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Abstract
Effective mechanical properties of shale rocks can be determined by knowing the mechanical properties and distribution 
pattern of each comprising constituent. However, building the relationship between them is complicated and requires math-
ematical manipulations. In this study, by taking advantage of machine learning (ML) that is capable of delineating hidden 
patterns with the least sophistication, a new approach to estimate Young’s modulus of shales by integrating deep learning 
convolutional neural networks (CNNs) into 2D elemental intensity distribution maps is presented. The generated SEM–EDX 
maps contain spatial distribution and intensity information of nine major elements abundant in a shale, Al, Ca, C, Fe, K, 
Mg, Na, S, and Si. The ground truth data are Young’s modulus based on laboratory microindentation tests from ten samples. 
A total amount of 800 images were used for training and testing, and the trained CNNs were then used to predict Young’s 
modulus of shale samples by feeding the elemental images. The predicted Young’s modulus exhibited an acceptable rela-
tive error of 6.5% and in a much faster time and less effort compared to the laboratory tests. Ultimately, we believe that this 
novel method has great potential for field applications due to simplified requirements for sample preparation and laboratory 
apparatus.

Highlights
· A deep learning Convolutional Neural Networks model was employed on 2D elemental intensity distribution maps to predict 
the mechanical properties of shales from the Bakken Formation.
· Easy-obtained EDS maps were used as input and Young’s modulus obtained from laboratory microindentation tests was 
used as output to train the CNNs model.
· The trained model exhibited good performance on predicting the Young’ s modulus of unseen samples, with an average 
relative error of 6.5%.

Keywords  Mechanical properties · Bakken shale · EDS mapping · Machine learning · Convolutional neural networks · 
Microindentation

1  Introduction

Successful production of hydrocarbon from unconventional 
shale plays relies heavily on our knowledge of mechani-
cal properties of the formation including elastic moduli 
and strength (Dahi-Taleghani et al. 2011; Hoek and Mar-
tin 2014). Generally, shales are extremely heterogeneous 
composite materials, with various constituents and com-
plex microstructure. As a consequence, researchers face 
many challenges to study their mechanical properties (Li 
et al. 2018a, b, 2019a). Conventional laboratory mechanical 
testing, such as uniaxial and triaxial compressive strength 
testing, is time-consuming and expensive. Additionally, the 
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acquisition of rock samples of good quality for these labora-
tory measurements can become challenging and sometimes 
impossible due to the brittleness of the samples and their 
availability, as well. Thus, numerical modeling methods that 
are based on micromechanical theory are well established 
in many studies (Goodarzi et al. 2017, 2016; Li et al. 2019a, 
b; Liu et al. 2018; Zhao et al. 2019). However, these stud-
ies are generally carried out on assumptions in the model 
where interactions between various components are simpli-
fied (Goodarzi et al. 2017, 2016; Zhao et al. 2019).

Recently, indentation techniques that  show great promise 
as an approach in assessing the mechanical properties of 
shales at a local scale have gained popularity compared to 
the conventional macroscale methods. Instrument indenta-
tion is a technique that allows us to measure the mechanical 
properties of porous composite comprised of multiple min-
erals. This technique involves a small probe that penetrates 
into a flat surface of the sample, while the applied force and 
displacement of the probe are then recorded concurrently 
to calculate the mechanical properties, including Young’s 
modulus and hardness (Ulm and Abousleiman 2006). The 
mechanical properties of shales are scale-dependent (Abedi 
et al. 2016b; Li et al. 2021a; Veytskin et al. 2017). At a 
macroscale, the mechanical properties of shale are measured 
in the lab on core plugs or bulk samples which contain natu-
ral fractures and weak bedding planes. In comparison, the 
indentation technique can be used to investigate the mechan-
ical properties at a fine scale by avoiding from the effect of 
uneven distributed microfractures. Many existing analytical 
models usually ignore these features by considering shales 
as composite materials with different minerals and organ-
ics geometrically stacked together. Therefore, the mechani-
cal response is determined by microstructures, components 
configuration, and grain-to-grain interactions (Sayers 2013; 
Goodarzi et al. 2016, 2017; Zhao et al. 2019).

Considering the sophisticated relationships between vari-
ous components in shales, artificial intelligence (AI) and 
machine learning (ML) techniques have enabled us to tackle 
these problems more feasibly. Machine learning techniques 
are generally utilized to uncover the inherent rules and to 
highlight hidden features. In the past few years, a large num-
ber of studies using ML methods have been conducted to 
solve problems in the fields of petroleum engineering and 
geosciences (Izadi et al. 2015; Khan et al. 2018; Li et al. 
2019a, b, c, 2021b; Misra et al. 2019; Torlov et al. 2017). 
Among various machine learning algorithms and their appli-
cations, artificial neural network (ANNs) has demonstrated 
outstanding performance on various tasks. The typical ANNs 
are comprised of multiple layers, including an input layer, 
hidden layers, and an output layer, and each layer contains a 
various number of nodes (Hassoun et al. 1995). The calcula-
tion is passed through by the connected nodes at each layer, 
while the connections carry weights, bias, and non-linear 

transformations. The outputs are then sent to the next layer of 
the network (Hassoun et al. 1995). The ANNs models should 
be trained based on a large amount of dataset, while during 
the training process, the values of the weights and biases 
by minimizing the error via backpropagation algorithms 
are iteratively updated. Moreover, ANNs with multiple hid-
den layers are classified under deep learning models. In this 
regard, convolutional neural networks (CNNs) is a category 
of deep neural networks, which has presented the state-of-
the-art performance in computer vision applications. CNNs 
generally follows a similar basic structure as ANNs, with 
special convolutional and pooling layers (Simard et al. 2003). 
Though, unlike ANNs, where all nodes are fully connected 
to one other, convolutional layers utilize filters over multiple 
image locations and preserve the spatial relationships. Also, 
pooling layers are used to simplify the output information 
from the previous convolutional layer (Krizhevsky et al. 
2012). Compared to classical machine learning algorithms 
that mostly rely on hand-engineered filters/algorithms to 
extract specific features, ANNs/CNNs automatically learn 
the complex hidden features and therefore can exhibit out-
standing performance when dealing with complex data, such 
as images (Sultana et al. 2018).

Studies using image-based deep learning methods to 
estimate mechanical properties are limited. The majority of 
machine learning methods in determining the geomechani-
cal properties of rocks so far are limited to well logs. For 
example, He et al. (2018) reported a comparative study of 
using shallow learning models to calculate compressional 
and shear wave travel-time logs (He et al. 2018). Gupta et al. 
(2019) compared the performance of several machine learn-
ing regressors in the generation of synthetic sonic logs and 
the prediction of mechanical properties (Gupta et al. 2019). 
The application of machine learning in imagery to determine 
mechanical properties is relatively limited. Li et al. (2019c) 
employed CNNs to establish a relationship between simpli-
fied mineralogy maps and effective mechanical properties of 
shale rocks. The labeled mechanical behavior of each sample 
was obtained using a finite-element model with generated 
input (Li et al. 2019c). However, obtaining the mineralogy 
maps of rocks is time-consuming, which either needs spe-
cial proprietary software or needs to be done by experienced 
technicians on (back scatter electron) BSE-SEM and EDX 
(energy-dispersive X-ray) images. In contrast, the EDS(X) 
images are easily obtained. Elemental mapping involves ros-
tering an electron beam, point by point over an area of interest 
on a sample surface, and at the same time, the spatial distribu-
tion and intensities of each element are mapped as pixel-by-
pixel (bitmap) images. In geosciences, surface distribution 
and intensity information of the elements in a 2D map over the 
same area allow the users to determine the presence of min-
eral phases. Additionally, microstructural information of shale 
rocks such as the shape of mineral particle distribution pattern 
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and interaction between mineral phases can be obtained in 
these electron micrographs.

In this study, a new approach to estimate Young’s modu-
lus of shales by integrating deep learning CNNs into 2D 
elemental intensity distribution maps is presented. An end-
to-end CNNs model was employed to link the comprising 
chemical elements of shale samples with corresponding 
mechanical properties of the same area. To do so, A CNNs 
model was trained with the elemental maps as input and 
Young’s modulus as ground truth data. In comparison to 2D 
mineral maps, elemental images are much easier to gener-
ate, since they are the main result obtained from electron 
microscopy. Hence, we can skip generating mineral maps as 
a connecting bridge to estimating the mechanical properties, 
which is the most labor-intensive and time-consuming step. 
The labeled data were obtained from laboratory measure-
ments of Young’s modulus via laboratory microindentation 
tests. Next, the CNNs model was trained and further utilized 
for the mechanical behavior prediction of the samples. This 
study shows that collecting quick and easy elemental maps 
from the surface with SEM–EDS would be sufficient to esti-
mate the mechanical properties of the samples.

2 � Materials

Samples used in this study were retrieved from the Bak-
ken Formation, Williston Basin, North Dakota, U.S. The 
Willison Basin is a major energy resource that covers west-
ern North Dakota, the northeastern region of Montana, and 
extends into parts of Canada (Fig. 1a). The Bakken For-
mation is the most significant hydrocarbon-bearing layer 
within the basin. It comprises three distinct members, the 
Upper, Middle, and the Lower Bakken. The upper and lower 

members are mostly black, organic-rich shales, with an aver-
age total organic carbon (TOC) content of 8 wt% and the 
middle member is fine carbonate-rich sandstone and silt-
stone (Abarghani et al. 2018). Ten shale samples taken from 
the lower and upper members from three different wells were 
used in this study (Fig. 1b). The samples were purposely 
chosen from various locations to reflect variations in miner-
alogy, thermal maturity, and microstructures.

3 � Methodology

Methods to collect the input data, element intensity maps, 
and labeled data, Young’s modulus, are provided in this sec-
tion, followed by a description of the architecture of CNNs 
model, and a flowchart to summarize the entire workflow.

3.1 � Acquisition of Input Dataset–Elemental Density 
Images

The input data are element density maps. An element density 
map is an image showing the spatial distribution and inten-
sity of the element on the surface of the sample (Wenner 
et al. 2017). Acquisition of elemental density images was 
carried out by energy-dispersive X-ray spectroscopy (EDS/
EDX). An FEI Quanta FEG 650 SEM instrument, equipped 
with an X-ray detector, was used to acquire the map of the 
elements on the area of investigation. The operation prin-
ciple is based on the ejection of electrons from shells near 
the atom of an element, and it leaves behind a hole in the 
inner shell. The generation of X-ray involves energy releas-
ing when electrons jumping from the outer higher energy 
shell to the inner lower one to fill the hole. The energy and 
the amount of the emitted X-rays can be detected by an 

Fig. 1   a Schematic maps showing the location of the Bakken For-
mation in Williston Basin. The Bakken Formation covers western of 
North Dakota, US, northeastern region of Montana, US, and extended 

to Canada; b Well locations where samples are retrieved, shown on 
the zoomed map of North Dakota
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energy-dispersive spectrometer. Since the wavelength of 
the X-rays is unique to each element, it can be used as a 
characteristic of the atomic structure of the emitting element 
(Shindo and Oikawa 2002). The overall maps constitute of 
existing elements on the surface with their proportion at the 
submicron scale (Saif et al. 2017).

Mapping of the element intensity is based on compil-
ing specific elemental composition across the certain area 
of the sample, following these steps (Fig. 2): (a) electron 
beam scans the target area to produce a BSE image, (b) EDS 
X-ray detector examines each pixel by desired resolution to 
collect an X-ray spectrum at each grid block, and extracts 
information about what elements are present and the pro-
portion of each one, and (c) an energy window is defined for 
each element of interest and the number of X-rays detected 
in the energy window of the element at each X, Y location 
is plotted, thus the intensity maps are then created. These 
maps illustrate regions of relatively high and low elemental 
intensity (Shindo and Oikawa 2002).

3.2 � Acquisition of Labeled Data (Young’s Modulus) 
via Microindentation

The labeled data are Young’s modulus measured through 
laboratory microindentation tests. The instrumental indenta-
tion is a load- and- displacement sensing technique, which 
has been broadly used in characterizing mechanical proper-
ties of a variety of materials at a microscale or nanoscale 
(Abedi et al. 2016a, b; Bobko and Ulm 2008; Bobko 2008; 
Fischer-Cripps 2011). The indentation procedure involves 
pressing an indenter with a fine probe on the sample surface 
by applying a load. During this process, the applied load 
P and displacement h are recorded by sensors. The elastic 
properties of the materials are estimated from the measured 

indentation load–displacement curve (Fig. 3) via the follow-
ing analytical model (Oliver and Pharr 1992, 2004):
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√
�

2

S√
Ac

.

(2)H =
P

Ac

.

(3)S =
(

dP

dh

)

h=hmax

.

Fig. 2   Schematic illustration of element density mapping through 
Energy-Dispersive X-ray spectroscopy. Acquiring the element inten-
sity maps requires the following steps: a scanning a Back-scattered 
electron (BSE) image via SEM, and the image was then divided into 

multiple tile; b for each point within a tile, the X-ray detector was 
used to get c the X-ray spectrum, which contains the intensity infor-
mation for elements, and after all the points were examined and ana-
lyzed, d a spatial intensity map was generated for each element

Fig. 3   Load–displacement curve of indentation  (modified from Hu 
and Li 2015). There are three sections in each indentation proce-
dure. It involves pressing a fine probe into the surface of the shale 
sample by applying a load (Loading section, as shown in red). When 
the applied load matches the predefined maximum load, Pmax, the 
probe keeps the load and holding for a period of time (Holding sec-
tion, 200 s in this study, as shown in black), and then, the probe lifts 
from the sample surface to the original position (Unloading section, 
as shown in green). The Young’s modulus for each indent was then 
calculated using information obtained from the unloading curve by 
Eqs. 1–4 
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Here, Er is the reduced Young’s modulus, which is a 
function of the stiffness, S, and the indent contact area, 
Ac . Stiffness, S, is calculated by fitting the slope of the 
upper portion of the unloading curve (Fig. 3). Addition-
ally, Hardness, H, can also be estimated by the peak load, 
P, and the contact area, Ac . The Young’s modulus can then 
be calculated by the following equation (Constantinides 
et al. 2006; Hertz 1881):

Here, vs and vtip denotes the Poisson’s ratio of the sam-
ple and the probe, respectively, and Es and Etip are Young’s 
modulus of the sample and the probe, correspondingly. It has 
been proved that the value of Poisson’s ratio does not signifi-
cantly affect the ultimate Young’s modulus that is derived, 
therefore, as an accepted value; 0.3 is considered for further 
calculations (Liu et al. 2018).

It is important to note that the mechanical property values 
obtained could either reflect the average property of the sam-
ple (mesoscopic) or the response of a single mineral (micro-
scopic), depending on the magnitude of the applied load and 
size of the indenter. This being said, delineating the govern-
ing relationship between microstructures (minerals/organics 
and pore space) and mechanical properties would be critical 
to obtaining meaningful outcomes and properly interpreting 
the results. The loading force during the microindentation 
experiments must be chosen in accordance with the material 
(here shale) heterogeneity and constituent components to 

(4)1

Er

=
1−vs

2
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+
1−vtip

2

Etip
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provide us with the average and correct mechanical response 
of the sample (Ulm and Abousleiman 2006). Considering 
a heterogeneous material comprised of two distinguished 
phases, when the indent size ( l) is smaller than the character-
istic size ( D) of the particles, the mechanical response from 
each indent would be the properties of an individual phase, 
and the density distribution curve of the overall obtained 
Young’s modulus from the entire dataset should display 
two different peaks as a bimodal curve (Fig. 4a). In con-
trast, to access the bulk properties, or the average mechani-
cal response of the composite material, a much higher load 
force should be chosen, so that the indent size can be much 
larger than the characteristic size (D) , l> > D. In this way, 
we can ensure that each indentation will assess the average 
property of the heterogeneous shale sample (Fig. 4b). Previ-
ous studies have shown that at least 4 μm displacement of 
each indents can be used for examining the bulk mechanical 
properties of shale samples (Zhao et al. 2019). In this study, 
experimental indentation tests on the Bakken shale samples 
demonstrate that a maximum load of 400 mN can generate 
indents large enough, while other necessary conditions are 
followed (Pmax = 400 mN).

The indentation tests were performed using a Berkovich 
pyramidal tip with TI 980 Triboindenter, Hysitron, Min-
neapolis, Minnesota). Each sample was indented 50 times 
with two sets of 5 × 5 grid patterns. The indenter locations 
were randomly selected within each sample. A load control 
model with a maximum load of 400 mN was used. A con-
stant hold time was needed to decrease viscoelastic effects 

Fig. 4   Comparison between principles of a nanoindentation and 
b microindentation. l denotes the indenter size,  D is the character-
istic size, and L is the spacing distance of indenters. The circle in 
dark brown illustrates the mineral particles, and the gray represents 
the matrix for a two-component material. The yellow triangle shows 
the indenter. For shale samples, when a relative smaller load (with 
Pmax = 3–5 mN ) is applied, the displacement of the probe and the 

indenter size is relative small, and the obtained Young’s modulus can 
be used to reflect the mechanical properties of each comprising min-
eral as shown in (a); In contrast, in microindentation with larger load 
(with Pmax =  ~ 400 mN ), a larger indenter would be generated and it 
then reflects the average mechanical response of the composite mate-
rial
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while measuring Young’s modulus. Since the examined sam-
ples in this study are organic-rich, a relatively long constant 
holding time, 200 s, was chosen following the loading stage. 
The indenter was advanced at a rate of 40 mN∕s to 400 mN, 
held at a constant hold for 200 s, and unloaded at a rate of 
40 mN∕s , and then, the elastic modulus calculated from each 
curve for each sample was obtained by averaging the dataset.

3.3 � Convolutional Neural Networks’ Architecture

A standard CNNs architecture consists of several convo-
lutional blocks, and each convolutional block typically is 
comprised of one or several convolutional layers, followed 
by pooling layers, and non-linear activation transformation 
(Sultana et al. 2018). A fully connected layer is attached at 
the end of the architecture, as shown in Fig. 5:

(a)	 Convolutional layer: the convolution layer takes an 
image as input and applies transformations by filters. 
The spatial relationship of the input images is passed 
into the filtered maps, and also referred to as feature 
maps. The training process uses gradual modification 
to reduce any loss learnings from the parameters of the 
filtered images. The parameters of the filters are shared 
across the input space, which reduces the number of 
trainable parameters compared to the fully connected 
layers.

(b)	 Pooling layer: a pooling layer is usually designed to 
attach the convolutional layers in CNNs to simplify the 
feature maps and reduce the number of model parame-
ters, as well. The maximum pooling is the most popular 
pooling layer, which applies a maximum function to a 
receptive field (usually a n × n kernel).

(c)	 Non-linear activation transformation: similar to the 
ANNs, non-linear transformation carried out by the 
activation function is included in the CNNs’ architec-
ture. The non-linearity of rectified linear unit (ReLu) 
defined as ReLU(x) = max(x, 0) presents advantages in 
preventing vanishing gradient problems (Goodfellow 
et al. 2016). Conventionally, the ReLu term is used in 
deep CNNs models.

(d)	 Fully connected layer: Fully connected layers are added 
to the last convolutional layer. The function of this layer 

is to transform all previous extracted scalarized features 
to a final class score for classification tasks or to some 
values for regression tasks.

A number of classic CNNs architectures have been pro-
posed and shown outstanding performance on image rec-
ognition and objective detection. These architectures also 
have proven successful applications on different problems. 
Classic architectures including AlexNet (Krizhevsky et al. 
2012), ResNet50 (He et al. 2016), VGG (Simonyan and Zis-
serman 2015), and GoogLeNet (Szegedy et al. 2015) have 
exhibited excellent performance in image classification. In 
this study, the VGG-16 architecture was chosen as the basic 
model and further modified. The reason to choose the VGG 
model is the small receptive field of 3 × 3 that is used in its 
architecture. This would be suitable in capturing the details 
of the contact interaction of grain particles in the element 
maps. The original architecture of the VGG-16 model con-
sists of five convolutional blocks, each block comprising 
of two or three convolution layers followed by one pooling 
layer, and three full-connected dense layers attached in the 
end. In the original VGG-16 model, the initial input has the 
size of 224 × 224 × 3.

In this study, the following modifications were made for 
the architecture of the model, as shown in Fig. 5: we keep 
the structure of five convolutional blocks, and each block has 
two convolutional layers and one pooling layer, compared to 
the variable number of convolutional layers in the original 
VGG-16 model. Then, in the final block, we increase the 
number of dense layers to four, compared to the original 
model which has three dense layers. For each convolutional 
layer, the filter size is 3*3, the padding size is 1, and the 
stride size is 2*2. ReLu activation transformation was used. 
Additionally, the input data dimension was modified from 
originally 224 × 224 × 3 to 112 × 112 × 9 , where 112 × 112 
represents the size of each  element maps, and 9 represents 
that there are 9 element intensity channels. The number 
of learnable parameters in this CNNs’ model is around 12 
million (Table 1), which is around only 9% of that of the 
original VGG-16 (Simonyan and Zisserman 2015). For more 
details regarding the model architecture, training process 
and prediction, a Github repository link: https://​github.​com/​

Fig. 5   Architecture of the modified CNNs model. The original VGG-
16 model has two convolution layers for the first two Conv. Blocks, 
and has three convolution layers for the Conv. Block 3–5, and three 

Dense layers attached in the end. In our modified model, we use two 
convolution layers for all the Conv.Blocks, and increase one more 
Dense layer.

https://github.com/chunxiaoqiuyue/Estimate_Young-s-modulus-from-EDS-maps
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chunx​iaoqi​uyue/​Estim​ate_​Young-s-​modul​us-​from-​EDS-​
maps is provided for reference.

3.4 � Overview of the Computational Framework

The purpose of the computational framework is to train a 
valid CNNs model, which can effectively predict mechani-
cal properties via input elements’ intensity images. There 
are four steps in the proposed computational framework: 
(a) building the input database by collecting the elements 
density maps through the EDS experiments, (b) collect-
ing mechanical properties, Young’s modulus, of samples 
through indentation experiments, (c) building a CNNs model 
and training the model using input images and mechanical 
properties dataset, and (d) predicting the mechanical proper-
ties using the trained CNNs model (Fig. 6).

4 � Results and Discussion

4.1 � Elements Density Images

Intensity distribution maps of nine most common elements 
within shale rocks, including aluminum (Al), calcium 
(Ca), carbon (C), iron (Fe), potassium (K), magnesium 
(Mg), sodium (Na), sulfur(S), and silicon (Si), were gener-
ated (Fig. 7). Twenty different locations were scanned for 
each shale sample. The original map of each scan area was 
specified by 768 × 1024 pixel size, with a pixel resolution of 
0.25um/pixel, which cultivated an area of 192 × 256 μm for 
each scanned area. The smallest area over which a measure-
ment can be made that will yield a value representative of 
the whole sample is referred to as a representative element 
area (REA). REA studies of 2D mineral maps of the Bak-
ken shales have confirmed that the fractions of each mineral 
calculated from the box-counting method would not vary 
much when the boxing size becomes larger than 100 μm 
(Liu et al. 2018). Furthermore, a similar study of the REA 
in the Bakken shale via SEM maps in terms of porosity has 
reported that the REA can be a few hundreds of microm-
eters (Saraji and Piri 2015). In this study, by considering the 
REA and collecting adequate images to train our model, we 
chose an area of 125 × 125 μm as the size of the basic REA 
images. Besides, since CNNs models use a matrix of n × n, 
for each scanned area, an image with a size of 125 μm × 125 
μm was randomly cropped. A data augmentation technique 
was adopted next for generating a good number of training 
images, which resulted in the total number of 800 sets of 
elements density images (10 samples × 20 scan locations per 
sample × 4 randomly cropped sub-image per scan location) 
in the entire image dataset.

Additionally, the brightness of a given pixel in the 2D 
map represents the relative intensity of the corresponding 
element. It was found that Si was the most widely spread in 
the samples, followed by Al, K, and Ca, while Ca, Mg, Na, 
S, and Fe are less abundant. The correlation matrix of nine 
channels/elements densities demonstrated the relationship 
among densities of different elements, where 1 indicates a 
perfect positive linear correlation between two variables, and 
− 1 indicates a perfect negative linear correlation, while 0 
means no linear correlation between two variables (Fig. 8). 
In our study, three sets of clearly positive correlations were 
noted, as shown in gray–black, and black in the correla-
tion matrix. The existence of Al vs. K, Mg vs. Ca, and S 
vs. Fe is highly positively related, since these elements are 
co-existing in most minerals. Chemically, each mineral has 
a fixed elemental composition. For example, K-feldspar has 
the formula of KAlSi3O8, and therefore, the presence of Al 
is strongly related to the presence of K. In contrast, a strong 
negative correlation between elements was observed as only 

Table 1   Architecture and number of parameters in the CNNs model

Layer Output size Number of parameters

W H C

Input 112 112 9 0
block1_conv1 112 112 32 2624
block1_conv2 112 112 32 9248
block1_pool 56 56 32 0
block2_conv1 56 56 64 18,496
block2_conv2 56 56 64 36,928
block2_pool 28 28 64 0
block3_conv1 28 28 128 73,856
block3_conv2 28 28 128 147,584
block3_pool 14 14 128 0
block4_conv1 14 14 256 295,168
block4_conv2 14 14 256 590,080
block4_pool 7 7 256 0
block5_conv1 7 7 256 590,080
block5_conv2 7 7 256 590,080
block5_pool 3 3 256 0
flatten 2304 0
fc1 4096 9,441,280
fc2 100 409,700
fc3 100 10,100
fc4 100 10,100
Prediction 1 101
Total 12,225,425

https://github.com/chunxiaoqiuyue/Estimate_Young-s-modulus-from-EDS-maps
https://github.com/chunxiaoqiuyue/Estimate_Young-s-modulus-from-EDS-maps
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one mineral can be present at each pixel. For elements that 
do not exist within the same mineral, a negative correla-
tion, such as Si vs. C, Si vs. Ca, Si, vs. Fe, and Si vs. S was 
observed.

With chemical information of the minerals, not only raw 
elemental composition and distribution information can be 
obtained, but mineral phases can be mapped with addi-
tional processing of the EDS maps. For example, the high 
intensity of Ca and Mg indicates the existence of dolomite 
and the locations of the relatively high intensity of Fe and 
S refers to the existence of pyrite. Previous studies have 
already reported mineral classification and segmentation 
using the EDS maps (Knaup et al. 2019; Li et al. 2021b; 
Tang and Spikes 2017). This process is commonly done 
by proprietary software, though, in this study, we used 
the end-to-end method where the EDS maps were fed into 
the learning models directly, instead of using the devel-
oped mineral maps or other features to predict mechanical 
properties.

4.2 � Mechanical Dataset

Indentations were conducted on the shale samples, and each 
sample was specified with two sets of 5 × 5 grid indents, 
with a total of 50 indents on each sample. For each indent, 
Young’s modulus was calculated from the load–displace-
ment curves (Fig. 3). Figure 9 illustrates the load–displace-
ment curves of Sample 4 as a representative. It explains that 
with the same maximum load setting, the displacements for 
Sample 4 vary due to the heterogeneity in shale samples and 
the displacement for most curves is in the range of 4–5 μm 
at the maximum load of 400 mN.

Based on the analysis of the load–displacement curves, 
the reduced Young’s modulus is calculated from Eq. (1) 
through Eq. (4). Due to the highly heterogeneous nature of 
shales, the calculated Young’s modulus displayed variations 
among indented points within the same sample (Figs. 9, 10). 
An arithmetically averaged value of Young’s modulus was 
calculated and used as the ground truth label for each sam-
ple. The values of Young’s modulus are obtained in a range 
from 15.20 to 20.39 GPa among the samples, with Sample 4 
exhibiting the highest value, and Sample 5 the lowest.

Fig. 6   A general overview of 
the proposed framework: a 
collecting intensity maps of 
nine elements via SEM–EDS 
mapping; b collecting Young’s 
modulus by laboratory microin-
dentation tests; c building 
CNNs model and training with 
element maps as input data and 
Young’s modulus as labeled 
data; d using trained model to 
predict Young’s modulus value 
for unseen samples.
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4.3 � Training Process

The entire dataset was divided into training and testing, 
where the testing dataset made 25% of the overall dataset. 
All weights and biases of CNNs model  were updated using 

Fig. 7   Maps of the element 
density of cropped sub-images 
for element Al, C, Ca, Si, K, 
Mg, Na, S, and Fe. Each image 
has the size of 125 μm × 125 μm 
and the brightness indicates the 
intensity of each element.

Fig. 8   Correlation matrix among elemental intensity. Zero denotes no 
linear correlation; 1 and -1 each indicates perfect positive and nega-
tive linear correlations, respectively. Al vs. K, Mg vs. Ca, and S vs. 
Fe are highly positively related, since these elements are co-existing 
in minerals abundant in shales.

Fig. 9   Load–displacement curves from indentations of Sample 4. At 
the maximum load of 400 mN , the displacement of most curves is in 
the range of 4–5 μm
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stochastic gradient descent (SGD) with a mini-batch size of 
16 to avoid high-cost local minima. A learning rate of 1e−7 
is used in this optimizer. The objective function is the mean 
absolute percentage error (MAPE), which can be expressed 
in the following equation:

where At is the ground truth, the value of Young’s modulus, 
and Ft is the predicted Young’s moduli. During the training 
process, 300 epochs were conducted. The training loss at 
the initial iteration steps was significant due to the randomly 
assigned weights and biases. Though, the training loss then 

(5)M =
1

n

∑n

t=1
�At−Ft

At

�,

descends dramatically after several iterations are completed 
(Fig. 11).

4.4 � Predicting the Moduli of Unseen Samples

The trained network for Young’s modulus of unseen EDS 
image prediction was performed in the final step. Figure 12a 
displays the predicted results: the x-axis is the labeled/true 
value of the testing samples, while the y-axis represents the 
predicted Young’s modulus value. This figure indicates that 
the predicted Young’s modulus values are in good agreement 
with the data measured from the laboratory tests. Addition-
ally, for each sample, the predicted Young’s modulus value 
exhibited variations due to the highly heterogeneous nature 
of the samples. Histograms of MAPE among all samples 
demonstrated that for most of the test data points, errors 

Fig. 10   Box chart of Young’s modulus obtained from indentation 
experiment (S on the x-axis, refers to sample numbers), Sample 4 
exhibiting the highest value, and Sample 5 the lowest.

Fig. 11   Loss decreasing during training process. The loss for train-
ing dataset is in orange, while that for validation in blue. Total 300 
epochs with a batch size of 16 and learning rate of 1e-7 were used. 
The loss changes smoothly at the beginning and then has a sharp 
decrease, and after 30 epochs, it reaches a plateau.

Fig. 12   a Predicted results of Young’s modulus compared with the 
laboratory data; the x-axis shows the ground truth data obtained from 
laboratory microindentation, while the y-axis shows the predicted 
Young’s modulus from the trained model. b Histogram of mean abso-
lute percentage error for the test dataset, showing that most of the test 
data have the error smaller than 15%, with an averaged error of 6.5%
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between the prediction and ground truth are less than 10%, 
with an average error value calculated as 6.5%, which is 
within an acceptable range compared to the results obtained 
from the laboratory tests with higher error percentage 
(Fig. 12b).

4.5 � Discussion of Advantages and Limitations

It is worth understanding why the proposed method provides 
good predictive performance. A critical prerequisite of sat-
isfactory predictive performance is that Young’s modulus 
of rocks is indeed a non-linear function of the information 
that can be extracted from the EDS maps, mostly the min-
eral information. It is well known that the effective material 
properties of shale rocks are determined by the mechanical 
property and distribution pattern of each forming constituent 
and their configuration. In the analytical method for esti-
mating the mechanical properties, based on the microme-
chanical theorem, this can be described as follows (Mori 
and Tanaka 1973):

where ℂ0 and ℂr (or ℂs ) are the stiffness tensor of the 
matrix phase and inclusion phase; representatively, fr or  fs 
denotes the proportion of each phase; N is the total number 
of phases. ℙ0

Ir
 or  ℙ0

Is
 are tensors related to the shape and 

distribution patterns of the comprising composition (Laws 
1977). Based on the equation, it is shown that the mechani-
cal properties are a non-linear function of the fraction, 
mechanical properties, and the contact boundaries of min-
eral phases. As described earlier, through elemental map-
ping, the mineral phases, their fractions, spatial distribution, 
and their configuration can be extracted through these ele-
mental maps. The convolutional transform in the CNNS 
model can capture and establish the connection between 
these features and the mechanical properties. Additionally, 
during the iterations when optimization is in process, the 
CNNs can identify the useful information, and filter out 
irrelevant features.

However, there are some limitations on this proposed 
method. First, as mentioned previously, the mechanical prop-
erties of shales are scale-dependent. The proposed approach 
is based on a mesoscopic point of view. For both the ele-
ment density maps and the Young’s modulus measured 
from microindentation tests, the effect of nature fractures 
and weak bedding planes for the mechanical properties are 
not considered. Therefore, the Young’s modulus mentioned 
in this study might have some difference between values 
measured from traditional mechanical tests. Second, even we 

(6)
ℂhom =

∑N

r=1
frℂr ∶

�
𝕀 + ℙ

0

Ir
∶
�
ℂr − ℂ0

��−1

×

�
∑N

s=0
fs ∶

�
𝕀 + ℙ

0

Is
∶
�
ℂs − ℂ0

��−1�−1
,

have as many of 50 indents on each shale sample, however, 
locating each indent is challenging and we used an averaged 
Young’s modulus for each sample, which means heterogene-
ous changes within a shale sample is ignored from the output 
end. In the further, we would like to link the variability of 
the microindentation data to the variability of the element 
maps for the next step.

5 � Conclusion

In this study, a deep learning CNNs model was employed 
on 2D elemental intensity distribution maps to predict the 
mechanical properties of shales. The proposed CNNs model 
framework followed: (a) collecting element intensity maps 
for nine major elements abundant in a shale, including Al, 
Ca, C, Fe, K, Mg, Na, S, and Si; (b) mechanical properties’ 
collection, Young’s modulus of the corresponding samples; 
(c) CNNs model building, and training based on the images 
and mechanical properties datasets, and (d) mechanical 
properties prediction using the trained CNNs model. The 
input data were created from SEM–EDS mapping, and the 
ground truth data were Young’s modulus values correspond-
ing to each image obtained from microindentation tests. A 
total of 800 images obtained from ten shale samples were 
used for training and testing. The results showed that the 
predicted Young’s modulus values had an averaged relative 
error of 6.5%, which is in an acceptable error range com-
pared to the laboratory errors. In addition, the prediction of 
the mechanical parameters of rocks by this newly proposed 
method can be an alternative to the laboratory approaches 
where sample preparation and more elaborate data interpre-
tation would be inevitable.
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