, respectively. As in Figs. 11 and 12, the actual values 
of parameters c and � are very close to the ones predicted 
by the LSTM model. The R2 results of the LSTM model 
for both output parameters of c and � are shown in Fig. 13. 
According to Fig. 13, the LSTM model has produced R2 
values of 0.9842 and 0.8543 for parameters c and � , respec-
tively. Clearly, as in the GPR, SVR, and DT models, the 
accuracy produced by the LSTM model for the prediction 
of parameter c is higher than the prediction of parameter 
� . This achievement can also be concluded from other 

statistical indices results presented in Table 9. Therefore, 
as the GPR, SVR, and DT models, for the LSTM model, it 
can be said that parameter c is more sensitive to changes in 
input parameters than parameter � . The correlation between 
parameter c and inputs is more significant than the correla-
tion between parameter � and model inputs.

5  Results Comparison

To determine the best prediction model among four ML 
models used in this paper to predict the shear strength 
parameters, in Fig. 14 and Table 10, a comparison between 
the results predicted by them has been made. By analyz-
ing and comparing the values of the obtained statistical 
evaluation indices for each model, it can be concluded that 
the prediction performance of the four models for predic-
tion of both cohesion and friction angle parameters from 
high to low is LSTM, GPR, SVR, and DT (see Fig. 14 and 
Table 10).

Table 10 illustrates the performance index results and 
system of ranking for ML models of LSTM, GPR, SVR, 
and DT in predicting rock shear strength parameters. Fig-
ure 15 shows the results of the overall ranking graphically. 
Figure 16 shows five evaluation indices results of the ML 
models. Lastly, the comprehensive ranking indicates that the 
LSTM model is the most robust and accurate model com-
pared to the other three models.

6  Discussion

The problem of overfitting in deep learning methods such as 
LSTM, when the size of datasets is small, can affect the cor-
rect performance of the model. Only 244 data were applied 
in this study, an order of magnitude less than the data used 
in language and picture recognition. In ANNs, overfitting is 
a liable problem because of the availability of many param-
eters with limited training data. To obtain a reliable predic-
tion, it is essential to avoid overfitting. The use of ANNs 
to predict parameters C and � is more challenging due to 

Table 10  Comparison among 
the results produced by the ML 
models

Parameter Method R2 Score MAE Score MSE Score RMSE Score MAPE Score Rank

C GPR 0.9615 3 1.191 3 4.023 3 2.005 3 0.0012 3 15
SVR 0.9510 2 1.599 2 5.182 2 2.276 2 0.0032 2 10
DT 0.9459 1 1.700 1 5.652 1 2.377 1 0.0043 1 5
LSTM 0.9842 4 0.846 4 1.677 4 1.295 4 0.0009 4 20

� GPR 0.7206 3 1.692 2 6.596 3 2.568 3 1.8277 3 14
SVR 0.6981 2 1.316 3 8.281 2 2.877 2 2.9980 2 9
DT 0.5950 1 2.243 1 9.880 1 3.143 1 5.1387 1 5
LSTM 0.8543 4 1.336 4 3.448 4 1.857 4 1.4301 4 20
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Fig. 15  Comprehensive ranking comparison of the prediction models
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Fig. 16  Evaluation indices 
results of the ML models
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overfitting potential. The dropout approach is a useful regu-
larization tool considered in this study for the LSTM model 
to alleviate the overfitting problem. The primary objective of 
dropout is to prevent networks from becoming overly reliant 
on individual neurons and minimize co-adaptability among 
neurons. The neurons are multiplied by a random variable 
that follows the Bernoulli distribution with a probability of 
p at each iteration throughout the training phase. The drop-
out rate is consistent with ( 1 − p ). The difference in struc-
ture between models with and without dropout is shown in 
Fig. 17. The corresponding formulas are as follows.

Without dropout:

With dropout:

where p̃t denotes the model output before it is processed by 
the active function at time t  ; ht denotes the hidden layer's 
output vector as described in; The weight matrix and bias 
that connect the hidden and output layers are represented by 
w◦ and b◦ , respectively. The output vector of the hidden layer 

(14)p̃t = w◦ht + b◦

(15)p̃t = w◦h̃t + b◦ = w◦
(
rt ⊙ ht

)
+ b◦

following dropout is represented by h̃t ; rt denotes a Bernoulli 
distribution-based random vector. The final model output is:

where pt is the model output; f () represents the output lay-
er's activation function.

It should be noted that each model predicted the cohe-
sion parameter more accurately than the friction angle 
parameter. One of the reasons for this is the more sig-
nificant impact of input parameters on cohesion. Other 
parameters may be needed to achieve higher accuracy in 
predicting the friction angle parameter. For example, in 
this paper, in addition to the three input parameters con-
sidered, the cohesion parameter was also considered the 
fourth input in predicting the friction angle. The values 
of statistical indices in predicting the friction angle using 
four input parameters are presented in Table 11. As in 
Table 11, the friction angle parameter is predicted with 
higher accuracy by influencing the cohesion parameter as 
the fourth input in the prediction models. This shows the 
significant impact of the type of input parameters in pre-
dicting the output parameter.

To accurately predict the shear strength parameters of 
C and � , the impact of factors should be comprehensively 
studied and evaluated. In this study, three input param-
eters, including �3 , UCS, and UTS taking into account 
as the effective parameters on C and � . However, the 
sensitivity of these parameters individually is unclear on 
parameters C and � and needs more study to reveal it. In 
this study, the mutual information test (MIT) proposed by 
Verron et al. (2008) is used to investigate the impact of the 
input parameters on the model output. The MIT is a filter-
ing technique applied to capture the desired relationship 

(16)pt = f (p̃t)

Table 11  Statistical evaluation indices results in the prediction of 
friction angle parameter considering the cohesion parameter as the 
fourth input parameter

Method RMSE R2 MSE MAE

LSTM 1.1521 0.97 0.7381 0.5393
GPR 1.2798 0.93 1.6379 0.7692
SVR 2.0913 0.82 4.3736 1.0158
DT 2.7244 0.67 7.9775 2.0058
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Fig. 18  Score importance of input parameters on the prediction of parameters C and �
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between each parameter and the label. This measure is 
the interdependence between parameters and shows the 
strength of the relationship between them. The information 

gain can calculate the mutual information size between 
the parameters:

Fitness evalua�on (RMSE) Sa�sfy terminal condi�on?

No

Op�mal LSTM predic�ve model
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where, v indicates the number of all possible values for X , 
Yv is the set Y  related to when x takes xv , and Ent(Y) is the 
entropy of the information. As Gain(Y ,X) increases, the cor-
relation between X and Y  is increased.

Lastly, according to the score of the parameters in the 
MIT method, the importance degree of the input param-
eters on C and � was calculated. The results obtained by 
the MIT method are illustrated in Fig. 18 for each input 
parameter. Looking at Fig. 18, it is revealed that all the three 
parameters of �3 , UCS, and UTS with important scores of 
1. 48, 1.35, and 1.02 in the prediction of parameter C, and 
with important scores of 1.31, 1.17, and 0.85 in the predic-
tion of parameter � , respectively, have a great impact on the 
parameters C and � . Therefore, these parameters are influ-
ential parameters that need to be considered in predicting C 
and � . It also should be noted that, among the three input 
parameters, �3 and UCS have the most and least impact on 
predicting parameters C and � , respectively.

Some scholars such as Shen and Jimenez (2018), Tariq 
et al. (2017), and Rezaee et al. (2020) have conducted related 
research on rock shear strength parameters estimation and 
prediction through machine learning techniques in the 
past few years. However, achieving high accuracy in using 
machine learning methods is complex, and it is crucial to 
select the hyperparameters of the relevant model reasonably 
at this time.

In order to select the best model hyperparameters, this 
paper develops a set of hybrid prediction models to predic-
tion of the shear strength parameters, combining LSTM 
and six metaheuristic optimization algorithms, including 

(17)Gain(Y ,X) = Ent(Y) −

V∑

v=1

|Yv|
|Y|

Ent(Yv)
grey wolf optimization (GWO), particle swarm optimiza-
tion (PSO), social spider optimization (SSO), sine cosine 
algorithm (SCA), multiverse optimization (MVO), and 
moth flame optimization (MFO). For more information 
about these algorithms and to get acquainted with them, 
readers can refer to Zhou et al. (2021), Qiu et al. (2021), 
and Zendehboudi et al. (2014).

The overall analysis and hybrid modeling process is 
shown in Fig. 19. According to this figure, the hybrid mod-
eling is mainly divided into four steps: (1) data set prepara-
tion; (2) model establishment; (3) model verification and 
evaluation; (4) result analysis. The six hybrid LSTM-based 
models i.e., PSO-LSTM, SCA- LSTM, SSO- LSTM, MVO- 
LSTM, MFO- LSTM, and GWO- LSTM are constructed to 
predict C and � . The evaluation indices results obtained by 
these six hybrid models are presented in Table 12. Look-
ing at Table 12, it can be seen that the hybrid models have 
increased the accuracy of the predictions compared to the 
non-optimized LSTM model. Also, the use of optimiza-
tion algorithms to properly select the hyper-parameters has 
caused the predicted results related to parameter � to be as 
accurate as the parameter C. Here, it can be said that one of 
the most important reasons for the low accuracy of the pre-
dictions for the parameter � with the help of non-optimized 
previous models was that the type and amount of their hyper-
parameters were not optimized. Therefore, optimizing the 
hyper-parameters of the ML models can be very important 
and increase the accuracy of forecasting models to a con-
siderable extent.

Table 12 also illustrates the ranking system for the LSTM 
and six hybrid models of PSO-LSTM, SCA- LSTM, SSO- 
LSTM, MVO- LSTM, MFO- LSTM, and GWO- LSTM 
in the prediction of rock shear strength parameters. Fig-
ure 20 shows the results of the overall ranking graphically. 

Table 12  Comparison among the results produced by the LSTM model and six hybrid models

Parameter Method R2 Score MAE Score MSE Score RMSE Score MAPE Score Rank

C LSTM 0.9842 1 0.846 1 1.677 1 1.295 1 0.0009 1 5
PSO-LSTM 0.9983 7 0.482 7 0.760 7 0.872 7 0.0002 6 34
GWO-LSTM 0.9921 6 0.546 5 0.846 6 0.920 6 0.0001 7 29
MVO-LSTM 0.9904 5 0.551 4 0.962 5 0.981 5 0.0003 5 24
MFO-LSTM 0.9887 4 0.542 6 1.257 4 1.121 4 0.0006 3 21
SCA-LSTM 0.9872 3 0.694 3 1.488 2 1.220 2 0.0004 4 14
SSO-LSTM 0.9850 2 0.715 2 1.281 3 1.132 3 0.0008 2 12

� LSTM 0.8543 1 1.336 1 3.448 1 1.857 1 1.4301 1 5
PSO-LSTM 0.9831 7 0.982 6 1.423 7 1.193 7 0.9729 7 34
GWO-LSTM 0.9769 6 0.976 7 1.479 6 1.216 6 1.0383 6 31
MVO-LSTM 0.9721 5 1.131 5 1.491 5 1.221 5 1.3221 3 23
MFO-LSTM 0.9616 4 1.213 3 1.938 3 1.392 3 1.286 5 18
SCA-LSTM 0.9551 3 1.148 4 1.968 2 1.403 2 1.318 4 15
SSO-LSTM 0.9372 2 1.280 2 1.907 4 1.381 4 1.335 2 14
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Fig. 20  Comprehensive rank-
ing comparison of the LSTM 
model and six hybrid prediction 
models
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Fig. 21  Evaluation indices 
results of the LSTM model and 
six hybrid models
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Figure 21 shows five evaluation indices results of the LSTM 
model and six hybrid models. The results indicate that, all 
the hybrid models have produced more acceptable and accu-
rate results than the previous non-optimized techniques. 
According to Fig. 20, the six hybrid models' prediction 
performance for predicting cohesion parameters from high 
to low is PSO-LSTM, GWO-LSTM, MVO-LSTM, MFO-
LSTM SCA-LSTM, and SSO-LSTM with ranking scores of 
34, 29, 24, 21, 14, and 12, respectively. Also, the six hybrid 
models' prediction performance for predicting friction angle 
parameters from high to low is PSO-LSTM, GWO-LSTM, 
MVO-LSTM, MFO-LSTM, SCA-LSTM, and SSO-LSTM 
with ranking scores of 34, 31, 23, 18, 15, and 14, respec-
tively. However, the most robust results are produced by the 
PSO-LSTM model.

Achieving high-precision rock strength parameters in 
constructing tunnels, dams, buildings, and many other geo-
technical engineering problems in the early stages and their 
construction is fundamental. The proposed PSO-LSTM 
model in this study is of particular importance in geotech-
nical engineering. Since laboratory tests require a high time 
and cost to achieve rock strength parameters, and it is chal-
lenging to prepare standard samples for laboratory tests in 
many cases, the proposed method can be critical. With very 
little time and cost compared to laboratory tests, this method 
can produce outstanding results in terms of rock strength 
parameters.

7  Conclusions

This study first proposed four ML models of GPR, SVR, 
DT, and LSTM to predict shear strength parameters of C 
and � . 244 extensive datasets available in the RockData 
software, including three input parameters of UCS, UTS, 
σ3, and two targets of c and � were employed in the models. 
The fivefold CV method was used to evaluate the prediction 
performance of the models. The prediction performance of 
the four models for prediction of cohesion parameter from 
high to low was LSTM (R2: 0.9842; MAE: 0.846; MSE: 
1.677; RMSE: 1.295; MAPE: 0.0009), GPR (R2: 0.9615; 
MAE: 1.191; MSE: 4.023; RMSE: 2.005; MAPE: 0.0012), 
SVR(R2: 0.9510; MAE: 1.599; MSE: 5.182; RMSE: 2.276; 
MAPE: 0.0032), and DT (R2: 0.9459; MAE: 1.7001; MSE: 
5.6528; RMSE: 2.3775; MAPE: 0.0043).

Also, it was concluded that the prediction performance 
of the four models for prediction of friction angle parameter 
from high to low is LSTM (R2: 0.8543; MAE: 1.336; MSE: 
3.448; RMSE: 1.857; MAPE: 1.4301), GPR(R2: 0.7206; 
MAE: 1.692; MSE: 6.596; RMSE: 2.568; MAPE: 1.827), 
SVR (R2: 0.6981; MAE: 1.316; MSE: 8.281; RMSE: 2.877; 

MAPE: 2.9980), and DT (R2: 0.5950; MAE: 2.243; MSE: 
9.880; RMSE: 3.143; MAPE: 5.138).

Lastly, compared to the other three models, the com-
prehensive ranking indicated that the LSTM model is the 
most robust and accurate model to predict the shear strength 
parameters of C and �.

In the next step, to fine-tune the hyper-parameters of 
the proposed LSTM model, six hybrid models combining 
LSTM model and six metaheuristic optimization algorithms 
of PSO, GWO, MVO, MFO, SCA, and SSO were developed. 
The dropout technique was used to overcome the overfit-
ting problem in the LSTM model and six hybrid models. 
The six hybrid models' prediction performance for predict-
ing cohesion parameters from high to low was PSO-LSTM, 
GWO-LSTM, MVO-LSTM, MFO-LSTM, SCA-LSTM, and 
SSO-LSTM with ranking scores of 34, 29, 24, 21, 14, and 
12, respectively. Also, the six hybrid models' prediction per-
formance for predicting friction angle parameters from high 
to low was PSO-LSTM, GWO-LSTM, MVO-LSTM, MFO-
LSTM, SCA-LSTM, and SSO-LSTM with ranking scores of 
34, 31, 23, 18, 15, and 14, respectively. However, the most 
robust results were produced by the PSO-LSTM model.

Finally, the results indicated that using the metaheuris-
tic optimization algorithm to tune the hyper-parameters of 
the LSTM model can significantly improve the prediction 
results.

The MIT method was applied in order to sensitivity 
analysis of the input parameters considered in this study 
on the prediction of parameters C and � . Finally, it was 
revealed that all the three parameters of �3 UCS, and UTS 
with important scores of 1. 48, 1.35, and 1.02 in predicting 
parameter C, and essential scores of 1.31, 1.17, and 0.85 in 
predicting parameter � , respectively, significantly impact the 
prediction the parameters C and �.

It should be noted that the PSO-LSTM hybrid model 
proposed in this study as the most robust model for predict-
ing the parameters C and � just is recommended in similar 
conditions because it is designed based on the model inputs 
considered in this study. Furthermore, the procedure to pre-
dict the parameters C and � introduced by this research can 
be implemented by other deep learning hybrid models and 
different optimization algorithms. The focus of this research 
was on the parameters C and � , although LSTM-based 
hybrid techniques could be used to predict a wide range of 
geotechnical engineering problems.

Lastly, the hybrid PSO-LSTM model proposed in this 
study is practicable in estimating the parameters C and � 
under similar conditions in terms of characteristics of rock 
mass and material conditions. The proposed models in this 
study can be used as practical techniques to estimate the 
parameters C and � for similar rock mass and material prop-
erties in the site investigation step.
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It is recommended that other deep learning-based hybrid 
techniques to predict the parameters C and � and other rock 
strength parameters. In addition, in the next plan, more labo-
ratory tests may be helpful to enrich more datasets to train 
and construct the deep learning hybrid models for predicting 
the parameters C and �.
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