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Abstract
Many models of damage or cracking of isotropic solids consider a single damage/crack density variable. Based on both 
continuum damage mechanics (CDM) and effective medium theory (EMT), we model the impact of isotropic damage in the 
form of microcracks on the elastic properties of an isotropic solid. For each approach, we consider the complete tensorial 
description of the elastic moduli involving two damage/crack density variables D

1
 and D

2
 , or � and � ; and possible scalar 

approximations involving a single variable (with either D
2
 = 0, or � = 0). We assess the accuracy of scalar approximations 

commonly employed for each approach against laboratory measurements of ultrasonic wave velocities and density obtained 
on a dry and isotropic specimen of thermally cracked Carrara Marble (CM) subjected to an increasing confining pressure 
up to 50 MPa. Overall, this laboratory dataset and the CDM and EMT modelling and inversion results reported here suggest 
that: (i) irreversible thermal cracking and microcrack opening occur after heating and sudden cooling of the CM specimen, 
whereas reversible and progressive microcracks’ closure occurs with increasing confining pressure; (ii) tensorial damage/
cracking models involving either two damage variables (CDM) or two crack density variables (EMT) fit equally well and 
virtually perfectly the laboratory data for any confining pressure tested; (iii) single scalar approximation models commonly 
used in CDM or the EMT models give comparable results to their complete tensorial counterparts, which is particularly true 
for the CDM approach; (iv) single scalar approximations derived from the CDM approach, and assuming a constant Poisson’s 
ratio of the cracked rock, reproduces all the elastic moduli more accurately than the corresponding scalar approximation 
derived from the EMT approach, where a constant ratio of Young’s modulus to Poisson’s ratio is assumed instead; and (v) it 
is more reliable to use a tensorial rather than a scalar description of the effect of reversible microcrack closure with pressure 
on all elastic parameters, including Poisson’s ratio. If the impact of reversible microcrack closure is accounted for, then a 
single scalar description of irreversible thermal damage with the CDM approach is remarkably accurate.

Keywords  Continuum damage mechanics · Effective medium theory · Damage tensor · Crack density tensor · Microcrack 
closure · Thermal cracking · Ultrasonic wave velocities · Confining pressure

1  Introduction

Laboratory ultrasonic monitoring techniques provide a fast 
and non-destructive means for estimating the elastic prop-
erties of a damaged/cracked solid. Ultrasonic probing has 

been widely employed in many fields (e.g., material science, 
geoscience). Many researchers have successfully used them 
to identify the parameters of phenomenological models of 
anisotropic damage in composite materials (e.g., Audoin and 
Baste 1994; Hufenbach et al. 2006; Castellano et al. 2017; 
Olsen-Kettle 2018a, c, b). However, purely phenomenologi-
cal models alone do not lend themselves well for a quanti-
tative distinction between reversible microcrack opening/
closure and irreversible damage processes. We extend these 
efforts to overcome this limitation and develop an approach 
to separate these effects using ultrasonic monitoring of 
ultrasonic wave velocities under varying confining pressure 
rather than at room conditions only.
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Natural rocks contain pre-existing flaws and defects at a 
variety of length scales, from microscopic cracks to macro-
scopic fissures, joints and even continental faults. A number 
of studies have explored the effect of microcrack closure, 
healing and sealing on macroscopic rock properties, show-
ing time-dependent restrengthening and permeability reduc-
tion under hydrothermal conditions (Brantut 2015). Seismic 
wave speed recovery due to crack or microcrack closure has 
been investigated by many authors in fault zones (Brantut 
2015; Kaproth and Marone 2014). Earthquake faults rupture 
and restrengthen repeatedly during the seismic cycle. Faults 
restrengthen via a set of processes known collectively as 
fault healing, which are well documented in the laboratory 
but less well understood in tectonic fault zones (Kaproth and 
Marone 2014). On the other hand, self-healing technolo-
gies and materials are emerging as a promising approach 
to extend the service life of infrastructures and engineered 
materials. Ultrasonic probing methods are often employed to 
test the self-healing capacity of engineered materials (Ahn 
et al. 2017; Ouarabi et al. 2017). The effects of closure of 
pre-existing cracks in the first stage of initial and rapid strain 
hardening under increasing confining pressure are often 
ignored in models of damage for brittle engineered materi-
als such as composites.

Accounting for the apparent stiffness recovery and 
increase in ultrasonic wave speeds due to microcrack closure 
is pivotal in ultrasonic investigations of damage and healing 
in composites and self-healing materials. In this context, 
microcracks closure and opening in response to changing 
isotropic stress (confining pressure) is a reversible process, 
whereas thermally induced cracking and chemical healing 
are irreversible processes. An understanding and quantitative 
discrimination between these processes would help in devel-
oping more accurate models of both healing and damage.

In this work we use existing damage/crack models to 
discriminate the effect on the elastic moduli of reversible 
strain hardening associated with increase in confining pres-
sure and microcrack closure, from the irreversible thermally 
induced cracking of an isotropic specimen of Carrara Marble 
(CM) (Sarout et al. 2017). We deem microcrack closure and 
opening due to the respective application and removal of a 
confining pressure to be a reversible effect on the measured 
ultrasonic wave speeds. We consider the residual reduction 
in the measured ultrasonic wave speeds (when compared 
with the intact specimen which has not undergone thermal 
cracking) after the application of a confining pressure to be 
the remaining irreversible effect on the measured ultrasonic 
wave speeds which remains constant (irreversible) with or 
without a confining pressure applied. The confining pressure 
was applied to allow us to isolate the effect of the irrevers-
ible thermally induced cracking from the effect of reversible 
microcrack opening and closure on the measurement of the 
ultrasonic wave speeds.

To measure the damage due to thermal cracking we 
record the evolution of ultrasonic wave speeds with con-
fining pressure in a thermally cracked specimen of Carrara 
marble. However, the ultrasonic measurements will inte-
grate both the reversible effects of microcrack opening, the 
impact of which can be partially cancelled by application of 
a compressive stress, as well as the irreversible cracking, the 
impact of which is not totally cancelled by application of an 
arbitrarily high confining pressure. To discriminate between 
reversible and irreversible damage we subject the specimen 
to a stepwise increase in confining pressure to cause the 
microcracks to progressively close, while monitoring the 
evolution of ultrasonic wave speeds. As the confining pres-
sure increases, we observe that the elastic moduli approach 
asymptotic values. The difference between these asymptotic 
values and the values of elastic parameters of the intact rock 
constitutes the irreversible part of the damage induced by 
thermal cracking.

Past studies have focused on the effect of microcrack-
ing in brittle solids on Poisson’s ratio and Young’s modulus 
(Zimmerman 1985; Bristow 1960; Walsh 1965b) or on the 
ratio of these two parameters as in Walsh (1965a) or Case 
(1984). Case (1984) compares several microcracking-elas-
ticity theories and recasts these theories in terms of macro-
scopic parameters, Young’s modulus and Poisson’s ratio. We 
extend this analysis further by considering the effect of both 
thermal cracking of a marble specimen on its elastic moduli, 
as well as the effect of reversible microcrack closure by an 
increase in the confining pressure. We compare the accuracy 
of two well-known approaches for modelling damage/crack-
ing behaviour: using continuum damage mechanics (CDM) 
and micro-mechanics based effective medium theory (EMT). 
When a fourth order tensor is used for both the damage vari-
able D in CDM (Eq. 4) and additional compliance tensor 
�S in the EMT (Eq. 12) we show that the two approaches 
are completely described using measurements of ultrasonic 
longitudinal and shear wave velocities and densities at mul-
tiple confining pressures. These data yield estimates of the 
two independent dynamic elastic moduli of the damaged/
cracked and isotropic rock at any given confining pressure. 
For each model, the single-scalar approximation essentially 
reduces the number of variables required to describe dam-
age. The motivation for assessing the accuracy of the single-
scalar approximations of the EMT and CDM models is that 
these approximations are more widely used for industrial 
applications because of their relative simplicity compared 
to more advanced and research-oriented tensorial models. 
To the authors’ knowledge this study is the first comparing 
quantitatively the performance of the EMT and CDM mod-
els, and their single-scalar approximation, against laboratory 
measurements under variable pressure.

Quantifying the evolution of the damage or crack density 
variables with confining pressure in a representative rock 
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sample from ultrasonic wave speed and density data allows 
for the prediction of the evolution of the elastic properties 
of the rock with pressure or depth using the CDM and EMT 
models. The output of the tensorial (complete) version of 
these models match equally well the laboratory data, i.e., 
negligible discrepancies (see Fig. 3). However, the single-
scalar approximations of the CDM and EMT models can 
introduce discrepancies that are evaluated and compared 
to assess their performance (see Fig. 3). For this evalua-
tion we use the data derived from a thermally cracked sam-
ple of Carrara marble. Comparing the two approaches and 
their underlying assumptions, as well as the performance of 
their single-scalar approximation are the key aims of this 
manuscript.

The two approaches only consider diffuse damage due to 
thermal cracking of a Carrara marble specimen (no crack 
clustering, nor high crack density). The wavelength of the 
ultrasonic wave velocities measured on this rock (few mm) 
are significantly larger than the size of the micro-cracks 
observed in it (few microns). We therefore assume that both 
CDM and EMT approaches are applicable, as long as the 
crack density is low, and no crack clustering occurs.

We compare the results of two well-established 
approaches for modelling mechanical damage and crack-
ing in solids: (i) thermodynamics-based continuum dam-
age mechanics (CDM); and (ii) and micromechanics-based 
effective medium Theory (EMT). The thermodynamic 
theory of CDM considers the decrease in the elastic stiff-
ness tensor with increasing crack damage (see Eq. (1)). The 
CDM approach introduces a thermodynamic damage vari-
able (scalar or tensor) to model the overall (effective) effect 
of microcracking and damage at the scale of a representa-
tive volume element, rather than the contribution of each 
individual crack (Murakami 2012). This approach is based 
on energy conservation principles and is detailed in Sect. 2.

In contrast, the EMT requires the definition of an explicit 
damage model, i.e., micro-cracks geometry and spatial/ori-
entation distribution. We assume here randomly located and 
oriented non-interacting and non-intersecting cracks, and 
a simple crack geometry (penny-shaped) in the thermally 
cracked CM specimen. The non-interaction EMT has been 
shown to be valid for cracked solids up to relatively high 
crack density values, i.e., even when the cracks become 
closely spaced and intersect (Kachanov 1993; Sayers and 
Kachanov 1995; Grechka and Kachanov 2006). In this 
approximation, each crack is assumed to be isolated and the 
additional elastic compliance of the cracked rock compared 
to the intact one ( �Sijkl ) is simply the sum of the compliance 
contribution of each crack taken separately (see Eq. (9)). 
Thus, the EMT allows us to relate the change in the effec-
tive compliance tensor of the cracked rock ( �Sijkl ) to the 
change in crack density (Walsh 1965b; Sarout et al. 2017), 
where the crack density characterizes the state of damage 

of the solid, and is a combination of the cubed radius of the 
cracks and their number per unit volume. This approach is 
detailed in Sect. 3.

The fourth order tensor D defined in Sect. 2 (Eq. (1)) 
represents a decrease in the elastic stiffness tensor with dam-
age using CDM. Similarly the extra compliance tensor, �S , 
defined in Sect. 3 (Eq. (9)) represents an increase in the com-
pliance tensor with damage. Obviously these will be related 
to each other and can be equivalent representations of the 
damage if a fourth order tensor is used for both. However in 
many studies further approximations are made to simplify 
the application of these tensorial models. We consider these 
commonly-adopted single-scalar approximations, and evalu-
ate their performance. To this end, we assess the relative 
accuracy and predictive power of each model in terms of 
predicted elastic parameters (bulk, shear and Young’s mod-
uli, Poisson’s ratio and P-wave modulus), against laboratory 
measurements of ultrasonic P- and S-wave velocities and 
density obtained at room temperature on a dry specimen of 
thermally cracked CM specimen subjected to an increasing 
confining pressure up to 50 MPa (Sarout et al. 2017).

Sarout et  al. (2017) showed that the CM specimen 
retained its isotropy at room pressure after thermal cracking 
and could be conveniently modelled as an isotropic elastic 
solid embedding randomly-oriented and located microc-
racks (see Fig. 1). When subjected to an increasing confin-
ing pressure (isotropic stress), the cracked rock specimen 
is expected to retain its isotropy (Curie’s principle, Curie 
(1894), Rasolofosaon (1998)). In addition, the wavelength 
of the ultrasonic waves propagating in the CM specimen 
(about 5 mm) is significantly larger than the characteris-
tic size of the grains and inter-granular microcracks (about 
150micron). The continuum assumption underlying both 
modelling approaches is therefore satisfied, i.e., the size of 
the Representative Volume Element (RVE) corresponding 
to the probing ultrasonic wavelength is much larger than 
the characteristic size of the heterogeneities/discontinuities 
(grains, microcracks) embedded in this RVE. It is also worth 
noting that in the CDM approach the reduction of the stiff-
ness tensor components with damage is modelled, whereas 
the EMT approach models the increase in the compliance 
tensor components with damage. Furthermore, in view of 
the timescale of the experiment at room temperature (few 
hours), and the absence of pore fluid saturating the microc-
rack network, it is assumed that no significant time-depend-
ent effects are at play during the experiment (e.g., chemical 
dissolution/precipitation, creep).

In Sect.  2 the fourth order tensor Dijkl representing 
damage in the thermodynamics-based CDM approach 
is derived using the formulation reported by Cauvin and 
Testa (1999a). Assuming that Poisson’s ratio remains con-
stant and independent of damage, two approximate models 
are derived in terms of a single scalar damage variable DSC 
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or DSC
E

 . In Sect. 3 we model the presence of microcracks 
using a micromechanics-based EMT approach formulated 
by Sayers and Kachanov (1995). Assuming that the ratio 
of the Young’s modulus to Poisson’s ratio remains con-
stant and independent of damage, two other approximate 

models are derived in terms of a single scalar crack density 
variable �SC or �SC

E
 . In Sect. 4 we analyze the ultrasonic 

laboratory data reported by Sarout et al. (2017) and invert 
for the damage or crack density parameters for the com-
plete tensorial models and their scalar approximations. A 
discussion of the results and conclusions follow.

38 mm

microcracks

representative
volume
element

micro X-ray
computed tomography

segmented and color-labelled
microcracks

(a) (b)

(c) (d)

Fig. 1   Carrara Marble (CM) specimen: a picture of the specimen; b microstructural model of the isotropic CM specimen; c micro-X-ray com-
puted tomography image of a half-millimetre cube of CM; d segmented X-ray image illustrating the presence of inter-granular microcracks
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2 � Continuum Damage Mechanics: Tensorial 
Description of Damage and Scalar 
Approximations

2.1 � General Anisotropic Damage Tensor

We consider a general tensorial description of the effects of 
damage and microcrack opening and closure in an isotropic, 
thermally cracked Carrara Marble (CM) specimen subjected 
to increasing confining pressure (isotropic stress). To this 
end, we employ a similar approach to Olsen-Kettle (2018a, 
2018c, 2018b) or Cauvin and Testa (1999a, 1999b) based 
on the principle of strain equivalence, and describe damage 
with an internal damage tensor D. The constitutive equations 
and the evolution of internal damage derive from thermo-
dynamics principles of energy conservation involving stress 
and strain as internal state variables, and by postulating the 
mechanical equivalence between the damaged material and 
a fictitious undamaged material with the same properties 
(e.g., Murakami 2012).

The principle of strain equivalence considers two con-
figurations: (i) the damaged configuration 𝜎 = C̃ ∶ 𝜖 , where 
� is the actual stress tensor, C̃ is the stiffness tensor of the 
damaged material, and � is the actual strain tensor; and (ii) 
the fictitious undamaged configuration 𝜎̃ = C ∶ 𝜖 , where C is 
the original stiffness tensor of the undamaged material, 𝜎̃ is 
the effective stress tensor applied to this equivalent undam-
aged material to generate the same elastic strain tensor � . 
Using this concept, Cauvin and Testa (1999a) showed that 
the most general description of damage reduces to a fourth-
order tensor D, i.e.,

where Dijkl is the internal damage tensor and �ij is the Kro-
necker delta function. Because the stiffness tensors C and 
C̃ are supersymmetric D must possess minor symmetries: 
Dijkl = Djikl = Dijlk . In addition, for the stiffness tensors to 
meet the constraint of supersymmetry, the internal damage 
tensor must also satisfy

Note that the above equations hold for an arbitrary material 
symmetry.

2.2 � Isotropic Damage Tensor

The above tensorial description of general anisotropic 
damage can be readily simplified to the case of isotropy 
for application to the ultrasonic and density data from the 

(1)
C̃ijkl = (Iijrs − Dijrs)Crskl,

and Iijrs =
1

2
(𝛿ir𝛿js + 𝛿is𝛿jr),

(2)DijrsCrskl − DklrsCrsij = 0.

isotropic thermally cracked CM specimen. The stiffness 
tensor of the intact and isotropic CM specimen in Voigt 
notation reads (Cauvin and Testa 1999a, b; Voigt 1910; 
Helbig 1994)

where � and G stand for Lamè’s parameters of the intact/
undamaged specimen. The stiffness tensor of the thermally 
cracked and isotropic CM specimen can be written in a simi-
lar way, involving the corresponding Lamè’s parameters of 
the specimen in a damaged state 𝜆̃ and G̃ , i.e.,

In practice, the same fourth-order internal damage tensor 
D is used to: (i) quantify the irreversible damage of the CM 
specimen due to thermal cracking; and (ii) quantify the 
reversible crack closure/opening with changing confining 
pressure. Discriminating between the two processes requires 
laboratory data to be collected at multiple confining pres-
sures as reported by Sarout et al. (2017). In Voigt notation 
D can be written as (Cauvin and Testa 1999b)

Using Eq. (1) and the definition of the stiffness and internal 
damage tensors above, we can relate the two independent 
damage variables D1 and D2 to the laboratory-determined 
elastic moduli of the CM specimen in the damaged and 
undamaged states (Cauvin and Testa 1999b). A convenient 
relation can be obtained for the couple of independent elastic 
parameter K (bulk modulus) and G, i.e.,

C =

⎛⎜⎜⎜⎜⎜⎜⎝

� + 2G � � 0 0 0

� � + 2G � 0 0 0

� � � + 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

⎞⎟⎟⎟⎟⎟⎟⎠

,

C̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆̃ + 2G̃ 𝜆̃ 𝜆̃ 0 0 0

𝜆̃ 𝜆̃ + 2G̃ 𝜆̃ 0 0 0

𝜆̃ 𝜆̃ 𝜆̃ + 2G̃ 0 0 0

0 0 0 G̃ 0 0

0 0 0 0 G̃ 0

0 0 0 0 0 G̃

⎞⎟⎟⎟⎟⎟⎟⎠

.

D =

⎛⎜⎜⎜⎜⎜⎜⎝

D1 D2 D2 0 0 0

D2 D1 D2 0 0 0

D2 D2 D1 0 0 0

0 0 0 D1 − D2 0 0

0 0 0 0 D1 − D2 0

0 0 0 0 0 D1 − D2

⎞⎟⎟⎟⎟⎟⎟⎠

,

or D =

⎛⎜⎜⎜⎜⎜⎜⎝

D1111 D1122 D1133 0 0 0

D2211 D2222 D2233 0 0 0

D3311 D3322 D3333 0 0 0

0 0 0 D2323 0 0

0 0 0 0 D1313 0

0 0 0 0 0 D1212

⎞⎟⎟⎟⎟⎟⎟⎠

.
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The reciprocal equations can be written as

As a result, isotropic damage can be fully described by two 
Eqs. (either (3) or (4)), using two independent damage vari-
ables D1 and D2.

2.3 � Scalar Approximations of Isotropic Damage 
Tensor

In many continuum damage models (e.g., Lemaitre 1996; 
Zhu and Tang 2004; Murakami 2012; Li et al. 2012; Mondal 
et al. 2019, 2020) a single scalar damage variable is used to 
describe isotropic damage. In general these models assume 
that Poisson’s ratio of the material is independent of dam-
age, i.e.,

which is equivalent to assuming that the second damage 
variable D2 is zero (Cauvin and Testa 1999b), and a single 
damage variable D1 = DSC is sufficient in this case. A direct 
consequence of this assumption is that all elastic moduli are 
affected by damage in the same proportion (but not Poisson’s 
ratio which is assumed constant in this approximation). In 
other words, in this approximation all elastic moduli exhibit 
strictly the same dependence to DSC , e.g.,

Note that because only two independent elastic parameters 
are necessary and sufficient to fully describe the elastic 
response of an isotropic rock (intact or damaged), the other 
elastic parameters such as Young’s modulus or Poisson’s 
ratio can be readily calculated form K and G provided in Eq. 
(5) using classical elasticity relationships.

Let us investigate the validity of this assumption of con-
stant Poisson’s ratio, or dependence of elastic moduli on a 
single internal damage variable DSC = D1 , using existing 
laboratory ultrasonic and density data for the CM speci-
men. Because two independent ultrasonic wave velocities 
are measured in the laboratory (P- and S-wave), we can esti-
mate the two independent elastic moduli of the isotropic 
rock in the intact state K and G, and in a damaged state K̃ 
and G̃ . One can readily compute any other elastic parameter 
from these two.

(3)
K̃ = (1 − D1 − 2D2)K,

G̃ = (1 − D1 + D2)G.

(4)
D1 = 1 −

1

3

(
2
G̃

G
+

K̃

K

)
,

D2 =
1

3

(
G̃

G
−

K̃

K

)
.

𝜈 = 𝜈̃,

(5)
K̃ ≈ (1 − DSC)K,

G̃ ≈ (1 − DSC)G.

Using the known values of Kexp and Gexp for the defect-
less fused aggregate of pure calcite grains, and K̃exp and G̃exp 
calculated from the ultrasonic and density data reported by 
Sarout et al. (2017) on the CM specimen under increasing 
confining pressure, and using Eq. (5) allows us to estimate 
DSC independently from the bulk modulus data on one hand, 
and from the shear modulus data on the other, i.e.,

Let us consider two approaches for estimating the scalar 
damage variable from laboratory data. The first method 
makes use of both P- and S-wave velocity input data to 
compute the independent bulk and shear of the isotropic 
rock in the intact and damaged states. Equation (6) is then 
used to calculate the corresponding DSC

K
 and DSC

G
 . Finally, 

the experimentally-determined scalar damage variable DSC 
is taken as the average of DSC

K
 and DSC

G
 , i.e.,

Often in the literature, triaxial stress-strain data are used 
to determine Young’s modulus and estimate damage (e.g., 
Mondal et al. 2019, 2020). In order to better compare our 
results with previous data and models we also consider a 
second approximate damage variable DSC

E
 directly based on 

experimentally-determined Young’s modulus in the intact 
and damaged states, i.e.,

Note that Kexp and Gexp are the elastic moduli of the intact 
(undamaged) rock material; and K̃exp and G̃exp are the elas-
tic moduli of the damaged rock material estimated from 
laboratory ultrasonic and density data under increasing 
confining pressure by Sarout et al. (2017). Because Car-
rara marble is made of 98% calcite, the intact material 
properties are derived from the properties of a fused aggre-
gate of randomly-oriented calcite grains with no porosity, 
no microcracks or other defects ( Kcalcite = 80GPa , and 
Gcalcite = 30GPa).

(6)

DSC
K

≈ 1 −
K̃exp

Kexp

,

DSC
G

≈ 1 −
G̃exp

Gexp

.

(7)

DSC ≈
1

2

(
DSC

K
+ DSC

G

)
,

≈ 1 −
1

2

(
K̃exp

Kexp

+
G̃exp

Gexp

)
.

(8)

DSC
E

≈ 1 −
Ẽexp

Eexp

,

≈ 1 −

1

Kexp

+
3

Gexp

1

K̃exp

+
3

G̃exp

.



511Assessment of Tensorial and Scalar Damage Models for an Isotropic Thermally Cracked Rock Under…

1 3

3 � Effective Medium Theory: Tensorial 
Description of Microcracks and Scalar 
Approximations

3.1 � General Anisotropic Crack Density Tensors

The EMT approach considers first the effect on elastic 
moduli of a single inclusion embedded in a homogeneous 
and defect-free elastic solid. An upscaling scheme is then 
used to account for multiple such inclusions embedded in 
a Representative Volume Element (RVE) of the damaged 
CM specimen. The quantification of the effect of a sin-
gle inclusion is rooted in Eshelby’s equivalent/eigenstrain 
concept for elliptical inclusions (Eshelby 1957), which 
can be extended asymptotically to penny-shaped cracks. A 
classical upscaling scheme used for cracks consists in con-
sidering a simple superposition of the effect of multiple 
cracks with no stress interactions between them (Kachanov 
1980, 1993; Sarout et al. 2007).

Embedding cracks into an elastic solid and using the 
non-interaction upscaling scheme, Sayers and Kachanov 
(1995) show that the average macroscopic strain ( �ij ) in 
an elastic volume element containing randomly located 
and non-interacting penny-shaped microcracks can be 
described by an increase in the elastic compliance of the 
microcracked material compared to the intact material, 
i.e.,

where Sijkl and S̃ijkl stand for the fourth-order elastic com-
pliance tensor of the original intact material, and of the 
microcracked material, respectively. �Sijkl is the additional 
compliance due to the presence of the microcracks, and 
can be conveniently decomposed into a second-order crack 
density tensor �ij , and a fourth-order crack density tensor 
�ijkl . The non-zero components of the crack density tensors 
and their relationship with the effective elastic parameters 
of the microcracked rock are given in detail by Sayers and 
Kachanov (1995) for various crack orientation distributions.

3.2 � Isotropic Crack Density Tensors

For randomly located and oriented microcracks embedded in 
a homogeneous and isotropic elastic solid, Eq. (9) reduces to

(9)
𝜖ij = (Sijkl + 𝛥Sijkl) 𝜎kl = S̃ijkl 𝜎kl,

and 𝛥Sijkl =
1

4

(
𝛿ik𝛼jl + 𝛿il𝛼jk + 𝛿jk𝛼il + 𝛿jl𝛼ik

)
+ 𝛽ijkl,

� =�11 = �22 = �33,

� =�1111 = �2222 = �3333,

�

3
=�1122 = �2233 = �1133 (= �1212 = �2323 = �1313).

In Voigt notation, the compliance tensor S̃ of the isotropic 
damaged material reads

where � and 𝜈̃ are the Poisson’s ratio of the intact and cracked 
material respectively, and E and Ẽ are the Young’s modu-
lus of the intact and cracked material respectively. Effective 
elastic parameters, Ẽ, 𝜈̃ , can be related to the crack density 
variables and initial elastic moduli E, � using Eq. (10). The 
additional relations of isotropic elasticity give the corre-
sponding effective bulk modulus ( K̃ = Ẽ∕3(1 − 2𝜈̃) ) and 
effective shear modulus ( ̃G = Ẽ∕2(1 + 𝜈̃) ), i.e.,

The reciprocal set of equations equivalent to Eq. (4) in the 
CDM approach and relating the elastic parameters K and G 
to the crack density variables � and � in the EMT approach 
reads

3.3 � Scalar Approximation of Isotropic Crack Density 
Tensors

The most common assumption made in micromechanical 
models for dry cracked rocks is to assume that the fourth-order 

(10)

S̃ =
1

Ẽ

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 𝜈̃ − 𝜈̃ 0 0 0

−𝜈̃ 1 − 𝜈̃ 0 0 0

−𝜈̃ − 𝜈̃ 1 0 0 0

0 0 0 2(1 + 𝜈̃) 0 0

0 0 0 0 2(1 + 𝜈̃) 0

0 0 0 0 0 2(1 + 𝜈̃)

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

E

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 𝜈 − 𝜈 0 0 0

−𝜈 1 − 𝜈 0 0 0

−𝜈 − 𝜈 1 0 0 0

0 0 0 2(1 + 𝜈) 0 0

0 0 0 0 2(1 + 𝜈) 0

0 0 0 0 0 2(1 + 𝜈)

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 + 𝛽
𝛽

3

𝛽

3
0 0 0

𝛽

3
𝛼 + 𝛽

𝛽

3
0 0 0

𝛽

3

𝛽

3
𝛼 + 𝛽 0 0 0

0 0 0 2𝛼 +
4𝛽

3
0 0

0 0 0 0 2𝛼 +
4𝛽

3
0

0 0 0 0 0 2𝛼 +
4𝛽

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,

(11)
K̃ =

K

1 + K(3𝛼 + 5𝛽)
,

G̃ =
3G

3 + G(6𝛼 + 4𝛽)
.

(12)
𝛼 =

5

6

(
1

G̃
−

1

G

)
−

2

9

(
1

K̃
−

1

K

)
,

𝛽 =
1

3

(
1

K̃
−

1

K

)
−

1

2

(
1

G̃
−

1

G

)
.
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crack density tensor � = 0 (Sayers and Kachanov 1995) this 
follows from the fact that � enters the elastic potential (or elas-
tic compliances) with a relatively small multiplier. For an iso-
tropic distribution of microcrack orientations, this implies that 
the ratio of Young’s modulus to Poisson’s ratio is independent 
of damage, i.e.,

which contrasts with the assumption made in the CDM 
approach where � = 𝜈̃ . In the micromechanical approach, the 
assumption � = 0 also implies that the second-order crack 
density tensor �ij remains the sole crack variable, and for an 
isotropic cracked material, this tensor reduces to a single 
scalar crack density variable �SC.

Using the known values of Kexp and Gexp for the defect-
less fused aggregate of pure calcite grains, and K̃exp and G̃exp 
calculated from the ultrasonic and density data reported by 
Sarout et al. (2017) on the CM specimen under increasing 
confining pressure, and using Eq. (11) allows us to estimate 
�SC independently from the bulk modulus data on one hand, 
and from the shear modulus data on the other, i.e.,

Let us again consider two approaches for estimating the sca-
lar damage variable from laboratory data. The first method 
makes use of both P- and S-wave velocity input data to 
compute the independent bulk and shear of the isotropic 
rock in the intact and damaged states. Equation (13) is then 
used to calculate the corresponding �SC

K
 and �SC

G
 . Finally, the 

experimentally-determined scalar damage variable is taken 
as the average of �SC

K
 and �SC

G
 , i.e.,

In order to better compare our results with previous data and 
models (e.g., Mondal et al. 2019, 2020) we also consider a 
second approximate crack density variable �SC

E exp
 directly 

based on experimentally-determined Young’s modulus 
(intact and damaged states). Using Eq. (11) to compute 
Young’s modulus with � = 0 yields

𝜈

E
=

𝜈̃

Ẽ
,

(13)

𝛼SC
K

≈
1

3

(
1

K̃exp

−
1

Kexp

)
,

𝛼SC
G

≈
1

2

(
1

G̃exp

−
1

Gexp

)
.

(14)

𝛼SC ≈
1

2

(
𝛼SC
K

+ 𝛼SC
G

)
,

≈
1

6

(
1

K̃exp

−
1

Kexp

)
+

1

4

(
1

G̃exp

−
1

Gexp

)
.

which contrasts with the definition of DSC
E

 in Eq. (8) for the 
CDM approach, and shows that these two approximate scalar 
variables are related through

where the damage variable DSC
E

 is dimensionless, and the 
crack density variable bears the units of a compliance ( Pa−1).

Note that Kexp and Gexp are the elastic moduli of the 
intact (undamaged) rock material; and K̃exp and G̃exp are 
the elastic moduli of the damaged rock material estimated 
from laboratory ultrasonic and density data under increas-
ing confining pressure by Sarout et al. (2017). Because 
Carrara marble is made of 98% calcite, the intact material 
properties are derived form the properties of a fused aggre-
gate of randomly-oriented calcite grains with no porosity, 
no microcracks or other defects ( Kcalcite = 80GPa , and 
Gcalcite = 30GPa).

4 � Results: Impact of Thermal Damage 
and Microcrack Closure with Increasing 
Pressure

The thermally cracked CM sample is subjected to a stepwise 
increase in confining pressure, and at each pressure incre-
ment the ultrasonic P- and S-wave velocities are measured 
using the pulse-transmission technique (Birch 1960). Two 
ultrasonic transducers (0.5 MHz central resonant frequency) 
are located at the top and bottom end of the cylindrical rock 
sample, respectively. One transducer acts as a source and 
transmits a mechanical vibration (longitudinal P or shear 
S); and the other transducer acts as a receiver of the P- or 
S- vibration transmitted through the length of the sample. 
Dual P and S Panametrics ultrasonic transducers were used, 
with a resonant frequency centred around 0.5MHz. They 
were embedded in the top and bottom steel platens within 
the pressure vessel (see Fig. 2 in Sarout et al. (2017)). These 
dual transducers are made of two separate/independent pie-
zoceramics with contrasting normal (P) and shear (S) polari-
zation. The dominant frequency of the source voltage sup-
plied to the piezoceramics is also 0.5MHz, and the 500 Volts 
pulse is a negative square function. The P and S piezoce-
ramics are excited separately/independently/consecutively. 
For each ultrasonic transmission mode (P-to-P or S-to-S), 
multiple shots were generated by the source transducer, and 
the transmitted pulses were recorded by the corresponding 

(15)

𝛼SC
E

≈
1

Ẽexp

−
1

Eexp

,

≈
1

9

(
1

K̃exp

−
1

Kexp

)
+

1

3

(
1

G̃exp

−
1

Gexp

)
.

(16)DSC
E

= Ẽ 𝛼SC
E
,
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receiver and stacked/averaged to improve the signal to noise 
ratio of the recorded waveform. The flight-time of the P 
phase is determined form the recorded P waveform, and that 
of the S phase from the independently-recorded S waveform. 
Knowledge of the transmission time for each wave phase (P 
or S) on the recorded waveform, and the propagation dis-
tance (sample length) allows for the calculation of the sought 
P- and S-wave velocities. The elastic moduli are estimated 
from these velocities and the density of the rock.

All the elastic parameters of this isotropic and thermally 
cracked CM specimen can be calculated for any level of con-
fining pressure from the P-wave velocity VP , S-wave velocity 
VS , and the known density � of the specimen, accounting for 
the increase in density with increasing confining pressure 
and strain hardening (Sarout et al. 2017). Once the veloc-
ity of the longitudinal ultrasonic wave (P-wave) and that of 
the shear ultrasonic wave (S-wave) are measured (together 
with the density of the rock), the coefficients of the elastic 
stiffness tensor and hence the elastic moduli can be calcu-
lated from the well-known Christoffel’s equations for elas-
tic wave propagation in isotropic elastic solids (e.g., Eslami 
et al. 2010):

where the two independent elastic moduli K̃ and G̃ are read-
ily calculated from the two independent ultrasonic wave 
velocities VP and VS and the density measured in the labora-
tory for the isotropic and thermally cracked CM specimen 
subjected to increasing confining pressure.

Using these laboratory ultrasonic and density data, we 
invert the damage and crack density variables for the com-
plete tensorial models and for their respective scalar approxi-
mations. Figure 2 summarises these results and shows the 
evolution of D1 , D2 , DSC , DSC

E
 , � , � , �SC , �SC

E
 as a function 

of confining pressure. With increasing confining pressure 
the absolute value of all laboratory-derived damage/crack 
density parameters decreases asymptotically towards a 
low or zero value. Most of the decrease, more than 75%, is 
recorded in the interval 0 to 15 MPa. All the damage param-
eters but D2 for the complete tensorial model, and for its 
scalar approximations in the CDM approach tend toward 
a non-zero asymptotic value at high confining pressure. In 
contrast, all the crack density parameters for the complete 
tensorial model, and for its scalar approximations in the 
EMT approach cancel at high pressure (tend toward a zero 
asymptote).

Using these inverted values of damage and crack density 
variables, we can compute the corresponding predictions of 
the complete tensorial and approximate scalar models for 
both the CDM and EMT approaches. Figure 3 summarises 

K̃ = 𝜌

(
V2
P
−

4

3
V2
S

)
,

G̃ = 𝜌V2
S
.

these results and compares the predictions of all models in 
terms of bulk, shear, Young’s and P-wave moduli, as well as 
in terms of Poisson’s ratio. The uncertainty (error bars) of 
the laboratory-derived elastic moduli in Fig. 3 are calculated 
using the approximate formula for propagation of errors for a 
multivariable function from Hughes and Hase (2010) (equa-
tion 4.16). We observe that both tensorial models, involving 
two damage or crack density parameters, fit equally well 
and perfectly the laboratory data of the cracked CM speci-
men at all confining pressures. For the predictions of shear 
and Young’s moduli G and E, all approximate scalar models 
perform similarly well. However, for the bulk modulus, the 
P-wave modulus and Poisson’s ratio, the scalar approxima-
tions derived from the CDM approach in terms of DSC or 
DSC

E
 perform significantly better than the corresponding sca-

lar approximations derived from the EMT method in terms 
of �SC or �SC

E
 . This laboratory dataset and the modelling and 

inversion results presented here suggest that the assumption 
of a constant Poisson’s ratio (independent of damage) in the 
CDM approach leads to a more accurate approximation of 
the actual moduli of the cracked CM specimen with a single 
scalar parameter DSC or DSC

E
 , than the corresponding scalar 

approximation derived from the EMT approach with a single 
scalar crack density �SC or �SC

E
.

In addition, Fig. 4 shows the regression line between 
the tensorial damage variable D1 and the two scalar dam-
age variables DSC and DSC

E
 with the 95% prediction interval. 

From this figure and the Pearson correlation coefficients 
( R = 0.9968 for DSC and R = 0.9987 for DSC

E
 ), the slopes 

(1.06 and 0.96 respectively) and y-intercepts ( − 0.02e and 
0.01 respectively) we can conclude that the scalar damage 
variable calculated using either approximation give a very 
close fit.

5 � Discussion

5.1 � Validity of Scalar Model Assumptions

Figure 5 shows that for a confining pressure higher than 
about 5 MPa the values derived from laboratory data on the 
CM specimen for � and above 10 MPa for �∕E values are 
nearly constant. In this pressure range, the assumptions of 
both approaches seem reasonable in view of the ultrasonic 
and density data available; only at pressures below 5 to 10 
MPa � and �∕E depart measurably from a constant value. 
Figure 5 shows the limitations of the assumptions underly-
ing the single-scalar approximation version of the CDM ( � 
constant) and EMT ( E∕� constant) models. It shows that the 
assumption for each approximate model is valid in practice 
only above 5 to 10 MPa of applied confining pressure. These 
observations are based on actual laboratory measurements 
conducted on the cracked rock under variable confining 
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pressure. At these low pressures it is recommended to use 
the complete tensorial damage or crack density models 
rather than their single-scalar approximation.

5.2 � Irreversible Thermal Damage and Reversible 
Microcrack Closure

Let us consider the two extreme situations reported in this 
laboratory dataset at the highest (50 MPa) and lowest (0.7 

MPa) confining pressure values. Table 1 displays the val-
ues of the damage variables D1 and D2 for the thermally 
cracked CM specimen at the lowest confining pressure avail-
able (0.7MPa), where the microcracks are open. Similarly, 
Table  2 displays the values of these damage parameters 
at the highest confining pressure available (50 MPa). We 
observe that for the most part the scalar damage values are 
reasonably close to the tensorial damage values. The moduli 
of the intact aggregate of fused calcite grains without defects 

Fig. 2   Comparison of the dam-
age and crack density param-
eters inverted from laboratory 
ultrasonic and density data 
on an isotropic and thermally 
cracked Carrara marble speci-
men (Sarout et al. 2017) using: 
(i) tensorial models (with D

1
 

and D
2
 or � and � ); or (ii) 

approximate scalar models with 
either DSC or DSC

E
 as damage 

variables; or with either �SC or 
�SC

E
 as crack density variables
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are also reported in these tables ( Kcalcite = 80GPa , and 
Gcalcite = 30GPa ). At the highest confining pressure of 50 
MPa, we observe that all the elastic moduli calculated using 
the scalar damage models are within 7% of the tensorial val-
ues. At the lowest confining pressure of 0.7 MPa, significant 
discrepancy arises between the tensorial damage values and 
their approximate scalar values, especially for Poisson’s ratio 
� , the bulk modulus K and Lamé parameter � . In these tables 
and in Fig. 3 we report the error bars using the approximate 
formula for propagation of errors for a multivariable func-
tion from Hughes and Hase (2010) (Eq. 4.16). This formula 
has some limitations and assumes that the magnitude of the 
error is small.

The results reported so far suggest that with confining 
pressure increase the elastic moduli tend toward an asymp-
totic value close to that expected for a defect-less aggregate 
of fused calcite grains, but not quite the same. Therefore, we 
can confidently assume that the effect of microcrack closure 
can be neglected once the confining pressure has increased 
above about 15 to 20 MPa (see Fig.  3), which reflects pro-
gressive crack closure under increasing confining pressure. 
For high confining pressures above this threshold we observe 
that: (i) Poisson’s ratio reaches the constant value of the 
defect-less rock; (ii) an asymptotic difference in elastic 
moduli with the defect-less rock remains and is attributed 

Fig. 3   Comparison of laboratory-derived and predicted elastic moduli of the thermally cracked Carrara marble specimen (Sarout et al. 2017)
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to the irreversible damage induced by thermal cracking. 
Table 2 reports the change in the elastic moduli at the high-
est confining pressure recorded where we assume that the 
microcracks have closed at least partially since the elastic 
moduli reach a stable asymptotic value. It also shows that the 
elastic moduli most reduced by the irreversible damage was 
the Young’s modulus (by 12%) whereas the elastic moduli 
least affected by the irreversible damage was Poisson’s ratio 
which remained almost constant. In contrast at low confining 
pressures where we can assume that a number of microc-
racks are still open we assume that the ultrasonic measure-
ments record the cumulative effect of reversible microcrack 
closure and irreversible damage (non-recoverable by pres-
sure increase).

Using a scalar variable to describe damage and micro-
crack closure in the CDM approach assumes that all the 
elastic moduli are increased in the same proportion, except 
Poisson’s ratio, which remains constant by assumption. In 
contrast, when a tensor is used to describe microcrack clo-
sure (and both D1 and D2 or � and � are non-zero) all the 
elastic moduli are affected by damage to varying degrees. 
In other words, once confining pressure has increased above 
about 15 MPa, so that the elastic moduli plateau and remain 
constant, we can isolate the effect of irreversible damage due 
to thermal cracking, i.e., the observed asymptotic difference 
with the elastic moduli of the defect-less rock.

6 � Conclusion

Overall, this laboratory dataset and the CDM and EMT 
modelling and inversion results presented here suggest that: 
(i) irreversible thermal cracking and microcrack opening 
occur after heating and sudden cooling of the CM speci-
men, whereas reversible and progressive microcracks’ 
closure occurs with increasing pressure; (ii) both tensorial 
damage/cracking models involving two damage/crack den-
sity variables fit equally well (perfectly as expected for iso-
tropic damage) the laboratory data at any confining pressure; 
(iii) single scalar approximation models can be accurate 
for damage predictions compared to their complete tenso-
rial counterparts, which is particularly true for the CDM 
approach; (iv) single scalar approximations derived from 
the CDM approach, and assuming a constant Poisson’s ratio 
of the cracked rock, better predicts all elastic moduli than 
the corresponding scalar approximation derived from the 
EMT approach, where a constant ratio of Young’s modulus 
to Poisson’s ratio is assumed instead; and (v) it is more reli-
able to use a tensorial rather than a scalar description of the 
effect of reversible microcrack closure with pressure on all 
elastic parameters, including Poisson’s ratio. If the impact of 
reversible microcrack closure is accounted for, then a single 
scalar description of irreversible thermal damage is remark-
ably accurate.

This work highlights the need to account for reversible 
crack closure and opening in models of damage and heal-
ing in naturally fractured rocks or engineered composites 

Fig. 4   Linear fit (with 95% 
prediction interval) of the 
scalar damage variables ( DSC , 
D

SC

E
 ) with the tensorial damage 

variable D
1
 for the thermally 

cracked dry Carrara marble 
specimen under increasing 
confining pressure
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Fig. 5   Evolution of Poisson’s 
ratio � and the ratio of Young’s 
modulus to Poisson’s ratio E∕� 
derived from experimental data. 
Note that the scalar approxima-
tion of the continuum damage 
model assumes that Poisson’s 
ratio is constant 𝜈 = 𝜈̃ (inde-
pendent of damage); the scalar 
approximation of the effective 
medium model assumes that 
the ratio of Young’s modulus 
to Poisson’s ratio 𝜈∕E = 𝜈̃∕Ẽ 
(independent of crack density)

Table 1   Comparison of 
tensorial and scalar damage 
models in the CDM approach 
at low confining pressure 
(0.7MPa)

Parameter Intact CM Tensorial model Scalar model (average) Scalar model (Young’s)

� (GPa) 60 4.8 ± 1.4 9.0 ± 0.6 11.6 ± 0.2

G (GPa) 30 6.4 ± 0.6 4.5 ± 0.3 5.8 ± 0.1

E (GPa) 80 15.4 ± 1.2 11.9 ± 0.8 15.4 ± 0.3

K (GPa) 80 9.0 ± 1.4 11.9 ± 0.8 15.4 ± 0.3

� 0.33 0.21 ± 0.04 0.33 0.33
D

1
0 0.82 ± 0.02 0.85 ± 0.01 0.81 ± 0.02

D
2

0 0.03 ± 0.008 0 0
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when using ultrasonic measurements to develop phenomeno-
logical models. Accounting for, and discriminating between 
these two processes is not only important for modelling and 
prediction purposes, but also for analyzing ultrasonic data, 
which can only record their cumulative effects.
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