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Abstract
While large-scale rock strata affected by underground coal mining have been widely studied through numerical modeling, there 
are still some aspects that can be better understood. Specifically, researchers do not fully utilize borehole logs and test results 
of rock specimens to reveal rock mass property variation along horizontal directions and strata lateral thickness variation at 
bed level. In this paper, we address this knowledge gap by proposing a data-intensive numerical modeling method (DINMM) 
that can make full use of these data with consideration of the modeling limitations of BlockRanger, a grid generation tool. 
Both the proposed method and the conventional numerical modeling method (CNMM) are applied to the Ying-Pan-Hao coal 
mine via the FLAC3D (Fast Lagrangian Analysis of a Continua in 3 Dimensions) package, and their predictions are then 
calibrated and compared to discuss the validity. Results show that, compared to the CNMM-based predictions, the root mean 
square error of 70 monitoring points is decreased at least by 27.4% in the DINMM-based prediction, and the relative error of 
maximum subsidence is reduced by 5.1% with a reduction rate of 66.5% on average, even though the CNMM-based model was 
originally better calibrated. We also find that a DINMM-based model is more in line with field observations and theoretical 
understanding in terms of displacement, stress, and failure propagation. The notion of data-intensive modeling seems to be 
quite promising and the DINMM should be useful for a better understanding of strata movement and subsidence prediction.

Highlights
• We propose a data-intensive modeling method (DINMM) to build numerical models based on multiple borehole logs, 
rather than on a single or generalized borehole log.
• We realized rock mass property variation along horizontal directions and strata lateral thickness variation at bed level 
when modeling large-scale rock strata.
• We find that the root mean square error of 70 monitoring points is decreased at least by 27.4% in the DINMM-based pre-
diction, even though the control model was originally better calibrated.
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ΔVj,k  The space enclosed by Sk−1 , Sk and the outer 
boundary of subareas

GSI  Geological strength index
E  Elastic modulus
�  Poisson’s ratio
C  Cohesion
∅  Friction angle
�E
i
  Calculation coefficient of E for the i-th rock 

bed
�
�

i
  Calculation coefficient of � for the i-th rock 

bed
�C
i
  Calculation coefficient of C for the i-th rock 

bed
�∅
i
  Calculation coefficient of ∅ for the i-th rock 

bed
MPi  The i-th mechanical parameter of a rock bed
MPi,j  The i-th mechanical parameter of the j-th rock 

bed
Hj  The thickness of the j-th rock bed
CNMM  Conventional numerical modeling method
DINMM  Data-intensive numerical modeling method

1  Introduction and Brief Literature Review

Underground coal mining induces movement and defor-
mation of overlying strata and eventually causes ground 
subsidence, which has been a prominent concern for both 
local governments and coal mines, especially in China, 
as considerable coal deposits are buried under buildings, 
railways, and among other infrastructures. Land reclama-
tion, foundation stability evaluation, and safety estimation 
of construction stability all demand an accurate prediction 
of surface subsidence in mining-affected areas (Malinow-
ska and Hejmanowski 2010; Cheng et al. 2017; Sun et al. 
2021). In this regard, numerical methods are quite promising 
for understanding the mechanism behind strata movement 
and for surface subsidence prediction in a more realistic and 
direct manner, and one obvious benefit of which, compared 
to others, is their capacity of merging large numbers of field 
data and laboratory test data into one model to reflect the 
complex interaction process between rock masses from deep 
underground to surface.

The mining-affected rock masses, whose mechanical 
properties not only vary along the gravity direction but may 
be of great difference along the horizontal directions (see 
for example: Fig. 1), can extend from several kilometers to 
tens of kilometers (Stavropoulou et al. 2007; Satter and Iqbal 
2016) in terms of the coal depth and mining areas. Under 
such scale, rock mass property variation and strata thickness 
variation along horizontal directions should be carefully 
modeled but often neglected presently in abundant cases 

Fig. 1  Measured elastic modulus of rock specimens cored from three 
boreholes (see Fig. 8 for locations) in the Ying-Pan-Hao coal mine at 
a depth from 575 to 725 m below the present surface

of numerical modeling due to difficulties of obtaining suf-
ficient data (Bieniawski 1989; Zhang and Einstein 2004) and 
limitations of software and computing power of hardware 
(Barla and Barla 2000; Shreedharan and Kulatilake 2016).

As a matter of fact, compromises have long been made 
between modeling details and the limitations. For instance, 
a COSFLOW model (4.5 × 4.5 × 0.75 km) with ten rock units 
was built by Adhikary and Guo (2014) on the basis of a 
typical geological log simplified from borehole investiga-
tions, for the study of mining-induced strata permeability 
change. A 3DEC model (1.63 × 1.0 × 0.55 km) incorporat-
ing ten stratigraphic units was built by Zhang et al. (2016) 
based upon a generalized stratigraphy column for analyzing 
mining-induced valley closure movements. Xu et al. (2013a) 
also used generalized strata for constructing a FLAC3D 
model (10.5 × 9.0 × 1.8 km) where ten representative rock 
formations with different properties were included when 
studying mining-induced surface subsidence. Other similar 
studies (Adhikary et al. 2016; Ma et al. 2017a, b; Pongpanya 
et al. 2017; Cheng et al. 2018; Li et al. 2018; Zhang et al. 
2018) can be found as well. All these relied only on the 
so-called generalized or typical borehole log, and ignored 
rock mass property variation along horizontal directions and 
strata lateral thickness variation at bed level, which we call 
the conventional numerical modeling method (CNMM). 
To be clear, the CNMM of large-scale rock mass has two 
major characteristics: (1) it is equivalent continuum concept 
dependency (Barla and Barla 2000; Sherizadeh and Kula-
tilake 2016; Shreedharan and Kulatilake 2016; Craig and 
Jackson 2017) so as to meet the computationally demand-
ing; (2) it is based on a single borehole log or a generalized 
borehole log and only exhibits property variation along the 
gravity direction.
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On the other hand, one should emphasize that borehole 
investigation is the most reliable approach (Bieniawski 
1989), and borehole logs should be fully utilized if one 
expects a more realistic and accurate numerical analysis. In 
this regard, according to Chinese standards and regulations, 
shaft inspection holes, which are boreholes near the main 
shaft, auxiliary shaft, and air shaft of a coal mine, need to be 
drilled prior to construction to provide necessary mechani-
cal parameters for the design of shaft walls, and at least 
one rock specimen should be taken for physical–mechanical 
property tests when drilling through each rock bed. Take 
the Ying-Pan-Hao coal mine as an example, 16 boreholes 
within 4.99  km3 (3.8 × 1.8 × 0.73 km) revealed 519 rock beds 
(some of them may belong to the same rock bed from the 
view of lithostratigraphic correlation), and 278 rock speci-
mens from three shaft inspection holes were tested. All these 
tests and borehole investigations produce massive data read-
ily available, which makes it possible to exhibit the prop-
erty and thickness variation with space as well as to build 
a data-intensive numerical model. In addition, it is worth 
mentioning that many literatures have focused on the utiliza-
tion of multiple borehole logs, but these methods were pro-
posed mostly for 3D visualization (Lemon and Jones 2003; 
Calcagno et al. 2008; Guillen et al. 2008; Kaufmann and 
Martin 2008; Shao et al. 2011; Zu et al. 2012; Li et al. 2013), 
the representation of complex geologic phenomena (Wu 
et al. 2005; Xu et al. 2013a), and others (Zhu et al. 2013; 
Zhang and Zhu 2018), where numerical modeling limita-
tions were not considered. In our previous study (Gong and 
Guo 2019), a conceptual method without modeling details 
was proposed for full usage of multiple boreholes and was 
specially designed for FLAC3D models via FISH (short for 
“FLAC-ISH”, the language of FLAC) because the primary 
concern was posed on introducing the application of geo-
spatial big data in underground coal mining. More unfortu-
nately, the mesh size effect (e.g., Davies et al. 1984; Turon 
et al. 2007; Deng et al. 2012; Sande and Ray 2014; Alañón 
et al. 2018) and rock property calibration were not consid-
ered. As a result, the findings were undermined.

In this paper, we intend to present a universal and detailed 
modeling method via BlockRanger (ITASCA 2016), a grid 
generation tool, and to present new findings after careful cali-
brations of mesh size and rock mass properties. The method 
is given in Sect. 2, where we focus on the accurate descrip-
tion of modeling processes through a mathematical model 
and 3D schematics, on the modeling space parting involving 
irregularly distributed boreholes, and on the estimation of 
rock mass properties by a four-step procedure. Two FLAC3D 
models on the basis of the CNMM and DINMM are built 
and calibrated in Sect. 3, and their predictions on surface 
subsidence, stress, and failure propagation are compared and 
discussed with field observation and theoretical understand-
ing in Sect. 4. The objectives of this paper are (1) to address 

the whole utilization of borehole logs and test results of rock 
specimens in coal mines, thereby improving the accuracy of 
mining subsidence prediction, and (2) to provide a new per-
spective for numerical simulation of large-scale rock strata.

2  The Data‑Intensive Numerical Modeling 
Method

2.1  Modeling Space Parting and Mathematical 
Description

Although rock mass properties are spatially varied, they 
may nevertheless be uniform in regions as noted by Bie-
niawski (1989) and Priest (1993). With this in mind, we 
assume that rock mass property in the modeling space 
coincides with that revealed by the nearest borehole, 
that is, the large-scale model is an assemblage of smaller 
regions. Figure 2 shows a guideline for determining the 
modeling space by a 45° angle which is a conservative 
estimate (State Bureau of Coal Industry 2000), in most 
cases, that guarantees the modeling space exceeding the 
mining influenced range. By doing so, the target borehole 
locations on the ABCD surface can be captured.

The attention is subsequently posed on the geometry 
in connection with borehole distribution and computing 
grid. In practical, six-sided solids (hexahedron-like) and 
five-sided solids (prism-like), which become quadrangles 
and triangles when we look at them from the top, are often 
used because their quality is sufficiently high for mod-
eling and can be directly converted into a computing grid 

Fig. 2  Estimation of the modeling space

Fig. 3  Parting of the ABCD surface for irregularly distributed bore-
holes
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through BlockRanger (ITASCA 2016), a grid generation 
tool. The ABCD surface in Fig. 2 was, therefore, divided 
into subareas consisting of triangles and quadrangles. Note 
that each subarea contains only one borehole and their area 
should be equal if possible. For boreholes distributed in a 
uniform grid, the ABCD surface can be divided into pure 
quadrilateral subareas along the prospecting line; other-
wise, it can be split into a combination of triangles and 
quadrangles via the following suggested steps (see Fig. 3).

(1) The boreholes on the ABCD surface (Fig. 3a) are first 
connected to form triangular meshes (Fig. 3b).

(2) The midpoints of each side of the triangular meshes are 
marked as triangle points (Fig. 3c), and a straight line is 
drawn from the triangle points on the outer boundary of 
the triangle mesh to the borders of the ABCD surface 
to determine the square points.

(3) The triangle points and the square points are then con-
nected to form closed polygons (Fig. 3d) with only one 
borehole being allowed in each polygon regarded as the 
subarea.

(4) The polygons are further simplified by reducing their 
edges, and the areas of all polygons should be as similar 
as possible (Fig. 3e).

(5) Finally, the polygons are divided into combinations of 
triangles and quadrangles (Fig. 3f).

After parting of the ABCD surface, further construction 
along the gravity direction of each subarea is needed for the 
lithological variability revealed by the corresponding bore-
hole. In general, a model with M boreholes and N strata (rock 
formation or rock group) interfaces contains M × N points, as 
the schematic shown in Fig. 4. We denote Pi and Pi,j as the 
point set on the i-th strata interface and the three-dimensional 
coordinates of the j-th borehole on the i-th strata interface, 
respectively. Pi is represented as follows:

where ℕ represents the integer set. The strata interfaces Si are 
created via the NURBS (non-uniform rational basis spline) 
mathematical model (Piegl and Tiller 1996), which can be 
expressed as

Since rock lithology varies spatially, strata revealed by 
different boreholes with identical elevation may have differ-
ent lithologies. Even if their lithologies are the same across 
subareas, the strata thicknesses may not be identical. To con-
nect strata across subareas, a processing method illustrated 
schematically in Fig. 5 is used, where the spatial points of the 
j-th borehole on the adjacent strata interfaces Si and Si+1 are 
first connected (Fig. 5a) and then equally split into n sections 
(Fig. 5b). Provided that m rock beds of different lithologies 
occur between Si and Si+1 at a given borehole j, then we define

(1)
Pi =

{
(x, y, z)

|||
Pi,j

(
xi,j, yi,j, zi,j

)
, 1 ≪ i ≪ N, 1 ≪ j ≪ M, i ∈ ℕ, j ∈ ℕ

}
,

(2)Si(x, y, z) = F
(
Pi

)
.

(3)Δz =
(
zi,j − zi+1,j

)
∕n

Fig. 4  Schematic of a computing model with 16 boreholes and 6 
strata interfaces based on geological conditions of the Ying-Pan-Hao 
coal mine. Pi,j on the ABCD surface that had been divided into 16 
quadrilateral subareas represent locations of 16 boreholes. Si and Si+1 
represent two adjacent strata interfaces

Fig. 5  Schematic of two modeling steps: a the points on two adjacent 
strata interfaces are connected and b each of the connected lines is 
equally split into 30 sections. In this figure, we use cylinders to rep-
resent the connected lines for convenience of display and the circular 

section of each cylinder represents the location of the split point. This 
figure is further delineated based on Fig. 4, as an example of how to 
handle spatial points on any two adjacent strata interfaces
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where Ls,j (Fig. 6b) is the thickness of the s-th rock bed of 
the j-th borehole between Si and Si+1 . Therefore, (n − 1) new 
point sets Pk and new surfaces Sk (Fig. 6a) are generated 
between Si and Si+1 , which are represented as

The space enclosed by Si , Sk , Si+1 , and the outer 
boundary of subareas is called the model subunit ΔVk,j 
(Fig. 6b). It is assumed that ΔVk,j and the borehole range 
( zi,j + (k − 1) × Δz, zi,j + k × Δz) have consistent lithologies. 
Then, the expression for the entire model is obtained as

where Vs,j (Fig. 6b) is the space of the s-th rock bed revealed 
by borehole j between Si and Si+1.

The above modeling process has two major benefits. First, 
the resulting 3D model satisfies BlockRanger’s requirements 
on geometry, which should maintain grid conformity and 

(4)𝛼s,j =
Ls,j

Δz
, 0 < 𝛼s,j < n, 0 < s ≪ m, 𝛼s,j ∈ ℕ, s ∈ ℕ

(5)
Pk =

{
(x, y, z)

||
|
Pi,j

(
xi,j, yi,j, zi,j + k × Δz

)
, 0 < k < n, k ∈ ℕ

}

(6)Sk(x, y, z) = F
(
Pk

)
.

(7)Vs,j =

�=�2∑

�=�1

ΔV
�,j,

(8)�1 =

�=s−1∑

�=1

��,j,

(9)�2 =

�=s∑

�=1

��,j,

continuity with no dangling nodes, such that it can easily 
convert into not only FLAC3D but also 3DEC, ABAQUS, 
and ANSYS computing grid (ITASCA 2016). This is greatly 
helpful to reduce modeling complexity when compared to 
the direct method via FISH, especially considering the estab-
lishment of a data-intensive numerical model. Second, all 
borehole logs in the mining-affected area are fully used, such 
that the thickness and lithology variation of rock strata can 
be reflected both along the gravity direction and horizontal 
directions.

2.2  Procedure for Rock Property Estimation 
in the DINMM

Another concern in the DINMM is how to determine rock 
mass properties of various rock strata of different lithologies, 
and note that rock masses with the same lithology may have 
properties of significant difference (Liu et al. 2020). As of 
now, estimation of rock mass property is data dependency 
as discussed by many researchers. For example, in some 
cases, RQD rather than RMR or Q is used due to insuf-
ficient data (Zhang and Einstein 2004), and this is a way 
of life rather than a simple difficulty in rock mechanics and 
engineering design (to quote Jing 2003). Bieniawski (1989) 
also remarked that the drilling investigation for geotechnical 
purposes provides more detailed information and is much 
more expensive than that for mineral exploration purposes, 
which accounted for the lacking of data.

Data scale for large-scale strata modeling in underground 
coal mining has its characteristics. The shaft inspection 
holes are drilled for geotechnical purposes where labora-
tory tests for each rock bed are fully conducted, while the 
others are mostly drilled for mineral exploration purposes 
where only geological descriptions are available. Although 
additional tests on rock specimens cored from the roof and 

Fig. 6  Schematic of two modeling steps: a generation of new inter-
faces S

k
 between any two adjacent strata interfaces and b lithol-

ogy spatial distribution across subareas. The 29 new surfaces, S1 to 
S29 , are obtained by fitting the split points of each connected line in 
Fig. 5b, as described by Eqs. 5 and 6; the yellow lines represent the 
outer boundary of subarea 1. We can see that six rock beds of differ-
ent lithologies between Si and Si+1 are revealed by borehole 5, and L2,5 

represents the thickness of the second bed. ΔV1,1 represents the space 
enclosed by Si , S1 , and the outer boundary of the subarea 1; ΔV30,1 
represents the space enclosed by Si+1 , S29 , and the outer boundary of 
the subarea 1; V1,1 as indicated by the red lines represents the space of 
the 1st rock bed revealed by borehole 1, which is equal to 

∑i=6

i=1
ΔVi,1 

in volume, as described by Eqs. 7–9
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floor of mining panels and roadways are data sources as well, 
they would not cover the whole strata from ground surface 
to mining level because attentions, in coal mines, are paid 
more on rocks near coal seams. Therefore, the difficulty lies 
in how to estimate the properties of the rock masses revealed 
during mineral exploration. This is done, in this paper, by a 
four-step strategy: statistical analysis, analogy analysis, rock 
mass classification, and orthogonal testing.

The statistical analysis is to find relationships between 
geological descriptions (such as burial depth, color, mineral 
composition, mineral grain size, cementation, and structure) 
and mechanical parameters (such as density, elastic modu-
lus, Poisson’s ratio, cohesion, compressive strength, friction 
angle, and tensile strength) on the basis of a local data-
base with data gained mostly from shaft inspection holes. 
In the Ying-Pan-Hao coal mine, we found that it is still 
hard to establish a multi-parameter equation to reflect the 
detailed property variation, while through curve fitting we 
also attained some evident rules as shown in Fig. 7, where 
we can see that the density, elastic modulus, cohesion and 
compressive strength of the intact rock are closely related 
to depth.

The analogy analysis is to infer intact rock properties by 
comparing the geological descriptions of an intact rock with 
that in the local database. We denote the input (geological 
description of an intact rock named “X”) and output (the 

corresponding mechanical properties) as GD-X and MP-X, 
respectively. The suggested steps are:

1. If GD-1 exists in the database such that GD-1 is the 
same with GD-X, that is, the depth, color, mineral com-
position, mineral grain size, structure, and cementation 
level of the “X” conforms with the record “1” in the 
database, then MP-X is equal to MP-1. Otherwise, go 
to Step 2.

2. Compare GD-X with each of the recorded geological 
descriptions in the database to find the GD-2 which is 
most similar to GD-X. Then, MP-2 is used for MP-X. 
Since depth is the most influential factor in this case, 
we first look for a few record candidates in terms of the 
given depth and then select the best match according 
to other factors which are considered equally important 
(i.e., the majority wins).

The above steps may seem rough but it is better to be 
roughly right than precisely wrong (to quote Carveth Read), 
especially considering that, in some cases, a simple anal-
ogy relied only on lithology was used. The significance of 
this proposed analogy process lies in twofold: (1) it does 
provide an approach for determining intact rock properties 
in data-intensive numerical modeling, which can be served 
as a baseline study; (2) it uses all the mechanical test data 
and geological descriptions obtained during coal mine 

Fig. 7  The intact rock properties versus depth in the Ying-Pan-Hao coal mine



1693A Data‑Intensive Numerical Modeling Method for Large‑Scale Rock Strata and Its Application…

1 3

construction, which contributes to estimating rock proper-
ties more reasonably. The demerit is that its contribution to 
interpreting rock property variation depends on how well the 
tested rock specimens can represent the property changes of 
the modeling domain.

Once intact rock properties have been assigned, classifi-
cation systems together with a calibration routine will help 
derive sound inputs of numerical modeling, and these two 
steps will be discussed in the subsequent sections for reasons 
of relevance.

3  Development of the FLAC3D Models

The increasing computing power today available at a reason-
able cost and persistent improvement of numerical software 
in parallel computing are the main backdrops for achieving 
a data-intensive numerical model (ITASCA 2017). In this 
section, the engineering background, model setup, and cali-
bration procedure are explained.

3.1  Engineering Background and Data

As shown in Fig. 8, our interests are placed in the Ying-
Pan-Hao coal mine located in the Uxin Banner of Inner 
Mongolia, western China. This is a newly built mine with 
few buildings or structures nearby, which is beneficial for 
arranging subsidence monitoring points and for obtaining 
reliable observation results. 2201 panel, the first mining 
panel of the mine, applies a full-seam longwall coal min-
ing method with panel length, panel width, average mining 
thickness, average mining depth, and average dip angle at 
300 m, 2500 m, 6.5 m, 730 m, and 1°, respectively. The 
green area indicates Inner Mongolia province of China, red 
pin indicates the location of the Ying-Pan-Hao coal mine, 

black arrow is for coal mining direction, and black dotted 
lines denote the observation lines with monitoring points 
numbered from B10 to B81 cross the panel and from C1 to 
C81 along the panel. When the 2201 panel was mined to 
361, 478, 594, and 665 m, subsidence measuring was per-
formed at each monitoring point, designated the 1st-, 2nd-, 
3rd-, and 4th-period measurement.

Sixteen boreholes, three shaft inspection holes, and two 
surface observation lines are distributed on the ground sur-
face. Geological investigation revealed: (1) the coal seam 
overburden had ages from ancient to recent periods includ-
ing the Yan’an formation, the Zhiluo formation, the And-
ing formation, the Zhidan formation, and the Quaternary 
system; (2) the coal-bearing strata were primarily com-
posed of sedimentary rock in a layered or blocky structure; 
and (3) the study area had a simple geological structure 
with discontinuities been primarily beddings and joints 
without faults. The 16 borehole logs were used to build a 
DINMM-based FLAC3D model, while a comprehensive 
stratigraphy column (see Fig. 9) provided by geologists 
through simplification of the borehole logs was used to 
build a CNMM-based FLAC3D model.

A total of 278 specimens from the three shaft inspec-
tion holes were tested and some of them are shown in 
Fig.  10. These tests together with the corresponding 
geological descriptions are data sources for building the 
local database, and following the procedure described in 
Sect. 2.2, intact rock properties were attained for each 
stratum revealed by the 16 boreholes. Subsequently, the 
basic GSI chart (Hoek and Brown 2019) was used to 
roughly scale the intact rock properties down to the rock 
mass properties (Barla and Barla 2000), mainly because 
the description form of rock structure in our geological 
reports is consistent with that in the GSI chart. In gen-
eral, the higher the categorization level in the GSI chart, 

Fig. 8  Distribution of boreholes 
and surface monitoring points in 
the Ying-Pan-Hao coal mine
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the closer the mechanical properties of a rock mass are to 
those of an intact rock. In the Ying-Pan-Hao coal mine, 
the rock structure can be categorized as “INTACT OR 
MASSIVE” or “BLOCKY”, and the rock surface condi-
tions can be categorized as “VERY GOOD” or “GOOD”. 
The above classification results imply that the difference 
between rock masses and intact rocks is relatively small. 
Therefore, we first presume that the initial properties of 
rock mass are basically consistent with that of the intact 
rock, and then correct them by the calibration procedure 
demonstrated in Sect. 3.3.

Fig. 9  The comprehensive stratigraphy column used for the CNMM-based model. Red numbers indicate depth below the ground surface, and 
black numbers are strata notations used also in Fig. 12. The thickness of each stratum reflects the average of the 16 borehole logs

Fig. 10  Rock specimens from three shaft inspection holes of the 
Ying-Pan-Hao coal mine

Fig. 11  Comparison of the two FLAC3D models based upon the CNMM and DINMM
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3.2  FLAC3D Model Setup

As shown in Fig. 11, the established two FLAC3D mod-
els share the same geometry size (3800 × 1800 × 760 m), 
boundary conditions, and constitutive relationship, i.e., 
linear-elastic, perfectly plastic model with the Mohr–Cou-
lomb failure criterion. The bottom, left, right, front and 
back surfaces of both models were constrained to move 
along the x-, y-, and z-axes; the top boundary was a free 
surface without a load; the gravity, and lateral stress coef-
ficient at rest, k0 , given by k0 = �∕(1 − �) where � is Pois-
son’s ratio, were used to apply the in situ stress (Xu et al. 
2013b). The color variation indicates different properties, 
which manifests that model-(b) incorporated much more 
details than model-(a) due to use of the DINMM.

Figure 12 presents the detailed values used for each 
stratum in the CNMM-based model. These values are 
the weighted average of that used for the strata in the 
DINMM-based model. Do note that a stratum in the 
CNMM-based model usually corresponds to n strata in 
the DINMM-based model, and the relationship between 
them is that they represent the same spatial position. Thus, 
we can specifically get

where MPi ( i = 1 , 2, 3, 4, 5) represents the weighted aver-
age of the i-th mechanical parameter (i.e., bulk modulus, 
shear modulus, friction angle, cohesion, and tensile strength, 
respectively) of a stratum in the CNMM-based model; Hj 
represents the thickness of the j-th ( 1 ≪ j ≪ n ) stratum 

(10)MPi =

∑n

j=1
MPi,j × Hj

∑n

j=1
Hj

,

in the DINMM-based model; and MPi,j represents the i-th 
mechanical parameter of the j-th stratum.

In addition, mesh size is another consideration on mod-
eling accuracy and its effect has been fully accepted by 

Fig. 12  Initial rock mass properties used in the CNMM-based model. Numbers from 1 to 38 correspond to that in Fig. 9

Table 1  Meshing schemes for the two FLAC3D models

Meshing 
scheme

CNMM-based model DINMM-based model

Total 
number of 
zones

Mesh size (m) Total 
number of 
zones

Mesh size (m)

1 100,096 71.79 100,602 71.79
2 200,508 50.68 205,048 50.68
3 503,880 31.91 501,120 31.91
4 1,003,023 22.67 1,000,480 22.67
5 2,005,602 16.25 2,000,768 16.25
6 5,004,915 12.67 5,011,200 12.67

Fig. 13  Influence of mesh size on ground surface subsidence predic-
tion. The correlation between the total number of zones and mesh 
size is shown in Table 1
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researchers (e.g., Davies et al. 1984; Turon et al. 2007; Deng 
et al. 2012; Sande and Ray 2014; Alañón et al. 2018). To 
avoid mesh size bias, FLAC3D simulations were performed 
using various meshing schemes (see Table 1) for sensitivity 
analysis. The relationship between mesh size and ground 
surface subsidence is presented in Fig. 13. Clearly, it can be 
seen that for both models, the computed maximum surface 

subsidence first climbs with the increasing number of zones 
or in other words with the decreasing mesh size, and then 
converges to a stable value when the total number of zones 
exceeding 1 million. Hence, the meshing scheme 4 hereafter 
is applied.

3.3  Calibration of Rock Mass Properties

For equivalent continuous modeling, especially a large-scale 
case, it is imperative to calibrate properties of rock masses, 
as they are essentially comprised of intact rocks and discon-
tinuities of different scales, which will not be fully under-
stood during geological investigations at present. Among 
many back analysis techniques, an orthogonal experimental 
design method with reference to Xu et al. (2013b) is chosen 
because of its satisfactory application in mining subsidence 
prediction. In the following, the calibration steps are briefly 
summarized and the results are shown.

Table 2  Selected values for the five levels of the experimental factors

Level Experimental factor

E(GPa) � C(KPa) ∅(°)

I 1.75 0.33 2840 8
II 3.45 0.30 5430 14
III 5.15 0.26 8030 20
IV 6.85 0.23 10,600 26
V 8.55 0.19 13,200 32

Table 3  The orthogonal 
experimental table and results 
of the tested schemes

The best match is shown in italics

Scheme E � C ∅ Predicted value of the maximum 
surface subsidence (mm)

CNMM-based 
model

DINMM-
based 
model

1 I I I I 582.2 804.0
2 I II II II 287.5 419.0
3 I III III III 303.9 398.3
4 I IV IV IV 322.0 406.3
5 I V V V 350.2 429.6
6 II I III II 124.6 176.5
7 II II IV III 135.0 180.8
8 II III V IV 151.0 194.4
9 II IV I V 191.1 265.8
10 II V II I 240.4 323.1
11 III I V III 81.8 112.9
12 III II I IV 105.5 155.2
13 III III II V 104.3 139.1
14 III IV III I 115.7 155.1
15 III V IV II 120.9 149.6
16 IV I II IV 63.1 90.8
17 IV II III V 68.0 91.4
18 IV III IV I 77.4 100.8
19 IV IV V II 82.2 103.5
20 IV V I III 139.6 195.6
21 V I IV V 49.2 62.0
22 V II V I 54.6 73.0
23 V III I II 106.0 151.6
24 V IV II III 70.6 96.2
25 V V III IV 73.4 91.3
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(1) Experimental factors and orthogonal experimental 
table Elastic modulus, Poisson’s ratio, cohesion, and friction 
angle are the orthogonal test factors with each having five 
levels representing its variation range. Although a broader 
representation can be achieved using more levels, the dra-
matically increasing computing time constrain its expan-
sion. The detailed values for the five levels are presented 
in Table 2 and subsequently constituted the orthogonal 
experimental table (see Table 3) according to the orthogonal 
experimental method (Taguchi 1987).

(2) Calculation coefficients of each rock bed The calcula-
tion coefficient of the i-th rock bed, such as �E

i
 , is defined 

as the ratio of the elastic modulus of the i-th rock bed ( Ei ) 
to the average elastic modulus of all rock beds ( E ) in the 
numerical model. Specifically, E is calculated as follows:

where n represents the total number of rock beds, and Hi 
represents the thickness of the i-th rock bed. For other cal-
culation coefficients ( ��

i
 , �C

i
 , and �∅

i
 ), the definitions are the 

same as �E
i
.

(3) The relationship between the calculation coefficients 
and the schemes Each scheme in Table 3 corresponds to 
a FLAC3D model, in which the values of the mechanical 
parameters of the i-th rock bed are equal to the calculation 

(11)E =

∑n

i=1
Ei × Hi

∑n

i=1
Hi

,

coefficients of the i-th rock bed multiply by the correspond-
ing levels of the scheme. Taking scheme 8 as an example, the 
elastic modulus of the i-th rock bed, in the FLAC3D model 
corresponding to scheme 8, is determined by�E

i
× EI , where 

EII equals to 3.45 GPa in reference to Table 2.
(4) The test indicator Maximum surface subsidence is the 

test indicator to find the most reasonable scheme because it 
is sensitive to changes of rock mass properties and is avail-
able by surface subsidence observation. Corresponding to 
Table 3, a total of 50 FLAC3D models were established in 
terms of the CNMM and DINMM. The most reasonable 
scheme can then be selected by comparing the predicted 
and measured maximum subsidence. Since the maximum 
subsidence of the 1st-period measurement is 63.6 mm, we 
can see in Table 3 and Fig. 14 that the most justifiable ones 
for the CNMM-based model and DINMM-based model are 
schemes 16 and 21, respectively.

4  Results and Discussion

4.1  Overestimation Effect in FLAC3D

FLAC3D, as designed to modeling continuous media, can 
well simulate rock mass deformation behavior but barely 
reflect the behavior of joints and bedding planes directly, 
especially when the modeling range is large and contains a 

Fig. 14  Predictions versus the 1st-period measurement. Locations of the monitoring points can be found in Fig. 8

Fig. 15  Schematic of the balanced arch structure and the unfallen rocks. a For the actual situation where roof rocks have fallen down and stacked 
together after mining. b For the situation in FLAC3D where rocks are still attached to the overlying strata
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large number of joints and bedding planes (ITASCA 2017). 
When the goaf area (Zhu et al. 2016) is expanded beyond 
a certain range, the overlying rock roof ruptures and col-
lapses in longwall coal mining, which causes differences 
between the simulation and the actual condition, as shown 
in Fig. 15. In practical, a balanced arch structure (Yang et al. 
2015) will be formed to support the overlying weight after 
the rock collapse (see Fig. 15a); however, in the simula-
tion, the rocks are still attached to the overlying stratum, 
which is equivalent to adding more weight to the balanced 
arch structure in Fig. 15a and thus leads to greater ground 
subsidence (also see Gong et al. 2021). Hence, FLAC3D is 
more suitable and accurate for simulating the initial stage of 
the coal mining process and leads to an overestimation after 
the strata rupture and collapse. On the basis of the above 
reasoning, in this study, the early four periods measurement 
corresponding to the 2201 panel advancing at 361 m, 478 m, 

594 m, and 655 m were used for comparison. Moreover, it is 
worth noting that, although the existence of overestimation 
effect in FLAC3D, higher computed surface subsidence is 
beneficial for safer engineering design.

4.2  Comparison of Surface Subsidence Prediction

After the calibration, further comparisons between the com-
puted and measured subsidence are helpful to understand the 
effectiveness of the proposed modeling method. As shown 
in Fig. 16, we can see that in general the predictions of both 
models reflect the subsidence variation trend and are larger 
than the measured values. We note that, most importantly, 
the DINMM-based model is more accurate in predicting 
the 2nd- and 3rd-period measurement, even though the two 
models were both calibrated and showed good consistency 
with the 1st-period measurement. This is more pronounced 

Fig. 16  Predictions versus measurements. a The 2nd period; b the 3rd period; c the 4th period. Locations of the monitoring points can be found 
in Fig. 8
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when we focus on the monitoring points of B35 to B50, 
where a better prediction of the CNMM-based model in 
the 1st period conversely turns out to show a larger error 
in the following periods, which supports that the DINMM-
based model is not only more accurate in general but also 
more robust in local. The mechanism behind this should 
be attributed to the strategy of realizing property variations 
along horizontal directions and the more realistic properties 
assigned to the related rock beds, which of course are the 
merits of the DINMM.

We further compared the root mean square error of all 70 
monitoring points as shown in Table 4. We can see that the 
error of the DINMM-based model is smaller in the 2nd, 3rd, 
and 4th period, even though the CNMM-based model was 
better calibrated at the beginning. In addition, we note that 
there is a sudden root mean square error increase in the 3rd 
period of both models, which suggests that a strata fracture 
might have occurred because of the overestimation effect 
as we stated before. Nevertheless, a root mean square error 
decline of at least 27.4% can be concluded.

The prediction accuracy of maximum subsidence is 
another concern when evaluating numerical models. We 
can see in Table 5 that the relative error of the predicted 
maximum subsidence of both models increases with the coal 
mining process, which agrees with the overestimation effect, 

and the DINMM-based model is generally better performed. 
Statistically, we can conclude that the relative error of maxi-
mum subsidence is reduced by 5.1% through the DINMM 
when compared to that of the CNMM, and that the error 
reduction rate reaches 66.5% on average. In addition, we 
must stress that the rock properties used in the CNMM-
based model were derived on the basis of that used in the 
DINMM-based model, which avoided some biases. Whereas 
in previous studies, their properties are often determined by 
analogy relied only on lithology, which probably induces 
more error (also see Sect. 2.2). From this point of view, the 
better prediction of a DINMM-based model is more sig-
nificant. Considering that the prediction result of a CNMM-
based model seems to be acceptable as well, the four-step 
procedure together with Eq. 10 should be quite helpful to 
identify the best CNMM-based model.

4.3  Displacement, Stress and Failure Propagation 
Maps

Here, we present and describe the displacement, stress, and 
failure propagation along a vertical section (same direc-
tion as indicated by the black arrow in Fig. 8) to show the 
potential advantages of having a data-intensive model. Since 

Table 4  Comparison of the root 
mean square error of the 70 
monitoring points

FLAC3D model Root mean square error (mm)

The 1st period The 2nd period The 3rd period The 4th period

The CNMM-based model 4.1 7.1 18.5 26.6
The DINMM-based model 4.6 5.1 12.9 19.3

Table 5  Comparison of 
the maximum subsidence 
predictions

Measurement period Measured maxi-
mum subsidence 
(mm)

The CNMM-based model The DINMM-based model

Predicted maxi-
mum subsidence 
(mm)

Relative 
error (%)

Predicted maxi-
mum subsidence 
(mm)

Relative 
error 
(%)

The 2nd period 88.7 91.1 2.7 88.5 0.3
The 3rd period 127.2 135.7 6.7 130.5 2.6
The  4th period 127.2 151.1 18.8 139.9 10.0

Fig. 17  A typical z-displace-
ment contour at the mining 
distance of 361 m. The vertical 
blue line indicates the boundary 
between subareas
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the z-displacement contours are very similar for different 
mining stages, we only illustrate a typical one in Fig. 17, 
where we can see that the marked difference in the DINMM-
based model is the asymmetric subsidence across subareas 
divided by the vertical blue line. This asymmetry is more 
pronounced near the excavated zones and transforms to near 
symmetry when approaching the ground surface. Appar-
ently, the realization of strata thickness and property vari-
ation is the major driving force behind the phenomenon. 
Since asymmetric subsidence of the roadway roof and 
ground surface was frequently reported (Li et al. 2016; Wang 

et al. 2020; Wu et al. 2020; Sun et al. 2021), a data-intensive 
model may provide new insight into their interpretations.

Same patterns are also observed in the z-stress contour 
maps (see Fig. 18). But more markedly, we note in the vicin-
ity of the boundary line that sudden stress variation occurs. 
This is most likely due to the sudden property changes from 
one subarea to another. We thus suggest a linear property 
assignment along the bedding plane, which probably works 
to tackle this issue, while as a side effect, this demands a 
more complex modeling process, which merits further 
study. On the other side, since rock properties are essentially 

Fig. 18  A typical z-stress contour at the mining distance of 361 m. The vertical blue line indicates the boundary between subareas. Numbers in 
MPa

Fig. 19  Failure propagation with mining process of 2201 panel. A1–A4 The CNMM-based model mining after 361  m, 478  m, 594  m, and 
660 m, respectively. B1–B4 The same for the DINMM-based model
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anisotropy, the contour map in Fig. 18b will shed more light 
on the understanding of real vertical stress distribution in 
the field and may provide an alternative explanation on the 
mechanism of rockburst from the perspective of property 
variation along bedding planes. We also note in recent lit-
eratures (Su et al. 2020; Wang et al. 2020) that asymmetric 
distribution of fracture zone and roadway deformation were 
observed, which supports that an asymmetric stress distribu-
tion should be more realistic.

The failure propagation in FLAC3D is represented by the 
yield zones as shown in Fig. 19. A widely accepted under-
standing of the mining-induced deformation and movement 
of overburden is the “four zones” theory (Peng 1992), where 
it demonstrates that failure initiates at rock roof after suf-
ficient extraction, gradually propagates upward with further 
extraction, and finally forms the caved zone, fractured zone, 
continuous bending zone, and soil zone. Therefore, it is 
unrealistic in Fig. 19A1–A4 that the failed zones occurred at 
the same time both in the vicinity of the ground surface and 
near the coal seam with no transmission between them. This 
is likely related to the inapposite rock properties assigned to 
some individual strata to offset the oversimplification of a 
CNMM-based model. We note that such phenomenon also 
occurred in the right subarea of the DINMM-based model 
(Fig. 19B1–B4) but is much slight, while in the left subarea 
the failure propagation agrees well with current knowledge. 
It appears that although a CNMM-based model can provide 
adequate subsidence prediction after careful parameter cali-
bration, it is at the cost of sacrificing rationality in other 
aspects.

5  Summary and Conclusion

This study stems from the concept of big data, i.e., we fol-
low the simple guideline that the more data integrated into 
numerical models, the more accurate result can be achieved. 
Over the years, the mining-affected large-scale rock masses 
were often modeled based upon a single or a comprehensive 
borehole log and only exhibits rock property and thickness 
variation along the gravity direction. Meanwhile, multiple 
borehole logs are readily available and can be used to build a 
data-intensive numerical model, which is important because 
doing so helps to exhibit rock property and thickness vari-
ation both along the gravity direction and horizontal direc-
tions, and in turn to gain a better understanding of strata 
movement and mining subsidence prediction. However, such 
efforts are seldom seen in literatures.

In this paper, we addressed this knowledge gap by pro-
posing a data-intensive numerical modeling method with 
consideration of modeling limitations and the data scale 
available. Specifically, we proposed a method to partition 
modeling space for both regularly and irregularly distributed 

boreholes, a mathematical model of lithology and thickness 
spatial distribution at rock bed level, and a property esti-
mation procedure for large-scale rock masses. These efforts 
build the foundation for the notion of data-intensive mod-
eling and led to the application in the Ying-Pan-Hao coal 
mine via FLAC3D. After a careful calibration of the mesh-
ing scheme and rock mass properties, detailed comparisons 
between computed and measured values and between the 
CNMM- and DINMM-based models were carried out to 
verify the effectiveness of the proposed method.

We find that when compared to the CNMM-based pre-
diction, the root mean square error of the 70 monitoring 
points is decreased at least by 27.4% in the DINMM-based 
prediction, and the relative error of maximum subsidence is 
reduced by 5.1% with a reduction rate of 66.5% on average, 
even though the CNMM-based model was originally bet-
ter calibrated. We also find that the subsidence prediction 
of the DINMM-based model is not only more accurate in 
general but also more robust in local. Regarding the dis-
placement, stress, and failure propagation, we observe that 
the pronounced characteristic in the DINMM-based model 
is the asymmetric z-displacement and z-stress distribution, 
which is more in line with the field observations in other 
literatures. We also observe that a DINMM-based model 
is more realistic in terms of failure propagation pattern, 
which agrees well with the theoretical understanding. We 
suggest using the four-step procedure together with Eq. 10 
for identifying the best CNMM-based model but note that 
although a CNMM-based model can provide adequate sub-
sidence prediction after careful parameter calibration, it is 
at the cost of sacrificing rationality in other aspects. We also 
suggest a linear property assignment along bedding planes 
in a DINMM-based model, which probably works to tackle 
the issue of sudden stress variation across subareas.

Overall, the DINMM is proved to be effective at least 
in the context of this study, which is significant for large-
scale rock strata modeling and enables a more accurate 
prediction of mining-induced subsidence. In addition, the 
notion of data-intensive modeling seems to be promising 
and merits further study with the increasing data scale in 
rock engineering.
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