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Abstract 
In the framework of smoothed particle hydrodynamics based on total Lagrangian formula (TLF_SPH), a new coupled 
thermo-mechanical bond-based TLF_SPH (TM-BB-TLF_SPH) method considering the friction effect is proposed to simulate 
the thermal fracture process of rocks. In the TLF_SPH program, the interaction between particles is represented by virtual 
bonds. According to the Hoek–Brown strength criterion, the fracture of virtual bonds between particles is determined, and 
then, the fracture mode of rock can be captured during the thermal cracking process. The unbroken virtual bond can not 
only bear compressive stress and friction between particles, but also bear tensile stress and shear stress between particles, 
while the broken virtual bond can only bear compressive stress and friction between particles. Moreover, the hybrid friction 
contact (HFC) algorithm based on particle–segment contact and particle–particle contact is embedded in the bond-based 
TLF_SPH thermo-mechanical coupling model to simulate the frictional behavior between solid particles, and the contact 
force between solid particles is expressed based on the partial penetration criterion. Compared with the friction algorithm 
based on particle–particle contact in GPD framework and particle–segment contact in SPH framework, the HFC algorithm 
in TLF_SPH framework is more efficient, stable, and accurate. Finally, two numerical examples are used to verify the 
accuracy and feasibility of the proposed HFC algorithm and the coupled thermo-mechanical bond-based TLF_SPH method 
considering the friction effect. The numerical results are in good agreement with the theoretical and experimental results.
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• A thermo-mechanical coupling model considering the 
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• The thermal cracking mode of rock disk depends on the 
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1 Introduction

Rock thermal cracking plays a major role in the develop-
ment and utilization of underground energy sources such as 
oil, natural gas, and geothermal energy (Ghassemi 2012). 
Thermal cracking technology can change the macroscopic 
fracture structure of the rock, such as the length and width of 
the crack, and generate a large number of macroscopic sec-
ondary thermal cracks, forming an effective water flow crack 
network. The crack network can activate the characteristics 
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of fluid migration in the rock. Therefore, the rock thermal 
cracking mechanism has been highly valued by experts and 
scholars at home and abroad for many years.

To study the growth behavior of rock cracks considering 
the temperature effect, experts and scholars have carried 
out a large number of laboratory tests and numerical simu-
lation of the thermal fracture process of rock. Zuo et al. 
(2008) conducted laboratory tests on the deformation and 
damage characteristics of sandstone under different tem-
perature conditions. The test results showed that sandstone 
gradually changed from brittle fracture to ductile fracture 
with the increase of temperature. Deng et al. (1997) found 
through tests that with the increase of the applied pres-
sure load on the rock, the temperature of rock increases 
significantly, and the difference is significantly affected by 
the lithology and the particle size of rock. Simpson (1985) 
studied the effect of heating rate on the thermal fracture 
behavior of rocks through laboratory experiments.

In recent years, meshless methods, such as discrete 
element method (DEM) (Cundall and Strack 1979; Itasca 
Consulting Group 2004; Potyondy and Cundall 2004; Zhao 
et al. 2012; Zhao 2013), smooth particle hydrodynamics 
(SPH) method (Gingold and Monaghan 1977; Lucy 1977), 
and peridynamical (PD) method (Silling 2000), have been 
rapidly developed in the numerical calculation of rock 
thermal cracking. Discrete element method is more used 
to solve mechanical problems and heat conduction prob-
lems of materials (Feng et al. 2008; Shimizu 2006; Vargas 
and McCarthy 2001), and it is less applied to rock thermal 
cracking simulation. Smooth particle hydrodynamics is a 
meshless method in Lagrangian form, originally proposed 
by Lucy (1997), and Ginold and Monaghan (1997) to solve 
astrophysics problems. Over the years, it has been widely 
used, such as fluid flow (Benz and Asphaug 1995; Mona-
ghan 1994; Morris et al. 1997; Takeda et al. 1994; Xu and 
Deng 2016), heat conduction problems (Clear and Mona-
ghan 1999; Zhou and Bi 2018), and the dynamic response 
of solid materials (Benz and Asphaug 1995; Libersky et al. 
1993). However, the application of SPH method in the 
heat conduction problem is not yet mature. The traditional 
SPH method first solves the stress rate, and then integrates 
the stress rate to solve the stress. For the thermo-solid 
coupling problem, the time scale of temperature integra-
tion is much larger than that of stress integration, so it is 
difficult to directly introduce the temperature change rate 
into the constitutive equation of the stress rate. In addi-
tion, the tensile instability of traditional SPH algorithm is 
determined by the Euler kernel function calculated by the 
spatial coordinates of the current configuration, and this 
inherent defect has not been fundamentally solved. Fortu-
nately, in the work of Belytschko et al. (2000), it has been 
proved that the Lagrangian kernel approximation using 
material coordinates can eliminate the tensile instability 

phenomenon. Peridynamic (PD) theory was first proposed 
by Silling (2000). The motion control equation of PD the-
ory is an integral–differential form without spatial deriva-
tives, which can be used to solve fracture problems such 
as crack propagation. The bond-based peridynamic theory 
is based on the assumption of paired interaction forces 
of the same size, which results in the Poisson's ratio of 
the two-dimensional isotropic material solution problem 
being limited to 1/4. Aiming at the problem that Poisson's 
ratio in the bond-based peridynamical theory is limited, 
Zhou and Shou (2017) introduced the tangential bond in 
the existing peridynamical theory, which effectively solved 
the problem. Although the PD method has achieved good 
simulation results in the numerical calculation of rock 
fracture, it also has some shortcomings and is still in the 
development stage.

Although scholars at home and abroad have carried out 
a large number of laboratory tests and numerical analysis 
on the thermal cracking process of rocks, frictional con-
tact problems between heterogeneous particles during the 
thermal crack propagation of rocks are rarely considered. 
Especially for the Finite-Element Method (FEM) commonly 
used in engineering, such as the Extended Finite-Element 
method (XFEM) (Paluszny and Matthai 2009), the Gener-
alized Finite-Element Method (GFEM) (Strouboulis et al. 
2000a, b), and the Particle Finite-Element Method (PFEM) 
(Aubry et al. 2005; Pin et al. 2007), when implementing 
frictional contact algorithms, it is very difficult for these 
methods to consider slippage and separation along the defect 
direction. Numerical Manifold Method (NMM) is a combi-
nation of Discontinuous Deformation Analysis (DDA) (Shi 
and Goodman 1989) and Finite-Element Method (FEM). 
It is commonly used to solve static cracks and discontinui-
ties in crack propagation (Tsay et al. 1999). However, when 
the crack tip is just inside the element, the accuracy of this 
method will be reduced, and a regular mathematical overlay 
system (Zhang et al. 2010) is needed to accurately evaluate 
the stress intensity factors (SIFs).

In most geotechnical engineering problems, the SPH 
algorithm itself is troubled by the “boundary defects”. In 
fluid and solid mechanics, the SPH interpolation near the 
boundary is usually inaccurate and needs to be handled 
appropriately. Monaghan generally simulates the bound-
ary of a rigid body using virtual particles, fluid particles, 
normalization conditions, and boundary particle forces 
(Monaghan and Kajtar 2009), and has achieved good results. 
More information can be found from the work in (Bonet and 
Kulasegaram 2000; Feldman and Bonet 2007; Libersky et al. 
1993; Monaghan 1989, 1992, 1994; Takeda et al. 1994). 
In addition, particle–surface contact and particle–particle 
contact based on the momentum equation are also used to 
describe the contact behavior between particles, where the 
contact force is applied along the direction of the center 
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line of interacting particles or along the normal direction 
of the boundary (Campbell et al. 2000; Kulasegaram et al. 
2004; Seo and Min 2006). However, the above methods are 
only suitable for completely smooth or non-slip boundaries, 
and are not suitable for common friction and sliding contact 
problems in geotechnical engineering.

Existing studies have shown that the only algorithm 
that can handle the frictional contact problem in the SPH 
framework is proposed by Gutfraind and Savage (1997), 
in which the frictional Coulomb boundary is realized by 
applying the normal repulsive force and the tangential 
force proportional to the normal force on the particles 
by the solid wall. However, this algorithm also has some 
shortcomings: ① When the friction force is not fully mobi-
lized, the assumption that the tangential force is propor-
tional to the normal force is inaccurate; ② articles may 
pass through the solid wall and cannot be pulled back; 
③ In engineering practice, the movement and rotation of 
configuration are not considered; ④ More importantly, 
this algorithm is not suitable for deformed structures. 
Wang and Chen (2014) proposed a particle–segment fric-
tion contact method for two-dimensional simulation of 
soil–structure interaction and obtained accurate results, 
but this algorithm is only suitable for the contact between 
solid particles and structural surface particles.

The purpose of this study is to propose an accurate and 
stable thermo-mechanical coupling numerical algorithm 
considering friction effect based on MATLAB software, 
namely, a new coupled thermo-mechanical bond-based 
TLF_SPH (TM-BB-TLF_SPH) method. To overcome 
the shortcomings of SPH method in solving the ther-
mal–mechanical coupling problem, first, the TLF_SPH 
method is described in detail based on total Lagrangian 
formula. Then, a pairwise force function is embedded in 
TLF_SPH to describe the thermoelasticity of the virtual 
bond. In addition, a hybrid contact friction (HFC) algo-
rithm is embedded in the thermal–mechanical coupling 
model to study the influence of friction on the initiation, 
propagation, and coalescence of thermal cracks. The HFC 
algorithm under the TLF_SPH framework overcomes some 
shortcomings of the friction algorithm based on SPH par-
ticle–segment contact. It not only eliminates the numerical 
instability caused by the penalty factor in the contact force 
calculation formula, but also improves the convergence of 
the numerical model using the particle–particle contact algo-
rithm to smooth the contact force of the structural particles 
at the corners. When the virtual bond breaks, there is no 
interaction between the particles except the contact force, 
which is only related to the contact state between the contact 
pairs. Numerical examples show that the thermal–mechani-
cal coupling model can accurately predict the initiation and 
propagation of thermal cracks under the action of frictional 

contact, and the numerical results agree well with the previ-
ous experimental observations.

This paper is organized as follows: In Sect. 2, the main 
process of TLF_SPH model establishment is briefly sum-
marized. In Sect. 3, the frictional contact algorithm between 
particles is illustrated. In Sect. 4, the thermal mechanical 
coupling model considering friction effect is derived, and 
the damage mechanism of the virtual bond is revealed. In 
Sect. 5, three numerical examples are given, which not only 
illustrate the accuracy and stability of the HFC algorithm 
embedded in TLF_SPH, but also verify the reliability of the 
proposed thermal–mechanical coupling model considering 
the friction effect. Finally, conclusions are drawn in Sect. 6, 
and the influence of thermal expansion coefficient on the 
thermal fracture mode of rock disc is discussed.

2  Establishment of TLF_SPH Model

The stability of the meshless method based on Euler kernel 
function and Lagrangian kernel function is analyzed in detail 
by Belytschko et al. (2000). The research results show that 
tensile instability is an inherent defect of Euler's formula, and 
the use of Lagrangian kernel can effectively avoid the ten-
sion instability, which provides the possibility for the stability 
analysis of nonlinear dynamics of elastomer. Therefore, this 
paper introduces the idea of Lagrangian kernel algorithm in 
continuum mechanics, and derives and establishes the TLF_
SPH model based on total Lagrangian formula suitable for 
geometric nonlinear analysis, and the traditional SPH solution 
method for solid materials is redescribed. In TLF_SPH, ker-
nel gradient only needs to be calculated once from the initial 
position of the particle, and there is no need to calculate the 
continuity equation, which significantly improves the calcula-
tion efficiency of the program.
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Fig. 1  Schematic diagram of deformation process of interacting the 
ith particle in configuration
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Suppose there is an ith particle with a position vector of 
Xi in the reference coordinate system, which deforms under 
the action of external force, and its position vector is xi,then 
the displacement vector of the ith particle is:ui=xi − Xi , as 
shown in Fig. 1.

According to the SPH particle approximation method, the 
deformation gradient tensor and displacement gradient tensor 
of the ith particle under the Lagrangian framework can be 
discretized into the following forms:

where u = x-X is the displacement vector of particles; x is the 
position vector of particles; X is the initial position vector 
of particles;�0 is the initial density of particles; and ∇C

i
Wij is 

the modified kernel gradient. It is important to note that the 
density of the particles remains unchanged, during the entire 
calculation process, and kernel gradient ∇iWij only needs 
to be calculated once from the initial position of particles.

According to continuum mechanics, the Green–Lagran-
gian strain tensor at the ith particle can be expressed by the 
displacement gradient tensor ( Li ) as follows:

Therefore, the Euler strain tensor of the ith particle 
in the deformed configuration can be obtained from the 
deformation gradient tensor and the Green–Lagrangian 
strain tensor as

where F−T
i

 indicates that matrix Fi is first inverted and then 
transposed.

According to elastic mechanics, for the plane stress 
problem, the Cauchy stress tensor and Euler strain have 
the following relationship:

Then, the first type of Piola–Kirchhoff stress tensor can 
be obtained from the Cauchy stress tensor

where Ji= det(Fi) is the determinant of the deformation gra-
dient tensor ( Fi).

(1)

⎧⎪⎪⎨⎪⎪⎩

Fi =
�
dx

dX

�
i
=

N�
j

mj

�0j
(xj − xi)∇iWij

Li =
�
du

dX

�
i
=

N�
j

mj

�0j
(uj − ui)∇iWij

,

(2)Ei = (LT
i
+ Li + LT

i
Li).

(3)�i= F−T
i
EiF

T
i
,

(4)

⎡⎢⎢⎢⎣

(�x)i

(�y)i

(�xy)i

⎤⎥⎥⎥⎦
=

E

(1 + v)(1 − 2v)

⎡⎢⎢⎢⎣

1 − v v 0

v 1 − v 0

0 0 1∕2 − v

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

(�x)i

(�y)i

(�xy)i

⎤⎥⎥⎥⎦
.

(5)Pi = Ji�iF
−T
i
,

In the Lagrangian frame, the governing equation for 
continuum mechanics are given by (Chakraborty and 
Shaw 2013; Libersky et al. 1993; Shaw and Reid 2009a, 
b; Weibull 1951)

where ρ is solid density;v� is the βth component of the solid 
velocity;x� is the βth component of the spatial coordinate; 
and ��� is the (α, β) th component of the total stress tensor, 
and the superscripts α, β = 1, 2 are used to denote the two 
spatial directions.

Following the research of Libersky et al. (1993), the 
momentum equation of the TLF_SPH model without 
external force can be converted to discretized weak form 
as

An artificial viscosity term Πij is added to Eq. (7) to sta-
bilize SPH computation, get rid of numerical oscillations 
and improve calculation accuracy. There are several forms 
of artificial viscosity (Monaghan 1988). In this study, the 
form consisting of a combination of linear and quadratic 
(Neumann and Richtmyer 1950) viscosity as prescribed by 
Monaghan and Gingold (1983) is used

where α and β are the artificial viscosity parameters and ε is 
a small number, generally taken as 0.01.cij = (ci + cj)∕2 and 
�ij = (�i + �j)∕2 indicate sound speed ( c =

√
4G∕3�0)and 

density of the solid, both averaged at the ith and jth particles, 
respectively (Hallquist 1998).vij = vi − vj is the relative 
velocity of ith and jth particles. Similarly,xij = xi − xj is the 
relative distance of ith and jth particles. The term uij is 
defined as uij=hvijxij∕(x2ij + �h2).

3  Friction Contact Algorithm Between 
Particles

3.1  Modification of Contact Boundary Governing 
Equation

As shown in Fig. 2, when dealing with the contact between solid 
particles and deformed structures, the support domain of particles 

(6)

⎧
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dt
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(8)Πij=
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−𝛼1Cijuij+𝛼2u
2
ij

𝜌ij
, if vij ⋅ xij < 0

0, otherwise
,
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close to the contact surface is only limited to one side of the inter-
face, that is, the support domain of the ith solid particle cannot 
contain any structural particles, and vice versa. Therefore, if the 
influence of contact is considered, the momentum equation of 
the ith solid particle in contact with the structured particles can 
be written as follows:

where F� is the contact force in α coordinate direction; ρ 
is the density of particles;b� is the acceleration caused by 
physical force in the α coordinate direction.

It can be seen from Fig. 2 that the supporting domain 
ℜin of the ith solid particle in contact with structural parti-
cles is missing. Therefore, the first term (����∕�x�) on the 
right side of the momentum equation cannot be discretized. 
To make the ith solid particle have a complete influence 
domain, an outer domain ℜout is added outside the contact 
surface, and the stress of the particles in the outer domain 
ℜout is set to zero. Then, Eq. (9) can be discretized as:

(9)
dv�

i

dt
=

1

�

��
��

i

�x
�

i

+
F�

i

mi

+b�
i
,

(10)

dv�
i

dt
=

∑
j∈ℜin

mj

(
P
��

i

�2
i

+
P
��

j

�2
j

+ Πij

)
�Wij

�x
�

i

+
∑
j∈ℜout

F�

i

mi

+ b� .

3.2  Hybrid friction contact (HFC) algorithm 
for contact boundary

The traditional particle–particle contact algorithm has sig-
nificant advantages in contact detection (Campbell et al. 
2000). When the penetration between two particles is 
detected, the contact occurs between particles. The penetra-
tion state between the ith and jth particles is defined as

where hi and hj are the smooth lengths of particles;xij is the 
relative position vector between the ith and jth particles. 
When p > 0, particles penetrate; p < 0, particles do not pen-
etrate, as shown in Fig. 3. However, this algorithm only cal-
culates the contact force between particles along the normal 
direction, ignoring the influence of tangential deformation 
between particles. Therefore, the contact force calculated 
by this method does not follow the deformation law of the 
actual contact surface, and cannot accurately simulate the 
friction force between the contact surfaces.

As shown in Fig. 4, Wang et al. (2013) proposed a parti-
cle–segment contact algorithm in the SPH framework, and 
introduced a penalty factor � to “weaken the intensity of pen-
alty parameter”, which improved the accuracy of numerical 
calculations. The algorithm was finally successfully applied 
to the two-dimensional simulation of the local deformation 

(11)p=
hi + hj

2
− ||xij||,

Fig. 2  Decomposition of acceleration for the ith particle

Fig. 3  Schematic diagram of particle-to-particle contact
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behavior of the material around the contact surface under the 
soil–structure interaction.

The particle–segment contact algorithm calculates the 
contact force based on the relative position between the ith 
and jth particles. Suppose the contact force of the ith particle 
is F�

i
 . If the ith and the jth particles come into contact, the 

acceleration of the ith particle due to the contact force is 
a�
i
= F�

i
∕mi , as shown in Fig. 5.

In this algorithm, the boundary and the surface of struc-
ture are discrete in sections, and the contact force Fn along 
the normal direction of the structure surface is represented 
by the residual penetration

(12)Fn=(1 − �)
2mi

Δt2
Δdn=(1 − �)

2mi

Δt2

(
d0 − dip

)
⋅ n,

(13)dip = −(xi − xp) ⋅ n,

where Δt is the time step; mi is the mass of the ith solid 
particle;� is a penalty factor reflecting the allowable degree 
of residual penetration ( � = 0 indicates that the particle has 
not penetrated). The introduction of � effectively reduces 
the stress oscillation during the contact simulation process 
and improves the stability of the numerical calculation.dip is 
the real-time distance between the ith particle and the con-
tact point p;n is the out-of-unit normal vector at the contact 
point p on the structural surface;d0 is the threshold of con-
tact detection (when dip < d0 , particles come into contact). 
In particular, for rigid structures,d0=Δx∕2 ; for deformed 
structures d0=Δx.

Although the accuracy of the particle–segment con-
tact algorithm proposed by Wang et al. (2013) in the SPH 
framework has achieved good results, it is difficult to 
determine the penalty factor � , which is determined by 
SPH's Euler kernel function idea. The TLF_SPH model 
established in this article is based on the idea of Lagran-
gian kernel function. Therefore, after the particle–segment 
contact algorithm is embedded in the TLF_SPH model, 
the penalty factor term (1–� ) can be completely removed, 
which not only achieves good numerical accuracy, but also 
further improves the numerical stability of the contact cal-
culation. Then, the normal contact force acting on solid 
particles can be expressed in the following form:

Assuming that the structure surface is completely rough 
and there is no relative sliding between solid particles and 
structure surface particles, the contact force F� of solid 
particles along the tangential direction is static friction, 
which can be calculated as follows:

(14)Fn=
2mi

Δt2

(
d0 − dip

)
⋅ n.

Fig. 4  Schematic diagram of particle-to-segment contact

Fig. 5  Schematic diagram of particle-to-segment contact
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where Δx̂𝜏
pi

 is the total relative position vector of the contact 
point p and the ith solid particle along the unit tangent vector 
direction of the contact surface

where Δxpi is the relative position vector of the contact point 
p and the ith solid particle in the current time step;Δxn

pi
 is the 

relative position vector of the contact point p and the ith 
solid particle along the out-of-unit normal vector direction 
of contact surface in the current time step; Nt is the total 
number of time steps;vp is the velocity vector at the contact 
point p. It should be noted that for rigid structures, the veloc-
ity at the contact point p can be obtained by the following 
formula:

where vt is the traction speed of rigid structure;� is the rota-
tion speed of rigid structure;L is the position vector from the 
rotation reference point to the contact point.

For a deformed structure, the velocity at the contact point 
p can be obtained by linear interpolation of the velocity of 
adjacent structure particles b1 and b2

where xp is the position vector of the contact point p on the 
structure surface; xb1 and xb2 is the position vector of the 
adjacent particles on both sides of the contact point p.

When the solid particles and the structural surface particles 
slide relatively, there is ||F𝜏 || > 𝜇||Fn|| . Then, the contact 
force of solid particles along the tangential direction is sliding 
friction force, which is recorded as F̂𝜏 , and its expression is 
as follows:

where Fn is the normal contact force at the contact point p 
on the structural surface; u is the dynamic friction coeffi-
cient;F� is the static friction force generated when the solid 
particles and the contact surface have no relative sliding.

Therefore, the total contact force of the contact surface act-
ing on the ith solid particle is

(15)F𝜏=
2mi

Δt2
Δx̂𝜏

pi
,

(16)Δxpi=(vp − vi)Δt,

(17)Δxn
pi
= (Δxpi ⋅ n) ⋅ n,

(18)Δx̂𝜏
pi
=

Nt∑
n=1

(Δxpi − Δxn
pi
),

(19)vp = vt + �⊗ L,

(20)vp =
vb1||xp−xb2||+vb2||xp−xb1||

||xb2−xb1|| ,

(21)F̂𝜏=𝜇||Fn|| ⋅
F𝜏

||F𝜏 || ,

After the contact force of the ith solid particle is deter-
mined, for a rigid structure, the total contact reaction force of 
rigid structure is as follows:

where NF is the number of solid particles interacting with 
contact surface.

For a deformed structure, the reaction force of the struc-
ture particles b1 and b2 adjacent to the contact point p can be 
obtained by linear interpolation of the ith solid particle inter-
acting with them

It should be noted that when the structured particles are 
on the contact surface, there is only one contact section 
for the ith solid particle. Therefore, the above algorithm is 
only applicable to the contact between the solid particles 
and the structured surface particles. When the structural 
particles are located in the corners, the ith solid particle 
may have multiple contact segments, and the above algo-
rithm is no longer applicable. In response to this situation, 
a hybrid friction contact algorithm of master and slave 
contact surfaces proposed by Zhan et al. (2020) greatly 
simplifies the calculation and implementation of the pro-
gram. However, when the structural surfaces are curved 
or irregular, the accuracy of numerical calculation will 
be disturbed.

The hybrid friction contact (HFC) algorithm proposed 
in this paper is simpler and more effective to deal with 
corner particles. First, the TLF_SPH program searches for 
the corner particles on the structure surface within the 
influence domain of the ith solid particle. If the ith solid 
particle has multiple contact segments, the structure parti-
cle nearest to the ith solid particle is selected and denoted 
as the pth particle. Then, based on the partial penetration 
algorithm, the normal contact force and tangential contact 
force between the ith and pth particles are calculated using 
Eqs. (25) and (26), respectively. According to the adap-
tive characteristics of SPH, when there are enough corner 
particles on the structural surface, the numerical accuracy 
of the contact force can fully meet the calculation require-
ments. In particular, the above method is more effective in 
dealing with the numerical singularity problem caused by 

(22)Fi=

{
Fn + F𝜏 , ||F𝜏 || ≤ 𝜇||Fn||
Fn + F̂𝜏 , ||F𝜏 || > 𝜇||Fn||

.

(23)Fsum= −

NF∑
i=1

Fi,

(24)

⎧⎪⎪⎨⎪⎪⎩

Fb1 = −
��xp−xb2��
��xb2−xb1��Fi

Fb2 = −
��xp−xb1��
��xb2−xb1��Fi

.
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the missing contact segment at the tip of the pre-existing 
defects.

If the structure particle is in the corner, the normal con-
tact force acting on the ith solid particle can be expressed 
in the following form:

where dip is the real-time distance between the ith and pth 
particles;nip is the unit vector of the line between the ith and 
pth particles, whose direction is from the pth particle to the 
ith particle.

Assuming that there is no relative sliding between the 
ith solid particle and the pth corner particle, the tangential 
contact force of the ith solid particle is static friction force, 
which can be calculated as follows:

where mi is the mass of the ith solid particle; Nt is the total 
number of time steps;vp is the velocity vector of the pth cor-
ner particle;vi is the velocity vector of the ith solid particle.

To better illustrate the calculation process of the algo-
rithm, the calculation flowchart of the contact algorithm 
is given in Fig. 6.

(25)Fcorner
n

=
2mi

Δt2

(
d0 − dip

)
⋅ nip,

(26)

Fcorner
�

=
2mi

Δt2

Nt∑
n=1

{
(vp − vi)Δt −

[
(vp − vi)Δt ⋅ nip

]
⋅ nip

}
,

4  TLF_SPH Thermo‑mechanical Coupling 
Model Considering Friction Effect

4.1  Heat Conduction Control Equation and Its 
Discretization

In the process of heat conduction, assuming that each ith 
particle can be regarded as a heat storage to store heat, 
the virtual bonds formed between the ith and jth particles 
in the non-local influence domain is also called “thermal 
bond” by Bobaru and Duangpanya (2010, 2012). As shown 
in Fig. 7, “thermal bond” can be used as a thermal conduc-
tor between the interacting ith and jth particles to transfer 
heat, and heat storage and heat conductors together con-
stitute heat conduction in a thermal system. According 
to the theory of continuum, the differential equation of 
transient heat conduction in a two-dimensional rectangular 
coordinate system is

The rate of temperature change can be obtained by Eq. (27) 
as follows:

where, ρ is the density of the material, kg/m3; c is the spe-
cific heat capacity of the material, J/(kg °C);x� is a two-
dimensional space coordinate element, β = 1, 2;�� is the heat 
conduction coefficient along the β direction, and Θ is the 
instantaneous temperature, °C.

According to Fourier's law, the heat flux can be obtained 
from the temperature gradient as

(27)�

(
�2Θ

�x2
+
�2Θ

�y2

)
=�cv

�Θ

�t
.

(28)
�Θ

�t
=

1

�c

∑
�

�

�x�

(
�� �Θ

�x�

)
,

(29)q� = −��
(
�Θ

�x�

)
.

Fig. 6  Calculation flowchart of contact force algorithm
Fig. 7  Heat conduction model between interacting particles and sche-
matic diagram of heat flux flowing through ith particle
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Substituting Eq. (29) into Eq. (28), the rate of temperature 
change can be obtained as follows:

where, q� is the heat flux along the direction of heat conduc-
tion, and the superscript β = 1, 2.

According to the approximation method of SPH particles, 
Eqs. (29) and (30) can be discretized into the following forms:

where �Wij∕�x
�

i
 is the gradient of the kernel function;Θi and 

Θj are the temperature of the ith and jth particles, respec-
tively;q�

i
 and q�

j
 are the heat flux of the ith and jth particles 

along the β direction, respectively.
In the numerical simulation of heat conduction, the ker-

nel function is truncated due to the absence of boundary 
particles. To improve the numerical accuracy of boundary 
particles, the kernel gradient is modified. Then, the discrete 
model of the transient heat conduction equation after the 
kernel function gradient is modified is as follows:

where �i and �j are the density of the ith and jth particles, 
respectively; mi and mj are the masses of the ith and jth par-
ticles, respectively;M−1

i
 is the inverse of matrix Mi , which is 

used to modify kernel gradient.

4.2  Boundary Conditions for Heat Conduction

In the process of heat conduction, three types of thermal 
diffusion boundary conditions can be applied, namely, the 
first type of non-local boundary conditions, the second type 
of non-local boundary conditions, and the third type of non-
local boundary conditions. The specific implementation 
strategy of the first type of non-local boundary conditions, 
called Dirichlet boundary conditions, is to impose a given 
temperature 𝜃(x̂, t) on the boundary of the computational 
domain ℜ , namely

(30)
�Θ

�t
= −

1

�c
∇ ⋅ q� ,

(31)

⎧
⎪⎪⎨⎪⎪⎩

q
�

i
= �

�

i

N�
j=1

mj

�j
(Θi − Θj)

�Wij

�x
�

i

�Θi

�t
=

1

�ici

N�
j=1

mj

�j
(q

�

i
− q

�

j
)
�Wij

�x
�

i

,

(32)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q
𝛽

i
= �

𝛽

i

N�
j=1

mj

𝜌j
(Θi − Θj)⊗M−1

i

𝜕Wij

𝜕x
𝛽

i

𝜕Θi

𝜕t
=

1

𝜌ici

N�
j=1

mj

𝜌j
(q

𝛽

i
− q

𝛽

j
)⊗M−1

i

𝜕Wij

𝜕x
𝛽

i

Mi=

N�
j

mj

𝜌j
∇iWij ⊗ (xj − xi)

,

where x̂ is the particle position on the boundary of the com-
putational domain ℜ.

According to the classical continuum theory, the second 
type of non-local boundary conditions called Neumann 
boundary conditions can be expressed as

where x̂ is the particle position on the boundary of the 
computational domain ℜ;Θ(x̂, t) and q̂𝛽 are the temperature 
and heat flux given on the boundary of the computational 
domain ℜ , respectively;�x and �y are the thermal conduc-
tivity coefficients of materials along the x direction and y 
direction, respectively. n is the out-of-unit normal vector 
on the boundary;nx and ny are the x and y components of n, 
respectively.

The third type of non-local boundary conditions is also 
called Robin boundary conditions. This boundary condition 
is implemented when heat transfer occurs between the sur-
face of the object and the surrounding medium. According 
to the classical continuum theory, the third type of non-local 
boundary conditions can be expressed as

where x̂ is the particle position on the boundary of the com-
putational domain ℜ;Θ(x̂, t) is the temperature given on the 
boundary of the computational domain ℜ;Θ0 is the tempera-
ture of the surrounding medium; h is the heat convection 
coefficient between the solid and the surrounding medium.

4.3  Non‑local Thermal Stress in the TLF_SPH Model

In the theory of continuum mechanics, it is believed that 
there is a force between the ith and jth particles in the non-
local influence domain. To describe the force state between 
the ith and jth particles, the initial relative position vector 
and relative displacement vector between the ith and jth 
particles are defined as �=Xi − Xj and �=ui − uj , respec-
tively, as shown in Fig. 8. Then, the relative position vector 
between the ith and the jth particles in the deformed con-
figuration can be expressed as

According to Newton’s third law, the pairwise force act-
ing on the ith and jth particles is equal, and the direction is 
reversed along the action bond, as shown in Fig. 9. Then, 

(33)Θ|ℜ = 𝜃(x̂, t),

(34)
(
𝜅xnx

𝜕Θ(x̂, t)

𝜕x
+𝜅yny

𝜕Θ(x̂, t)

𝜕y

)
= − q̂

𝛽
⋅ n,

(35)
(
𝜅xnx

𝜕Θ(x̂, t)

𝜕x
+𝜅yny

𝜕Θ(x̂, t)

𝜕y

)
= − h

[
Θ(x̂, t) − Θ0)

]
,

(36)
�̃ = (Xj + uj) − (Xi + ui) = (Xj − Xi) + (uj − ui) = �+�.



1672 D. Mu et al.

1 3

based on thermoelasticity, a pairwise force function of the 
ith particle can be expressed as

where Θ0 is the initial temperature of particles;Θ is the 
instantaneous temperature of particles; E is the modulus of 
elasticity; α is the thermal expansion coefficient; v is the 
Poisson's ratio;e is the unit direction vector of virtual bonds 
in the deformed coordinate system, and its expression is as 
follows:

For the two-dimensional plane strain problem, the 
expression of the micro-elastic modulus is as follows 
(Shou 2017):

(37)f (xi − xj,Θ, t)=
cm
(
�j(Θj − Θ0) − �i(Θi − Θ0)

)
1 − v

⋅ e,

(38)e =
xj − xi

||xj − xi|| =
�+�

||�+�|| .

To eliminate the unbalanced force between particles, this 
paper adopts the concept of dual influence domain with fixed 
horizon proposed by Ren et al. (2017). The horizon of the 
ith particle in the DH-PD model is defined as

where ||xj − xi|| is the distance between the ith and jth par-
ticles;�i is the horizon radius of the ith particles in ℜxi

 . In a 
sense, the horizon ℜxi

 is the union of all the bonds starting 
from the ith particles. The double horizon of the ith particles 
is defined as

Any particle in ℜxi
 will form a double-bond xjxi . In other 

words, the horizon ℜxi
 is the union of all bonds starting from 

the jth particle. That is, any virtual bond in the horizon ℜxi
 is 

also a particle bond with the interacting particle in the double 
horizon ℜxi

 . Then, if other external forces are not considered 
in the dual-horizon ℜxi

 , the momentum equation of the ith 
particle can be discretized into the following form:

where �i and �j are the densities of the ith and jth particles, 
respectively;mj is the mass of the ith particle; f (xi − xj,Θ, t) 
and f (xj − xi,Θ, t) are the point force function of the ith 
and jth particles, respectively;W(||xj − xi|| , h) represents 
the interpolation kernel function, and h is the smoothing 
length;v�

i
 the velocity of the ith particle and the superscript 

α = 1, 2 are integer indices for the two spatial directions.

4.4  Damage Mechanism of Virtual Bonds in TLF_
SPH

Rock materials are mainly brittle failure. Therefore, the selec-
tion of failure criteria is particularly important, which deter-
mines the initiation, propagation and bonding mode of rock 
cracks. In peridynamic theory, when the material is deformed, 
there is an interaction between adjacent material points in 
the influence domain, and the interaction between any two 
adjacent material points is established through virtual bonds 
(Zhou and Shou 2017). Then, the virtual bonds of a given 
material point in the influence domain together constitute a 
complete network unit, as shown in Fig. 10a. In this paper, 
the Hoek–Brown strength criterion is applied to determine the 

(39)cm=
6E

��3(1 − v)
.

ℜxi
=
{
xj∕||xj − xi|| ≤ �xi

}
,

ℜxi
=
{
xj∕xi∈ ℜxi

}
.

(40)

dv�
i

dt
=

1

�i ∫
ℜxi

f (xi − xj,Θ, t)Vj

=
1

�i

N∑
j=1

mj

�j

(
f (xi − xj,Θ, t) − f (xj − xi,Θ, t)

)
Wij,

Fig. 9  Schematic diagram of thermoelastic interaction between the 
ith and jth particles in the non-local influence domain

Fig. 8  Schematic diagram of deformation process of interacting the 
ith and jth particles in configuration
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initiation and propagation of cracks. When the stress on the 
particle bond satisfies the Hoek–Brown strength criterion, the 
particle bond breaks, and no force transmission is carried out, 
and micro-cracks gradually initiate from here, as shown in 
Fig. 10b. The f in the Fig. 10 is the interaction factor, which 
will be explained in detail later.

The Hoek–Brown strength criterion commonly used in tun-
nel engineering can be defined as the following form (Hoek 
and Brown 1980; Hoek 1983):

where the strength parameters m and s can be determined 
by the parameter GSI, which depends on the structure and 
surface state of the rock joints and cracks;�c is the uniaxial 
compressive strength of the intact rock. The intensity param-
eters m and s are defined by Hoek et al. (Hoek 1990; Hoek 
and Brown 1997) as

(41)�1 = �3+

√
m�3�c + s�2

c
,

where GSI reflects the degree of weakening of rock mass 
strength caused by complex geological conditions, which 
varies from 0 to 100. The value of GSI is determined by 
the structural characteristics and joint surface state in the 
GSI chart of rock mass. D is the disturbance coefficient, 
which varies from 0 for undisturbed rock masses to 1 for 
strongly disturbed rock masses. mi is the value of m for intact 
rock, which varies from 4 to 33, which can be obtained by 
experiment.

The Cauchy stress on the virtual bond is approximately 
taken as the average value of the two particle stresses

In the TLF_SPH model, the compressive stress is defined as 
negative, and the stress and strain of particles in the program 
calculation process conform to the elastic–brittle constitutive 
relationship, as shown in Fig. 11. To describe the fracture 
state of particle bonds, a parameter called interaction factor 
f is introduced to reflect whether the particle bonds are bro-
ken or not (Chakraborty and Shaw 2013). The model initially 
has f = 1. As the load increases, when the stress on the vir-
tual bond reaches the maximum bearing capacity, the virtual 
bond breaks and its stiffness drops to zero with f = 0. Then, the 
number of broken "bonds" of the ith particle in the non-local 
influence domain is counted, and the damage coefficient Df is 
constructed to quantify describe the damage degree of parti-
cles. The damage coefficient is defined as

(42)m = mi exp
(
GSI − 100

28 − 14D

)
,

(43)s = exp
(
GSI − 100

9 − 3D

)
,

(44)�(�, t) = (�i + �j)∕2.

(45)Df = Ndamaged bonds∕Ntotal bonds,

(b)(a)
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j

Fig. 10  Discretization of 2D particles with virtual bonds: (a) the influence domain without damage virtual bonds; (b) the influence domain with 
damage virtual bonds

Fig. 11  The law of linear elasticity used in the numerical model
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where Ndamaged bonds is the number of damaged bonds of any 
particle in the influence domain;Ntotal bonds is the total number 
of virtual bonds of any particle in the influence domain.

It is well known that the accuracy of the SPH method is 
closely related to particles distribution, Kernel function selec-
tion, and smoothing length evolution. It is obvious from the 
definition of immediate neighborhood, the kernel may not be 
always zero at cut-off boundary or if the kernel support is not 
entirely contained within the problem domain. In this case, 
different approaches have been proposed to improve the con-
sistency and accuracy of the SPH method (Liu et al. 1995; 
Shao et al. 2012). In this paper, to avoid the discontinuity of 
the kernel function of the particles near the crack caused by the 
fracture of virtual bonds, a kernel gradient correction (KGC) 
technique is applied to improve the approximation accuracy 
with a correction included when computing the gradients of 
the kernel as Chen et al. (1999)

(46)∇C
i
Wij,� = L(ri)∇iWij,� ,

where xij = xi − xj , yij = yi − yj,Wij,� = �W(xi − xj, h)∕�x
�

i
.

Ultimately, considering the damage-thermo-mechanical 
coupling effect, the TLF_SPH momentum equation of the 
ith particle in the non-local influence domain can finally 
be discretized into the following form:

To more clearly describe the implementation strat-
egy of the thermo-mechanical-damage coupling model 

(47)L(ri)= −

⎛⎜⎜⎜⎜⎝

�
j

mj

�j

⎛⎜⎜⎜⎜⎝

xij

�Wij

�xi
xij

�Wij

�yi

yij

�Wij

�xi
yij

�Wij

�yi

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

−1

,

(48)

d(v�
i
)Θ

dt
=

∑
j∈ℜin

f ⋅ mj

(
P
��

i

�2
0i

+
P
��

j

�2
0j

+ Πij

)
�CWij

�x
�

i

+
1

�0i

∑
j∈ℜin

f ⋅
mj

�0j

(
f (xi − xj,Θ, t) − f (xj − xi,Θ, t)

)
Wij

+
∑

j∈ℜout

F�

i

mi

+ b� .

Fig. 12  The calculation flowchart of TLF_SPH under thermo-mechanical coupling conditions
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bond-based TLF_SPH, the calculation flowchart of TLF_
SPH under thermo-mechanical coupling conditions is 
given in Fig. 12.

5  Numerical Results and Discussion

In this section, a numerical example is used to prove the 
stability and accuracy of the particle penetration algorithm 
in the TLF_SPH model, so as to provide strong support for 
the successful embedding of the later thermo-mechanical 
coupling model. To study the fracture modes of rock speci-
mens under different thermodynamic conditions, Cruz and 
Gillen (1980), Golterman (1995), and Zhou et al. (2001) 
conducted laboratory experiments to study the thermal frac-
ture process of granite specimens with embedded materials 
with different thermal expansion coefficients placed in the 
center of borehole. In this paper, two examples are used to 
verify the effectiveness of the thermo-mechanical coupling 
model considering the frictional contact between the con-
tact surface and particles in predicting the crack initiation 
and propagation modes under thermodynamic conditions. 
The numerical results obtained are more consistent with the 
above experimental results.

5.1  Frictional Sliding Along a Slope

The numerical model is a square sample of 0.1 m × 0.1 m. 
The Young's modulus of the sample is 10 MPa, the Poisson's 
ratio is 0.2, and the density is 1000 kg/m3. The four sides of 
the specimen are in contact with rigid surface. Among the 
four rigid surfaces from B1 to B4, only B4 is rough, with a 
friction coefficient of 0.3, and the remaining three rigid sur-
faces are smooth, as shown in Fig. 13. When B1 moves verti-
cally downward at speed v1, the sample undergoes uniaxial 

Fig. 13  Numerical model description

Fig. 14  The velocity of rigid surface

Fig.15  The magnitude of contact force acting on the B4 rigid surface: a vertical stress; b frictional force
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unconfined compression. To reduce the stress oscillation 
in the specimen, v1 first linearly increases from 0 m/s to 
1.0 ×  10–2 m/s in the initial 0.2 s, and then, B1 moves verti-
cally downward at a constant speed of 1.0 ×  10–2 m/s. After 
0.6 s, v1 uniformly decreases from 1.0 ×  10–2 m/s to 0 at 1.0 s, 
as shown in Fig. 14. Then, B4 moves to the left at the hori-
zontal velocity of v2 with an acceleration of 5.0 × 10–2 m/s 
until the horizontal velocity increases to 1.0 ×  10–2 m/s at 
1.2 s and v2 remains unchanged. Therefore, there is a slip 
between the sample and B4, and a friction effect is gener-
ated during the sliding process. This paper uses 100 uni-
formly distributed particles to simulate the frictional contact 
problem. Each particle has a mass of 0.1 kg. In addition, 
it is assumed that the sample is a linear elastic material to 
compare the numerical results with the analytical solution.

The advantage of this improved algorithm, proposed by 
Wang and Chan (2014), is that it can handle the frictional 
contact problem in a simple and accurate way. However, 
the numerical results are overly dependent on the selection 
of penalty factors � , and the value of � is difficult to be 
consistent in different cases, as shown in Fig. 15a. In addi-
tion, under the framework of general particle dynamics 
(GPD), Bi and Zhou (2017) have carried out a numerical 
simulation of dynamic friction function in the process of 
rock rupture. This contact algorithm carried out a flexible 
calculation of the contact force of any crack surface, but 
the stability of numerical result is too poor with a large 
frictional fluctuation amplitude. Therefore, it is difficult to 
accurately describe the friction behavior of particle con-
tact, as shown in Fig. 15b.

The vertical stress and frictional force of B4 surface 
are given in Fig. 15a, b, respectively. It can be seen from 
Fig. 15a that with the increase of the penalty factor � , the 
numerical precision of SPH contact algorithm first increases 
and then decreases. When � = 0.82, the numerical accuracy 
is the highest, which is basically consistent with the analyti-
cal solution. The TLF_SPH contact algorithm proposed in 
this paper modifies the normal contact force function in the 
SPH contact algorithm. In particular, the algorithm removes 
the penalty factor term (1 − �) , and its numerical accuracy 
and stability are obviously improved, and the numerical 
results are in better agreement with the analytical solutions, 
as shown in Fig. 15.

The friction and horizontal velocity distribution of the 
particles at the bottom of the sample are shown in Fig. 16. 
In the initial stage of calculation, the particles at the bottom 
of the sample gradually moves to the left under the push 
of static friction, of which the contact force shows a rela-
tively obvious gradient growth from right to left. With the 
passage of time, the increasing range of contact force of 
the particles at the bottom of the sample decreases gradu-
ally. As the horizontal deformation of the bottom particles 
continues to increase, the contact force of B2 rigid surface 

acting on the particles at the bottom of the sample gradually 
increases, causing the horizontal movement of the bottom 
particles to be strongly inhibited. When t = 1.4 s, the static 
friction force of the particles at the bottom of the sample 
reaches 25 KN, which is close to the sliding friction force, 
as shown in Fig. 16d. When t = 1.5 s, the contact force of 
the particles at the bottom of the sample increases sharply, 
from 25 to 35 KN. It shows that the tangential contact force 
of the bottom particles has reached the basic condition of 
sliding friction, and the static friction force acting on the 
bottom particles of the sample becomes sliding friction, and 
the sample began to slide relative to the rigid surface of B4.

When t = 1.5 s, it can be seen from Eq. (23) that the fric-
tion force of the particles at the bottom of the sample acting 
on the B2 rigid surface is 27.4 KN, which is in good agree-
ment with the theoretical value of 27.8 KN of sliding fric-
tion, as shown in Fig. 15b. In addition, it can be seen from 
Fig. 16f that when t = 1.5 s, the movement of the particles at 
the bottom of the sample has stabilized with the same speed 
as the rigid surface of B4. After that, only dynamic friction 
occurred between the B4 rigid surface and the sample.

5.2  Rock Thermal Fracture Mode Without 
Considering the Effect of Frictional Contact

The rock thermal–mechanical coupling geometric model 
contains an outer cylinder with a radius of R and an inner 
disc with a radius of r. The outer cylinder and inner disc 
are composed of matrix material and embedded material, 
respectively, as shown in Fig. 17. The size and mechanical 
parameters of this numerical rock sample are basically con-
sistent with those of used by Tang (2006) in the numerical 
simulation calculation, as shown in Table 1.

In present numerical model, the rock disc is discretized 
into 9059 particles with the particle spacing Δx = 1.0 mm 
and the radius of influence domain � = 3.015 mm. The initial 
temperature of the model is set to 0 °C, and the first type of 
temperature boundary condition is adopted to uniformly heat 
up the whole model. That is, the temperature increases by 
0.02 °C for each calculation step until the temperature of the 
model rises to 260 °C. To make the simulation calculation 
result closer to the real indoor experiment, the Weibull dis-
tribution function is used to randomly assign the compres-
sive strength of rock particles in the model to describe the 
non-uniform characteristics of the compressive strength of 
real rock samples (Bi et al. 2016, 2017; Zhou et al. 2015). 
The probability density function of Weibull distribution used 
in this paper is (Weibull 1951)

(49)W(x) =
�

�0

(
�

�0

)�−1

exp

[
−

(
�

�0

)�]
,
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Fig. 16  The friction and velocity distribution of the particles at the bottom of the sample. a–e Friction; f horizontal velocity
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where � is the homogeneity of the material, and the smaller 
the value of � , the higher the dispersion of the mechanical 
properties of particles;� is the mechanical parameter of the 
particle;�0 is the expected value. In this numerical model, 
the non-uniformity index � = 10, as shown in Fig. 18.

Figure 19 shows the thermal crack evolution process of 
the disc under the thermal and mechanical coupling when 
the thermal expansion coefficient of the embedded material 
is greater than that of the matrix material. As the tempera-
ture increases, the embedded material is under hydrostatic 
pressure. Under the expansion and extrusion of the embed-
ded material, the matrix material is in the state of compres-
sive stress along the radial direction and tensile stress along 
the hoop direction.

When the temperature rises to 120 °C, micro-cracks begin 
to appear in the inner ring of the matrix, and a small amount 
of macro-cracks appear at the upper end of the inner ring. The 
propagation speed of the particles near the radial cracks at the 
upper and lower ends of the inner ring is obviously higher than 
that near the radial cracks at the left and right ends, as shown in 
Fig. 19a1–c1. When the temperature rises to 160 °C, the cracks 

Fig. 17  Geometric model for thermal–mechanical coupling calcula-
tion of rock disc
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Fig. 18  The uniaxial compressive strength distribution of the parti-
cles in the numerical model (unit: Pa)
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propagate rapidly along the radial direction of the matrix, and 
macro-cracks appear at the upper, lower, left, and right ends of 
the inner ring. The number of macroscopic cracks at the left and 
right ends of the inner ring is relatively large with a relatively fast 

propagation speed, as shown in Fig. 19a2–c2. As time goes on, 
the macro-cracks continue to propagate along the radial direc-
tion toward the outer boundary of the matrix material, and the 
number of micro-cracks increases slowly. When the temperature 

Fig. 19  The damage evolution process of matrix particles at different temperatures under thermal mechanical coupling without considering fric-
tional contact: a damage; b horizontal velocity; c vertical velocity
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rises to 230 °C, the number of micro-cracks increases sharply, 
and three obvious macroscopic radial cracks are found at the 
upper and lower ends and left end of the inner ring expand into 
three obvious macroscopic radial cracks, while no obvious prop-
agation phenomenon is found at the right end of the inner ring.

As shown in Fig. 19a4, when the temperature rises to 
260 °C, the strain energy stored in the matrix in the early 
stage is suddenly released, and the radial macroscopic crack 
growth speed at the upper and lower ends and the left end 
of the inner ring of the matrix increases. The macroscopic 
cracks penetrate radially outwards to the boundary of the 
matrix material along the radial direction, which eventually 
leads to thermal cracking. However, the horizontal macro-
scopic cracks at the right end of the inner ring of the matrix 
did not expand obviously. This phenomenon is roughly con-
sistent with the previous experimental observations, which is 
determined by the temperature gradient cracking mechanism 
of anisotropic brittle rock material (Golterman 1995; Zhou 
et al. 2001). As shown in Fig. 19c4, the vertical velocity of 
the crack at the upper end of the inner ring is concentrated, 

which is caused by the asymmetry of the horizontal macro-
radial crack propagation. In addition, the radial macroscopic 
tensile cracks indicate that the strong tensile stress of the 
inner ring of the matrix along the hoop direction is the driv-
ing force for the tensile failure of the material (Ali and Brad-
shaw 2011), as shown in Fig. 20.

To further verify the reliability of the thermal–mechani-
cal coupling algorithm, the numerical calculation results of 
the particle stress field are compared with theoretical data, 
as shown in Fig. 21. It can be seen from Fig. 21 that the 
numerical solution of the model stress field is in good agree-
ment with the theoretical value.

5.3  Rock Thermal Fracture Mode Considering 
Frictional Contact Effect

The initiation of micro-cracks is caused by the relative 
motion between two adjacent rock particles. The displace-
ment mode between two adjacent particles can accurately 
describe the propagation of rock cracks. Combined with 
the previous experimental observations, the displacement 
modes that may occur tensile failure between adjacent par-
ticles are determined to be two types, namely, T-type dis-
placement and X-type displacement. As shown in Fig. 22, 
the line segment with arrows represents the displacement 
vector of rock particles. It should be noted that the direc-
tion along the two adjacent particles is defined as the nor-
mal direction, and the direction perpendicular to the line 
connecting the two adjacent particles is the hoop direction.

T-type displacement mode: There is a relative displace-
ment along the normal direction between two adjacent par-
ticles, and there is no relative displacement along the hoop 
direction. According to the direction of normal displacement 
vector of adjacent particles, T-type displacement is divided 
into T I-type displacement with opposite normal displace-
ment vector direction and T II-type displacement with same 
normal displacement vector direction, as shown in Fig. 22a, 
b. This displacement mode is mainly tensile failure, which 
promotes the initiation of micro-cracks and the expansion 
of macro-cracks in rock mass.

X-type displacement mode: There is not only a relative 
displacement in the hoop direction between two adjacent 
particles, but also a relative displacement in the normal 
direction. According to the direction of normal displacement 
vector and tangential displacement vector of adjacent parti-
cles, X-type displacement is divided into X I-type displace-
ment, X II-type displacement, and X III-type displacement, 
as shown in Fig. 22c–e. This displacement mode is mainly 
tension–shear failure. Driven by this displacement mode, 
both tension failure and shear failure can occur between two 
adjacent particles, forming tension and shear cracks.

For the second sample, the material geometry, thermo-
dynamic parameters, and heating process are exactly the 

Fig. 20  The previous experimental observations by Tang et al. (2006)

Fig. 21  Comparison between numerical results and theoretical solu-
tions of thermal stress
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same as those of the first sample. The only difference is that 
the second sample considers the frictional contact between 
the embedded particles and the matrix particles. When the 
thermal expansion coefficient of the embedded particles is 
greater than that of the matrix particles, with the increase of 
temperature, the matrix particles are subjected to the expan-
sion and extrusion of the embedded particles, so there will 
be a frictional contact effect between the contact surfaces of 
heterogeneous particles.

Figure 23 shows the damage evolution process of the 
matrix particles at different temperatures under the thermal 
and mechanical coupling considering frictional contact. 
Before the temperature rises to 160 °C, the initiation of 
micro-cracks and the growth of macroscopic cracks in the 
inner ring of the matrix are basically the same as those with-
out considering the frictional contact. When the temperature 
rises to 230 °C, the propagation of the radial macroscopic 
cracks at the left end of the inner ring of the matrix is signifi-
cantly inhibited by frictional contact, and the length of the 
macro crack is obviously shorter than that without consider-
ing the frictional contact, as shown in Figs. 19a3 and 23a3. 
However, the propagation of horizontal macroscopic cracks 
at the right end of the inner ring is promoted by frictional 
contact. This is because the strain energy stored in the matrix 
at this temperature cannot be completely released from the 
left end of the inner ring, and the remaining strain energy 
is transferred to the right end of the inner ring along the 
horizontal direction for partial release.

When the temperature rises to 260 °C, the strain energy 
stored in the matrix is completely released, and the radial 

macroscopic cracks at the upper and lower ends of the inner 
ring of the matrix rapidly propagate and penetrate to the 
boundary of the matrix material along the radial direction, 
while the macro-cracks at the left and right ends of the inner 
ring of the matrix no longer propagate. The macroscopic 
thermal crack propagation mode under this algorithm and 
that without considering the frictional contact are compared 
with the previous experimental observations (Tang et al. 
2006). The results show that the thermal crack propagation 
mode considering the frictional contact effect is more con-
sistent with the experimental observations, and the prop-
agation mode of thermal cracks is smoother, as shown in 
Figs. 19a4, 20 and 23a4.

In addition, it can be seen from Fig. 23b, c that the dis-
placement mode near the matrix crack is TI type displace-
ment, as shown in Fig. 22a. Driven by this displacement 
field, the matrix particles are mainly tensile failure, forming 
tensile micro-cracks, and macroscopic cracks. Therefore, the 
thermal fracture mode of the rock disc is tensile failure along 
the hoop direction, with the thermal expansion coefficient 
of the matrix material smaller than that of the embedded 
material.

At the end of this section, the effect of the thermal 
expansion coefficient on the rock thermal fracture mode 
is discussed. In the present model, the thermal expansion 
coefficient of matrix material and the thermal expansion 
coefficient of embedded material in this example are taken 
as 1.5 ×  10–5 and 1.0 ×  10–5, respectively. The boundary con-
ditions and other thermodynamic parameters of the model 
are the same as before, as shown in Table 1.

Fig. 22  Comparison between numerical results and theoretical solutions of thermal stress
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The numerical and experimental results of rock thermal 
fracture are shown in Fig. 24. It can be seen from Fig. 24a, b 
that the displacement of the matrix particles at the material 
interface is much larger than that of the embedded particles 
at the material interface, with the same displacement vector 
direction. It can be seen that the displacement mode near the 

circumferential crack belongs to the T II-type displacement, 
as shown in Fig. 22b. During the entire thermal cracking 
process, the matrix particles move outward along the radial 
direction, and the radial strong tensile stress at the mate-
rial interface is the driving force. The matrix is in a state 
of tensile stress along the radial direction and is in a state 

Fig. 23  The damage evolution process of matrix particles at different temperatures under thermal mechanical coupling considering frictional 
contact: a damage; b horizontal displacement; c vertical displacement
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of compressive stress along the hoop direction. Therefore, 
the thermal fracture mode of the rock disc is tensile failure 
along the hoop direction, with the thermal expansion coef-
ficient of the matrix material greater than that of the embed-
ded material. Moreover, numerical simulation results are in 
good agreement with the previous experimental observations 
(Tang et al. 2006), as shown in Fig. 24c, d.

6  Conclusions

In this paper, under the framework of smooth particle 
hydrodynamics based on total Lagrangian formula (TLF_
SPH), a new thermal–mechanical coupling numerical 
algorithm considering frictional contact is proposed. In the 
TLF-SPH program, the force between the interacting par-
ticles is transmitted through virtual bonds. The complete 
virtual bonds can withstand the tensile and compressive 

stress, shear stress, and frictional contact force between 
the interacting particles. According to Hoek–Brown 
strength criterion, the fracture of virtual bonds between 
particles is determined, and the fractured virtual bonds 
can only withstand the compressive stress and frictional 
contact force between the interacting particles.

The shear slip numerical tests of soil samples show that 
the calculation results of TLF_SPH contact algorithm are 
more stable and accurate than those of traditional SPH 
contact algorithm, which are in good agreement with the 
theoretical solution. The contact algorithm proposed in 
this paper can better simulate the frictional contact behav-
ior of specimen during shearing and sliding, and fully 
reveal the frictional contact mechanism between the object 
and the contact surface. To further strengthen the connec-
tion of TLF_SPH and engineering practice, it is necessary 
to extend the frictional contact algorithm to more general 

Fig. 24  Numerical and experimental results of rock thermal fracture: a horizontal displacement at 90 °C; b vertical displacement at 90 °C; c 
damage at 200 °C; d the previous experimental observations by Tang et al. (2006)
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situations, such as efficiently and accurately simulating 
geotechnical problems such as static pressure piles, shield 
tunnels, and seismic landslides.

Several examples are used to verify the effectiveness of 
the proposed thermal cracking algorithm, and the influence 
of frictional contact on the propagation mode of rock ther-
mal cracks is discussed. For sample 1, the thermal expan-
sion coefficient of the matrix material is smaller than that 
of the embedded material. The matrix material is in a state 
of tensile stress along the hoop direction and compressive 
stress along the radial direction. The displacement mode 
near the radial macroscopic cracks of the matrix is T I-type, 
and the strong tensile stress of the matrix along the hoop 
direction is the driving force for tensile failure. In addition, 
the numerical results of thermal stress are in good agreement 
with theoretical data. For sample 2, on the basis of sample 
1, the effect of frictional contact on the thermal cracking 
of the rock disc is considered. Numerical results show that 
the propagation mode of rock thermal cracks considering 
frictional contact is smoother, and the propagation path of 
macroscopic cracks is in better agreement with the previous 
experimental observations. For sample 3, the thermal expan-
sion coefficient of the matrix material is greater than that 
of the embedded material. The matrix material is in a state 
of tensile stress along the radial direction and compressive 
stress along the hoop direction. The displacement mode of 
the matrix near the circumferential macroscopic cracks is T 
II-type, and the strong tensile stress of the matrix along the 
radial direction is the driving force for tensile failure.
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