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Abstract
Normal stress changes occur commonly during fault and rock joint rupture, and play a key role in determining frictional 
behavior and shear stability of these discontinuities. Previous experimental studies of the direct shear test under cyclic nor-
mal loads confirm that there exists a phase shift between peak normal stress and peak shear stress, as well as between peak 
friction coefficient and peak shear stress with shear stress and friction coefficient lagging. However, the underlying physics 
of this finding is poorly understood. Here, we present a numerical study to investigate the effect of cyclic normal loads on 
the friction of smooth joints. Our simulations show reasonable agreements with experimental observations, verifying the 
capability of the proposed model based on the discrete element method. We also investigate the effect of normal loading 
rate, dynamic amplitude, static normal stress level, shear velocity, and joint stiffness on the frictional behavior of the joint. 
From a microscopic point of view, we focus on the underlying processes of the phase shift between the peak shear stress 
(friction coefficient) and peak normal loads. We find that phase shift is related to the changes of the population of slipping 
and frozen contacts, and also the evolutions of shear force, shear velocity, and shear displacement of individual contacts, in 
which the macroscopic shear velocity plays a significant role. Inhomogeneous stress distributions near the joint indicate that 
damage or failure should occur in some contact-scale regions, although which is not directly verified due to the limitations 
of the presented model. Our work improves the understanding of the physics on how normal load perturbations affect the 
shear behavior of smooth rock joints.
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Abbreviations
μ [–]	� Static friction coefficient
αs [–]	� Relative lagging between peak shear 

stress and peak normal load
Δts [timesteps]	� Shift between the peaks of normal and 

shear stresses
T [timesteps]	� Period of normal stress wave
μa [–]	� Apparent friction coefficient
Rpp [–]	� Peak-to-peak ratio of shear stress to 

normal stress
αf [–]	� Relative lagging between peak friction 

coefficient and peak normal load

1  Introduction

Changes in normal stress play a significant role for shear 
stability and frictional behavior of rock joints and tec-
tonic faults (Dang et al. 2016; Ohnaka 2013; Shreedharan 
et al. 2019; Xing et al. 2007). Dynamic normal stresses 
occur during natural or induced earthquakes (Harris 1998; 
Stein 1999), at subsurface excavations (e.g., blasting, rock 
bursts, and mining tremors) (Barthwal and van der Baan 
2020; Li et al. 2016, 2020; Orlecka-Sikora et al. 2012; 
Xing and Han 2020), during slip movements on faults in 
heterogeneous materials, or under specific stress condi-
tions (Bai and Young 2020; Kilgore et al. 2012, 2017). 
Studies have implied that normal stress changes may 
impede or promote rupture propagation (Bhat et al. 2004; 
Duan and Oglesby 2005), depending on the fault geom-
etry and on how fault strength varies in response to the 
normal stress change (Kilgore et al. 2012). Normal stress 
change is significant in triggering seismicity. For example, 
observations have shown that aftershocks tend to occur 
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in regions of reduced normal stress (Harris 1998). Simi-
larly, fault reactivity usually occurs in areas where normal 
stress reduction plays an important role (Barthwal and van 
der Baan 2020; Orlecka-Sikora et al. 2012; Ziegler et al. 
2015). However, how normal stress changes affect the 
dynamic frictional strength of rock joints or faults remains 
unclear (Shreedharan et al. 2019).

In earthquake engineering and sciences, normal stress 
step tests, where the normal stress is rapidly changed while 
the joint is shearing at a constant slip rate, have been widely 
employed to investigate the effect of normal stress changes 
on the frictional behavior of joints (Hong and Marone 
2005; Kilgore et al. 2012, 2017; Linker and Dieterich 1992; 
Prakash 1998; Shreedharan et al. 2019). However, the results 
of these studies differ. Generally, the two following types 
of frictional responses have been identified (Kilgore et al. 
2012; Shreedharan et al., 2019): (1) Experiments conducted 
by Hobbs and Brady (1985) and Linker and Dieterich (1992) 
show that a step increase in normal stress causes an instanta-
neous increase in shear stress, and then, a linear increase is 
followed by a further exponential increase. This conclusion 
was confirmed by experiments on Westerly granite (Hong 
and Marone 2005; Shreedharan et al. 2019; Wang and Scholz 
1994) and on gouge layers (Hong and Marone 2005; Mair 
and Marone 1999). (2) Several studies (Kilgore et al. 2012, 
2017) on bare joints found that the shear strength does not 
immediately increase but evolves gradually, approximately 
exponentially with ongoing slip until a new steady state is 
reached. Previous works by Prakash (1998) showed similar 
behavior for bi-material interfaces consisting of metal blocks 
under very high normal stresses and slip velocities.

Several studies have focused on how mechanical vibra-
tions affect frictional sliding of fault gouge (Capozza et al. 
2009; Giacco et al. 2015; Griffa et al. 2011, 2012, 2013; 
Johnson et al. 2008). However, only a few studies pay atten-
tion to normal stress perturbations. Ferdowsi et al. (2015) 
identified a critical strain amplitude (~ 10−6) of normal 
vibration necessary to trigger large slip events. Ferdowsi 
et al. (2014) also confirmed that induced frictional weak-
ening does not occur if the applied amplitude is below a 
certain threshold. Shear stress drop usually depends on 
vibration amplitude (Griffa et al. 2013) and stress state at 
the time of vibration (Ferdowsi et al. 2015). Capozza et al. 
(2009) discussed the role of vibration frequency in deter-
mining an overall suppression of the macroscopic friction 
of a granular layer. The defined range of frequencies also 
depends on vibration amplitude, pressure, and system damp-
ing. It is generally recognized that macroscopical friction 
weakening is controlled by the microscopic evolution of 
internal structures characterized by contact force networks, 
coordination number, or particle rearrangements (Ferdowsi 
et al. 2015; Griffa et al. 2011, 2012). However, such weak 
perturbations cannot trigger slip of rock joints when gouge 

is absent (Johnson et al. 2016). Therefore, whether these 
conclusions can be extrapolated to bare joint systems need 
to be investigated.

Due to the limitations of the existing shear box devices, 
only a few studies focus on frictional behavior of rock joints 
under cyclic normal loads (Dang et al. 2020), especially for 
larger scale rock joints (Konietzky et al. 2012). Recently, 
Dang et al. (2016, 2017, 2018, 2020) (Konietzky et al. 2012) 
performed a series of direct shear tests on large planar joints 
(30 × 16 cm) under constant shear velocity and dynamic nor-
mal load (DNL) conditions (i.e., constant normal load super-
imposed by dynamic normal loads). Their experiments show 
some new findings that have not been observed in traditional 
direct shear tests (summarized in Appendix). Sobolev et al. 
(1993, 2016) conducted a series of experiments considering 
more complex vibrations to investigate the unstable slip of 
rock joints triggered by elastic impulses (normal and shear 
velocities, but with energy by several orders of magnitude 
lower than the energy accumulated by the rock joint). Their 
observations show that stick–slip can be triggered by a stress 
impulse when the shear stress is well below the level where 
stick–slip occurs without the impulse. They also found that 
the slip lags behind the stroke movement, and that time delay 
depends on the energy of the triggering.

Particle flow code (PFC) is considered as a preferred 
choice to simulate rock joint behavior under dynamic loads 
(herein, cyclic loads) because of its fully dynamic solution 
to Newton’s law of motion (Itasca Consulting Group Inc 
2017). Several contact models are available to simulate rock 
joints in PFC, e.g., the Linear Contact Model (LCM) and the 
Linear Parallel Bond Model (LPBM). For these two models, 
joints were simulated by removing bonds of contacts around 
the intended joint plane or degrading their strength and/or 
stiffness (Kulatilake et al. 2001; Mehranpour and Kulati-
lake 2017; Park and Song 2009). However, these two mod-
els usually introduce an unrealistic roughness to the joint, 
because particles on the opposite sides of the intended joint 
should slide on their perimeters (Lambert and Coll 2014; 
Mehranpour and Kulatilake 2017). This limitation usually 
results in unrealistic behavior, such as overestimating the 
shear strength and producing preliminary dilation (Lambert 
and Coll 2014; Mehranpour and Kulatilake 2017). Although 
reducing particle size near the intended joint may overcome 
this limitation (Kulatilake et al. 2001), this method may 
increase the computational cost to unpractical levels, espe-
cially for smooth joints where the roughness is usually below 
the micron scale. To solve this shortcoming, the smooth-
joint contact model (SJCM) was proposed (Ivars et al. 2011; 
Pierce et al. 2007). The SJCM simulates the behavior of a 
planar interface with dilation regardless of the local particle 
contact orientations along the interface. The contact model 
enables the two particles to cross each other (i.e., overlap) by 
sliding along their hypothetical joint plane instead of being 
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forced to move on their perimeters (Itasca Consulting Group 
Inc 2017; Ivars et al. 2011). Hence, the model could remove 
the effect of the inherent roughness of the interface surfaces 
(Ivars et al. 2011; Lambert and Coll 2014; Mehranpour and 
Kulatilake 2017), which is relevant to simulate the shear 
behavior of smooth joints. Therefore, the SJCM is employed 
in this study. Detailed descriptions of the LCM, LPBM, and 
SJCM, their capabilities, as well as validation studies, can 
be found in Cundall and Strack (1979), Itasca Consulting 
Group Inc (2017), Ivars et al. (2011), Potyondy (2015), and 
Potyondy and Cundall (2004).

This study is motivated by previously mentioned labora-
tory investigations and aims at understanding the underlying 
mechanism of the new findings (see Appendix for detail). 
After calibration of the mechanical parameters, DEM mod-
els are employed to investigate the effect of several factors 
(normal loading rate, dynamic amplitude, static normal 
stress level, shear velocity, and joint stiffness) on the shear 
behavior of smooth joints. Numerical results are compared 
with experimental observations and verified the capability of 
the DEM models to appropriately capture variations of shear 
stress and friction coefficient subjected to DNL. Then, from 
a microscopic point of view, attention is paid to interpreting 
the underlying process of phase shift between peak shear 
stress (friction coefficient) and peak normal load. Stress dis-
tributions near the joint are determined. Its potential role in 
asperity damage and how contact state and shear force affect 
the stress distribution at the grain size level are analyzed. 
Possible mechanisms that may cause disagreements between 
simulations and experiments are discussed. This study deep-
ens the understanding of how perturbations acting in normal 
direction affect the shear behavior of rock joints.

2 � Experimental Observations

In this section, we summarize new findings from the experi-
ments of (Dang et al. 2016, 2017, 2018, 2020) carried out 
at the Chair for Rock Mechanics at TU Bergakademie 
Freiberg. The experiments are based on a biaxial direct 
shear configuration designed to investigate the complex 
frictional behavior of bare faults under DNL conditions. 
The experiments consisted of two cement blocks with a size 
of 300 mm × 160 mm × 150 mm (length/width/height). The 
maximum asperity amplitude of the shear plane is less than 
1.0 mm. In the DNL tests, one block was fixed, and con-
stant shear velocity was applied to the other block. While, 
in the normal direction, cyclic sinusoidal loads were applied 
with various amplitudes. Details of the test configuration 
can be found in our previous publications (Dang et al. 2016, 
2017, 2018, 2020; Konietzky et al. 2012). To avoid repeating 
these published works, we summarize the main experimental 
results in the Appendix.

Although novel frictional behavior has clearly been iden-
tified in lab tests, the physical mechanisms behind are still 
unclear. Microscopic physics of joint contacts and evolu-
tions of contact states during shearing could be a promising 
approach to reveal underlying mechanisms; however, such 
microscopic investigations are usually not feasible via lab 
investigations, especially for such large-scale tests. In this 
study, DEM models were employed to reveal fundamental 
mechanisms underlying these unique observations. It should 
be noted that this study does not intend to fully duplicate 
experimental observations but to expand our understanding 
of microscale frictional processes of smooth joints under 
DNL conditions.

3 � Simulation Methodology

To precisely model the shear behavior and to obtain accept-
able calculation time, we use fine particles (with diameters 
between 0.18 and 0.3 mm) near the joint plane and gradually 
enlarge the size with distance away from the joint plane. The 
2D model consists of 12,712 balls, as shown in Fig. 1. Fol-
lowing the method presented in Mehranpour and Kulatilake 
(2017), the sample is first separated into two parts based on 
their relative positions to the intended joint plane. Then, 
the two blocks are connected by smooth-joint contacts at 
the joint plane, as shown in Fig. 1. The LPBM is used to 
simulate the rock blocks, and very high tensile and cohesive 
strength are assigned to the parallel-bond contacts, since 
the blocks (rock matrix) did not fail during the laboratory 
experiments (Dang et al. 2016, 2017). The elastic parameters 
of the LPBM are obtained by calibrating the elastic modulus 
(30 GPa) and Poisson’s ratio (0.2) of the cement blocks used 
in the experiment (Dang et al. 2017). Appropriate normal 
and shear stiffnesses are employed to simulate the elastic 
behavior near the joint, which are based on Young's modulus 
and Poisson's ratio of the rock. Table 1 lists the calibrated 
micro-parameters of the model.

In PFC, a contact is created or activated if the surface 
gap between the two particles is negative, while a contact 
is lost or becomes inactive if the surface gap becomes posi-
tive (Itasca Consulting Group Inc 2017; Mehranpour and 
Kulatilake 2017). Therefore, during the shearing, contact 
creations (positive surface gap becomes negative) and loss 
(negative surface gap becomes positive) frequently occur if 
the shear displacement is sufficient (relative to the size of 
the particles). By default, newly created contacts are usually 
assigned the LCM. The new linear contact forces the corre-
sponding parent particles (i.e., interlocking particles) to slide 
on their perimeters but not along the intended joint, resulting 
in force concentration at the created linear contact (Mehran-
pour and Kulatilake 2017). This mechanism usually causes 
an increase in the shear resistance of the joint (Bahaaddini 
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et al. 2013), which cannot reflect the realistic shear behav-
ior of smooth joints. In this study, we use a group behavior 
function (Itasca Consulting Group Inc 2017) to avoid this 
problem, which shares a similar idea with the joint plane 
checking approach (Mehranpour and Kulatilake 2017). This 
function allows us to filter created contacts whose parent 
particles belong to the two separated blocks, and these con-
tacts are identified as joint contacts and assigned the SJCM. 
Newly created contacts whose parent particles belong to a 
single block are assigned the LPBM.

We calibrated the smooth-joint parameters by reproduc-
ing the direct shear tests (Dang et al. 2016, 2017, 2018) with 
normal loads varying between 1.0 and 7.0 MPa.  Figure 2 
clearly shows that the shear stress first linearly increases 
with shear displacement and then gradually changes to non-
linear behavior before reaching the peak stress. Finally, the 

residual shear stress is nearly identical to the peak shear 
stress. The static friction coefficient μ is about 0.81 (corre-
sponding to the Mohr–Coulomb theory), as shown in Fig. 2b 
Both shear behavior and joint strength show a good agree-
ment with laboratory experiments (Dang et al. 2016). We 
have not calibrated the shear stiffness of the joint (i.e., shear 
stress–shear displacement curve), because it has a limited 
effect on shear behavior in relation to DNL (see Sect. 4.5 
for detail)

The micro-properties used in the model are listed in 
Table 1. Stiffness of the SJ contacts is uniformly distributed 
within the range of (7.21 ± 1.54) × 104 GPa, determined by 
effective modulus and particle radii (uniform distribution). 
The friction coefficient of the SJ contacts is also Gauss-
ian distributed with mean and standard deviation of 0.33 
and 0.033, respectively. Considering heterogeneity can 

Fig. 1   Numerical model showing boundary conditions, sample dimension, particle size, rock joint, and smooth-joint contacts.

Table 1   Micro-parameters for 
blocks (rock matrix) and rock 
joint

Particle properties Contact bond micro-properties

LPBM parameters
 Density (kg/m3) 2500 Bond effective modulus (GPa) 16
 Effective modulus (GPa) 16 Bond normal-to-shear stiffness ratio 1.6
 Normal-to-shear stiffness ratio 1.6 Tensile strength (MPa) 1000
 Friction coefficient 0.7 Cohesion (MPa) 1000

Friction angle (°) 30
SJCM parameters
 Effective modulus (GPa) 16.0 Friction coefficient 0.33 ± 0.033
 Normal-to-shear stiffness ratio 1.6 Joint bond state Unbonded
 Joint radius multiplier 0.6 Large strain flag Ture
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better reflect the reality, because roughness (asperity) het-
erogeneity (size, height, and the corresponding mechanical 
parameters) are ubiquitous even for well-prepared smooth 
joints (Greenwood and Williamson 1966; Müser et al. 2017; 
Ohnaka 2013).

It should be noted that this study does not intend to fully 
reproduce the laboratory experiments (a qualitative compari-
son with experimental results is provided in Sect. 4) but to 
uncover the underlying physical mechanisms from a micro-
scopic point of view. Therefore, this is a generic model to 
investigate the frictional behavior of smooth joints under 
cyclic normal loads and the associated microscopic mecha-
nisms. Although vastly simplified models were employed, 
numerical results show reasonable agreements with experi-
mental observations (see Sect. 4 for details). Most impor-
tantly, numerical simulations boost our understanding of 
micro-physical processes that dictate the frictional behavior 
of a smooth joint under DNL conditions.

4 � Simulation Results

4.1 � Effect of Normal Loading Rate

Figure 3 shows shear stress and friction coefficient ver-
sus normalized shear displacement under normal load 
of 2.0 and 6.0 MPa, with superimposed dynamic pres-
sure of ± 1.0 and ± 3.0 MPa, respectively. For quantita-
tive comparison under different normal load conditions, 
we normalized the shear displacements (or times) to the 
maximum values for each scenario. Relatively higher shear 
stress peaks occur in the first period, which decrease and 
remain constant in the following periods. Therefore, the 
analysis focuses on the later periods (i.e., stable periods). 
It clearly shows that the changing pattern of shear stress is 
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Fig. 3   Normal stress, shear stress, and friction coefficient versus nor-
malized shear displacement (or time) for a normal load of 2 MPa and 
superimposed dynamic load of ± 1 MPa and b normal load of 6 MPa 
and superimposed dynamic load of ±  3  MPa. Solid lines represent 
normal stress, and dashed lines represent shear stress. Four scenar-
ios are presented in (a) with normal loading rates of 0.0005, 0.001, 
0.005, and 0.01  m/s. The definition of αs (relative lagging between 
peak shear stress and peak normal load) and αf (relative lagging 
between peak friction coefficient and peak normal load) is illustrated.
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in phase with the variations of normal load when the nor-
mal loading rates are low, e.g., loading rate < 0.001 m/s. 
If higher loading rates are employed, the peak shear stress 
lags behind the peak normal stress (i.e., phase shift), which 
is consistent with experimental results shown in Fig. 18. 
In this study, we use the relative lagging coefficient αs to 
depict the delay of the shear stress. This dimensionless 
variable is defined as the ratio of shift Δts between the 
peaks of the normal and shear stresses to the period (T) of 
the normal stress wave (see Fig. 3a). As the normal load-
ing rates vary from 0.005 to 0.01 m/s, αs increases from 
0.15 to 0.26 and from 0.16 to 0.25 in the two scenarios 
with different static normal stress, indicating a frequency 
dependency but static normal stress independence. This 
observation is consistent with the experimental results, 
which show that relative shift increases with normal load 
frequency (i.e., normal loading rate) considering the same 
shear velocity (Dang et al. 2018), as shown in Fig. 18.

A gradual transition of the shear stress appears after the 
normal stress passes into the unloading phase, as shown 
in Fig. 3. After the peak value, the shear stress decreases 
to a minimum with the same rate as the normal stress, 
meaning no time lag in the unloading stages, which agrees 
with the experimental observations (Fig. 18). The maxi-
mum shear strength also depends on the normal loading 
rate (frequency in the experiments); it reduces from 1.99 
to 1.55 MPa and from 5.95 to 4.43 MPa in the two sce-
narios as the normal loading rate increases from 0.005 to 
0.01 m/s. Lab experiments also show that the minima of 
μa and αs depend on normal loading frequency (Fig. 18).

In scenarios with low normal loading rates, μa remains 
almost constant (Fig. 3), indicating proportional vari-
ation between normal and shear stress. The maxima of 
μa are 0.839 and 0.834 for the two scenarios, which are 
slightly higher than μ at the same normal stress levels (see 
Fig. 2b). In situations with higher normal loading rates, μa 
gradually decreases in the loading stages and reaches the 
minimum at the point of peak normal stress, as shown in 
Fig. 3. It rises at a higher rate in the unloading stages and 
reaches the maxima at troughs of the DNL. The slower ris-
ing rate of the shear stress attributes to the decrease of μa 
in the loading stage, while the time shift between normal 
and shear stresses results in a gradual increase. μa then 
remains unchanged in the unloading stages. Experiments 
also show that μa always maximizes at the trough of the 
normal stress curve (Fig. 18). The minima of μa decrease 
from 0.61 to 0.49 when normal loading rate increases from 
0.005 to 0.01 m/s (Fig. 3a), indicating normal loading rate 
(or frequency) dependence, and laboratory tests document 
the same behavior (Fig. 18). Figure 3b demonstrates the 
same changes in the minima of μa (from 0.62 to 0.49), 
which indicates static normal stress level and dynamic 
amplitude independence.

4.2 � Effect of Dynamic Normal Stress Amplitude

Figure 4 illustrates the effects of dynamic normal stress 
amplitude on maximum and minimum shear stress, μa, and 
αs. Both maximum and minimum shear stress decrease as 
dynamic normal stress amplitude increases, but the maxi-
mum shear stress shows a much slower rate than that of 
the minimum. It is not difficult to explain the decline of the 
minimum shear stress, since the minimum normal load also 
declines with dynamic normal load amplitude. Similarly, 
an increase in maximum shear stress should be observed, 
because the maximum of normal stress also rises as the nor-
mal stress amplitude increases. These observations agree 
with lab tests (Fig. 16). The dynamics in terms of physics 
of the rock joint should be responsible for this ‘abnormal’ 
change (see Sect. 5).

Figure 4 also shows the ‘static’ shear stress obtained 
by multiplying the corresponding normal pressure with μ 
(Fig. 2b), for comparison with the dynamic ones. It clearly 
shows that the minimum shear stresses under dynamic 

Fig. 4   Effect of the dynamic normal stress amplitude (with static 
normal stress of 6 MPa) on a shear stress, apparent friction coeffi-
cient (μa) and relative shift between the peak shear stress and peak 
normal stress (αs), and b peak-to-peak stress and peak-to-peak ratio 
(Rpp, the ratio between peak shear stress and peak normal stress). For 
comparison, the ‘static’ shear stress (multiplying the corresponding 
normal stress with the static friction coefficient) is plotted in (a). All 
the simulations use the same normal loading rate
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perturbation are almost identical to the static ones. Lab 
experiments also witness the same maxima of μa near 
troughs of DNL (Fig. 16), indicating that the minima of 
shear stress are independent of DNL. However, the maxi-
mum shear stresses under dynamic conditions are lower than 
the static ones; and the differences between them increase 
linearly with increasing dynamic amplitudes. The minimum 
shear stress is always synchronous with the minimum nor-
mal load (Fig. 5), making it equal to the static one. How-
ever, the maximum shear stress lags behind the maximum 
normal stress when some conditions are satisfied. Thus, 
the shear stress cannot further increase to the correspond-
ing static value in the normal stress unloading stage. With 
higher normal pressures, longer shear distances are required 
to activate shear resistance, which is discussed in detail in 
the following section.

The maximum value of μa shows a slight increase (from 
0.85 to 0.87) as the dynamic amplitude increases (Fig. 4). 
The maxima of μa occur in the unloading stages, where shear 
stresses synchronously decrease with decreasing normal 
stress (see Fig. 3), leading to the independence of normal 

stress. However, the minima of μa monotonously decrease 
(from 0.68 to 0.42) as the dynamic amplitude increases. 
Experimental tests show a similar variation of μa in rela-
tion to normal stress amplitudes. Dang et al. (2017) found 
constant values for the maxima of μa and a decrease in the 
minima of μa with increasing dynamic normal stress ampli-
tude (see Fig. 16). A variation of maximum and minimum 
shear stress also leads to relatively low but constant values 
(~ 0.36) of peak-to-peak ratios Rpp of shear stress to nor-
mal stress, as shown in Fig. 4b. αs shows a slight decrease 
(within 12%) with an increase in dynamic normal load 
amplitudes (Fig. 4a).

In Fig. 4, we use the same normal loading rates (i.e., dif-
ferent frequencies), while laboratory experiments usually 
employed identical frequencies (Fig. 16) when analyzing 
the amplitude effects. We re-run the cases documented in 
Fig. 4, applying the same frequency (i.e., different normal 
loading rates). We observe nearly trapezoidal signals for the 
shear stress, as shown in Fig. 5, similar to the experimen-
tal results (Fig. 16). After the transition points (Fig. 3), the 
shear stress slowly increases as the normal stress decreases, 
but μa quickly rises. Figures 4 and 5 suggest that the vari-
ation of μa in unloading stages is independent of normal 
impact amplitude and frequency (i.e., unloading rate). αs 
increases with increasing dynamic normal load amplitudes 
(Fig. 5a), which is contradictory to the results shown in 
Fig. 4, indicating a loading rate (or frequency) depend-
ence of the relative time shift. Laboratory tests witness 
similar changes (Fig. 16), where αs increases from 0.105 
to 0.19 when dynamic amplitudes vary between 0.625 and 
1.25 MPa. The minima of μa decrease with increasing ampli-
tude, but the maxima remain constant, as shown in Fig. 5b. 
μa maximizes near the troughs of the normal stress waves. 
The relative lagging between peak friction coefficient and 
peak normal load αf (see Fig. 5a) is nearly constant, i.e., 
0.5. These observations are also coincident with laboratory 
experiments (Fig. 16).

4.3 � Effect of Static Normal Stress Level

The static normal stress level has a limited effect on the 
maxima of μa, which vary between 0.88 and 0.82 as the 
normal stress increases from 2.0 to 7.0 MPa with the same 
dynamic amplitude of 1 MPa, as shown in Fig. 6a. Rpp also 
varies within a limited range (± 10%), as shown in Fig. 6b. 
It should be noted that, in these scenarios, the dynamic shear 
stress varies on the basis of stable shear stresses, which are 
determined by static normal stress and μ. That means the 
dynamic shear stress (induced by dynamic normal load) only 
contributes to a part of the maximum shear stress, and its 
contributions decrease with increasing static normal stress 
level. This character leads to increasing the minima of μa 
with increasing normal stress levels (Fig. 6a).

Fig. 5   Effect of dynamic impact amplitude with the same frequency 
on shear behavior of rock joint. a Normal and shear stress versus 
calculation timesteps (dashed lines signify normal stress, and solid 
lines signify shear stress). b Apparent friction coefficient (μa) versus 
timesteps for different dynamic impact amplitudes. Stable stages are 
taken, and the starting time is shifted to zero. 6 ± 3 MPa signifies the 
normal load varies ± 3 MPa around the static normal stress of 6 MPa. 
The relative shift between peak shear stress and peak normal stress 
(αs) and the minimum of μa for each scenario are provided in (a) and 
(b), respectively.
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αs remains nearly constant (~ 0.26), indicating a static 
normal stress level independence, because we employ the 
same dynamic amplitude, shear velocity, and normal load-
ing rate in these simulations. The peak-to-peak shear stress 
shows slight changes (~ 0.71 MPa). As a result, Rpp is much 
lower (0.35) than μ (0.81). The dynamic shear stress change 
is less than half of that under quasi-static conditions. This 
observation rationalizes the fact that the shear resistance has 
not been entirely activated before the dynamic normal stress 
decreases (unloading phase).

To allow a direct comparison with experiments, we varied 
the dynamic amplitudes to half of the static normal stress 
level but using the same frequency (i.e., different normal 
loading rates). Figure 7 shows the corresponding plots for 
shear stresses, apparent friction coefficient, and relative shift 
versus the static normal stress level. The maximum value of 
μa remains nearly constant (~ 0.825, the same as the quasi-
static value), but the minima decrease with increasing nor-
mal stress level. αs rises from 0.16 to 0.31 with increasing 
normal stress levels, which is quantitatively consistent with 
experimental results (Dang et al. 2016). They found that αs 
increases from 0.11 to 0.25 as the static normal load level 
enlarges from 30 to 180 kN with dynamic amplitudes equal-
ing to a half of the static load level (Fig. 8 in their paper). Rpp 
decreases from 0.52 to 0.28 with increasing normal stress. 

This tendency is consistent with laboratory observations 
(Dang et al. 2016), where they found Rpp decreases from 
0.23 to 0.08 as the static normal stress level increases from 
15 to 360 kN (Fig. 6a in their paper). The disagreement in 
quantity may result from different shear velocities and dif-
ferent normal frequencies in these two studies.

4.4 � Effect of Shear Velocity

Similar to the experiments (Fig. 17), numerical simula-
tions also show that shear strength, apparent friction 
coefficient, and the relative shift depends on the relation 
between shear velocity and normal load frequency. Fig-
ure 8a shows that the evolution of μa depends on shear 
velocity. For the case with the highest shear rate (e.g., 
0.01 m/s), μa remains unchanged during the simulation, 
indicating that high shear velocity can sufficiently activate 
the shear resistance of the joint. Therefore, the maxima 
of the shear stress increase from 2.73 to 8.37 MPa as the 
shear velocity rises from 0.0001 to 0.01 m/s, as shown in 
Fig. 8b. The corresponding Rpp also increases. When the 
shear velocity is slower, shear stress increases with a rela-
tively low rate in the loading stage, and continues to grow 
at the beginning of the unloading stage. This evolution 

Fig. 6   Effect of static normal stress level on a minima and maxima of 
apparent friction coefficient (μa) and relative shift (αs), and b peak-to-
peak shear stress and peak-to-peak ratio (Rpp) with dynamic impact 
amplitude of 2 MPa.

Fig. 7   Effect of static normal stress level (with dynamic amplitude 
half of the normal stress while using the same wave frequency) on 
a shear stress, apparent friction coefficient (μa,), and b peak-to-peak 
ratio (Rpp) and relative shift between peak shear stress and peak nor-
mal stress (αs).
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causes the maximum shear stress lagging behind the 
peak normal stress, and αs increases as the shear velocity 
reduces, as shown in Fig. 8b. When the shear velocity is 
below 0.001 m/s, a different shear stress curve occurs: 
shear stress drops during unloading but with a lower rate 
compared to the loading stage. Therefore, in these sce-
narios, shear stress maximizes at the point of peak normal 
loads. These numerical results are consistent with experi-
mental observations (Fig. 17).

μa presents the same changing pattern in relation to the 
normalized shear displacement. It minimizes at the point 
of peak normal stress, and then increases in the unloading 
stage at a faster rate compared to the loading stage, as shown 
in Fig. 8a. μa maximizes and remains constant after points 
of peak shear stress. If the shear velocity is extremely low, 
e.g., 0.0001 m/s, μa reaches the maxima (quasi-static value) 
at the wave trough of normal stress, indicating that αf = 0.5 
(Fig. 8a). For the lowest shear velocity, αs also equals to half 
of the period of the normal stress wave. We also note that the 
minima of μa increase with increasing slip velocity (Fig. 8a). 
All these observations correspond to the experiments (Dang 
et al. 2016, 2018), as shown in Fig. 17.

The slip behavior of the joint contacts varies under differ-
ent shear velocities, which might be the intrinsic mechanism 
that produces different shear responses. Figure 9 summarizes 
the results by plotting shear stress as well as slipping and 
frozen contacts versus the calculation timesteps for three 
different shear velocities (i.e., 0.0005, 0.003, and 0.01 m/s). 
The Coulomb criterion determines the state of a contact. 
In this study, a frozen contact means that the shear force 
applied to the SJ contact is smaller than the shear strength 
(i.e., normal force multiplied by the friction coefficient), 
while a slipping contact signifies that the shear force exceeds 
the shear strength, i.e., shear force would not increase with 
the shear displacement. For the case with low shear velocity 
(0.0005 m/s), frozen (i.e., non-slip) contacts predominate 
the shear behavior of the joint. The population of frozen 
contacts remains at a high level in the loading stage, as 
well as at the beginning of the unloading stage, as shown in 
Fig. 9. It begins to decrease with a low rate when the normal 
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stress is below 6.7 MPa. In this case, we observe extremely 
low shear slip (due to the low shear velocity), as shown in 
Fig. 10a, which determines the small increase of the shear 
stress during the vibration, because the shear stress is lin-
early proportional to the shear displacement according to 
the Coulomb-slip theory if one contact is in the frozen state. 
Therefore, normal stress change dominates the evolution of 
shear stress, while shear slip plays a minor role. Figure 10a 
also shows the high heterogeneity of slip displacement due 
to the inhomogeneity of the shear stiffness and friction coef-
ficient of the contacts.

For a high shear velocity (0.01 m/s), the number of slip-
ping and frozen contacts is approximately constant in the 
loading stage and also at the beginning of the unloading 
stage, as shown in Fig. 9. This indicates that most of the 
contacts are slipping during the shearing process (i.e., 
maximum shear strength is reached for individual contacts 
under the actual normal force), as shown in Fig. 9. There-
fore, the macroscopic shear stress evolves synchronously 
with the change in normal stress. However, the population 
of the slipping contacts fluctuates severely as the normal 
stress approaches the peak value, suggesting a small number 

of contacts switch their states between slipping and fro-
zen, accompanied by abrupt changes in slip velocity (see 
Sect. 5.1 for more details). The number of slipping contacts 
decreases slightly when the normal stress is below 6 MPa. 
Therefore, in this case, the normal pressure also plays the 
leading role in the shear stress evolution, because slipping 
would not contribute to the variation of the shear stress for 
slipping contacts. Shear displacements at contacts are dis-
tributed homogeneously along the rock joint, indicating that 
most of the contacts move simultaneously along the joint. 
Therefore, the population of slipping contacts shows minor 
fluctuation (Fig. 9).

However, for the case with a shear velocity of 0.03 m/s, 
the population of the slipping contacts slightly increases 
as peak normal pressure is reached. Then, the number of 
slipping contacts increases significantly in the unloading 
stage, with shear stress gradually rising to the peak value. 
As normal stress reduces, it begins to drop again, leading to 
a decrease in shear stress. The frozen (non-slipping) contacts 
show an inverse behavior, as can be seen in Fig. 9. These 
observations suggest that most of the contacts are near the 
critical state in the loading stage at low shear velocity. Dur-
ing unloading, the shear stress exceeds the shear strength; 
thus, a large number of these contacts begin to slip. The 
shear forces slightly increase as they switch from critical 
state to slipping state. The decrease in normal stress also 
plays a role in the slow increase in shear stress beyond the 
peak point of the normal stress. After that, a majority of the 
contacts remain slipping; their shear strength is determined 
by the normal stress imposed, i.e., shear stress drops propor-
tionally to the normal load.

4.5 � Effect of Joint Stiffness

Normal stiffness of the rock joint has a limited effect on 
shear strength, αs, Rpp, and the maximum and minimum 
value of μa, as shown in Fig. 11. With increasing normal 
stiffness, the parameters mentioned above almost keep con-
stant (within 8%), indicating stiffness independence.

Figure 11b documents the behavior of these parameters 
versus the ratio between normal and shear stiffness. It is 
noticed that the minimum shear strength approximately 
remains constant. The maximum shear strength slightly 
drops when the ratio is larger than 10. Accordingly, Rpp 
shows the same tendency as the maximum shear strength. 
The maxima of ua slightly change, while the minima show 
a decreasing trend when the stiffness ratio is bigger than 10. 
The relative shift keeps constant (~ 0.145) when the stiff-
ness ratio is smaller than 10, but gradually increases to 0.22 
when the stiffness ratio is larger than 10. Figure 11b clearly 
shows that a higher stiffness ratio (> 10) plays some role in 
shear behavior under dynamic normal loads. However, the 
underlying mechanism needs to be investigated in future.
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Fig. 10   Evolution of the contact slip displacement with ongoing cal-
culation timesteps for shear velocity of a 0.0005 m/s and b 0.01 m/s. 
Timesteps are shifted to the moment of the maxima of normal stress 
(10 MPa).
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5 � Discussion

5.1 � Micro‑physics of the Phase Shift

In this section, we try to interpret the physics of the phase 
shift (αs) during the dynamic loading from a microscopic 
point of view. Figure 12 shows the evolution of shear veloc-
ity, shear displacement, and shear force of individual con-
tacts together with macroscopic normal stress, shear stress, 
apparent friction coefficient, and the population of slipping 
and frozen contacts. In this case, a constant shear velocity of 
0.03 m/s is applied. The shear velocity of the contacts varies 

in a wide range (four orders of magnitude), from 10–5.6 to 
10–1.6 m/s. We consider contacts with very low shear veloc-
ity as frozen. On these contacts, the shear force is below the 
shear resistance under the imposed normal stress. Therefore, 
on these contacts, shear force increases with slip displace-
ment. While contacts with higher shear velocity are slipping, 
and their shear force is independent on the shear slip but 
determined by the applied normal force. The normal stress 
determines the slip velocity at the contacts, which can be 
separated into three stages. These stages correspond to dif-
ferent features of the shear and normal stresses, as shown 
in Fig. 12.

Fig. 11   Effect of joint stiffness 
on shear strength, relative shift 
(αs), peak-to-peak ratio (Rpp), 
and apparent friction coefficient 
(μa). a Normal stiffness varies 
between 4330 and 693000 GPa 
with a constant ratio of 1.6 
between normal and shear 
stiffness, and b ratio between 
normal and shear stiffness 
varies between 1 and 100 with 
a constant normal stiffness of 
4330 GPa
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In the loading stage (Stage I), the population of the slip-
ping contacts stays at a low level, slowly increasing with 
normal load. Both the increase of normal stress (Fig. 12d) 
and shear displacement (Fig. 12a) contribute to increas-
ing shear force on these frozen contacts. Heterogeneity of 
shear velocity (Fig. 12b) and displacement (Fig. 12a) along 
the rock joint are observed, which corresponds to the fluc-
tuations of the shear force (Fig. 12c). There are segments 
with low shear velocity along the joint, usually producing 
relatively high shear forces, as shown in Fig. 12c. The het-
erogeneity of stiffness (Gaussian distribution) and friction 

coefficient (uniform distribution) dominate the inhomogene-
ity of shear velocity and shear force. As shearing continues, 
shear displacement increments occur on more contacts, as 
shown in Fig. 12a. Therefore, the shear force also increases 
on these contacts, resulting in increasing shear stresses.

In Stage II, the normal stress decreases, while the shear 
stress continues to increase but at a slower rate, as shown 
in Fig. 12d. Reduction of normal stress and shear displace-
ment increments play opposite roles in shear stress growth. 
Normal stress reduction decreases the shear force of indi-
vidual contacts for slipping as well as the number of frozen 
contacts, while shear displacement increment increases the 
shear force at frozen contacts. This process dominates at the 
beginning of this stage, since frozen contacts account for 
the majority. Obviously, shear displacement increments are 
predominant in this stage, because shear force growth takes 
place on most of the contacts, as can be seen in Fig. 12c. 
Unloading decreases the shear resistance, but shear displace-
ment increments increase the shear stress. Therefore, more 
contacts switch to the slipping state (Fig. 12d). Populations 
of slipping contacts and shear velocity continuously increase 
in this stage. Pronounced heterogeneity of shear velocity 
is observed in this stage, especially when unloading starts. 
This may be due to the frequent switch of individual contacts 
between frozen and slipping state. The fluctuation of the 
population (Fig. 12d) supports this argumentation.

Homogeneous slipping occurs along the joint in Stage 
III by further unloading, as documented in Figs. 10b and 
12a. In this stage, the normal stress directly determines the 
shear stress of the joint, because most of the contacts are 
now slipping (Fig. 12d). As a result, the shear displacement 
increments play only a minor role, since shear force on slip-
ping contacts is independent of shear displacement. This 
explains why shear stress drops proportionally to normal 
stress (Fig. 12d). Contacts with high shear force gradually 
decrease with decreasing normal load (Fig. 12c), also sup-
porting this explanation.

For high shear velocity (e.g., 0.1 m/s), the normal stress 
plays a primary role in shear stress changes, because most 
of the contacts are slipping (Fig. 9), independent from shear 
displacement. Due to the high shear velocity (Fig. 13b) and 
shear displacement (Fig. 10b), most of the contacts are 
slipping. These contacts could fully mobilize their shear 
strength, producing the highest shear strength under the 
applied normal stress, i.e., μa reaches the peak value and 
remains constant during the dynamic loading, as shown in 
Fig. 8a.

For low shear velocity (e.g., 0.0005 m/s), the normal 
stress also plays the primary role in shear stress changes, 
however, attributed to different physics. In this case, the 
shear velocity is so low (less than 4 × 10–4 m/s, as shown 
in Fig. 13a) that a limited shear displacement is produced 
during the perturbation, as shown in Fig. 10a. Therefore, 
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shear displacement increments contribute a little to shear 
stress growth compared with normal stress variation. As the 
shear displacement accumulates, shear force also increases 
on these contacts. Consequently, a small number of contacts 
switch to the slipping state (Fig. 9). This mechanism also 
causes μa to recover to the maximum value preceding the 
unloading to the basic level, as shown in Fig. 8a.

5.2 � Stress Redistribution Near the Rock Joint

Stress redistributions near the rock joint is an important indi-
cator to investigate the damage and failure of the rock block. 
The minimum principal stress (compression has negative 
signs) distribution near the joint is shown in Fig. 14. Gen-
erally, stress is a continuum quantity and, therefore, does 
not exist at particles in granular media. Averaging proce-
dures on numbers of particles within a finite cell are usually 
necessary to obtain the averaged stress (Fortin et al. 2003). 
However, here, we focus on the induced stress by the SJ 
contact during shearing at the microscale; therefore, particle 
stress tensor is calculated by volume average of summing up 
contact reactions acting at the particle (Itasca Consulting 
Group Inc 2017), as shown in Fig. 15a. Figure 14 clearly 
shows that stress is heterogeneously distributed in the rock 
blocks, especially near the joint. Stress concentrations occur 

at the boundaries of the blocks where shear velocity and 
fixed boundaries are applied, respectively. Continuum mod-
els demonstrate similar stress concentrations in these regions 
(Dang et al. 2020). Stress concentrations usually occur in 
areas with frozen contacts for scenarios with high normal 
stress, as shown in Fig. 14a, b (see Fig. 14d for detail). Low 
stresses are always accompanied by slipping contacts or 
locations where joint detachments occur. However, for the 
scenario with low normal pressure (Fig. 14c), relative high 
stresses also appear at locations where contacts slip, while 
contact detachments are always connected with relatively 
low stresses (see Fig. 14d for detail).

In fact, it is found that shear forces of the SJ contacts 
determine the stress distributions near them to some extend. 
Figure 15 shows a positive correlation between the shear 
force and the corresponding minimum principal stress on 
the parent particles (Fig. 15a). However, the data are scat-
tered, which may be attributed to the inhomogeneity of SJ 
contacts and rock blocks. Nevertheless, the magnitude of the 
minimum principal stress shows little correlation with the 
state of the SJ contacts (frozen or slipping).

The minimum principal stress near the rock joint 
decreases as the normal stress drops. Nonetheless, the maxi-
mum value of these principal stresses exceeds the strength 
of the material (19.1 MPa (Dang et al. 2016)). Contacts are 
usually isolated distributed at the microscopic scale (Green-
wood and Williamson 1966; Shreedharan et al. 2019), as 
also shown in this study. Thus, some asperities meet the 
condition of unconfined compressive loading. Consequently, 
damage or failure should occur at some contact locations 
where the compressive stress exceeds the material strength. 
Extremely high strength is assigned to the contacts in our 
models; therefore, damage could not be observed on the con-
tacts and the particles (rigid bodies), although mild wear 
occurs in the experiments (Dang et al. 2016, 2017). Stress 
heterogeneity-induced damage or failure near the rock joint 
will be an essential question for future investigations.

5.3 � Limitations of the Numerical Simulations

Due to the computational limitations, in this study, we 
employ 2D small-scale models to simulate 3D large-scale 
experiments. However, this simplification does not affect 
general conclusions, since 2D numerical simulations can 
be successfully employed to reproduce 3D direct shear 
experiments, e.g., (Bahaaddini et al. 2013; Mehranpour and 
Kulatilake 2017; Saadat and Taheri 2020; Tang et al. 2020). 
Quantitative comparison with experiments is not available 
due to the inconsistent shear stiffness, but numerical simula-
tions successfully reproduce relations between shear stress 
and apparent friction coefficient with respect to DNL.

The presented simulations demonstrate that both shear 
stress and apparent friction coefficient show cyclic behavior 
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Fig. 13   Evolution of contact shear velocity with ongoing calcu-
lation timesteps for shear velocity of a 0.0005  m/s and b 0.01  m/s. 
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following the normal load imposed. The maxima of shear 
stress and μa lag behind the peak normal stress. The minima 
and maxima of μa always occur at the crest and trough of the 
normal stress wave, respectively. αf is nearly constant (about 
half the period), especially for cases with low shear veloc-
ity and/or high normal loading rate. All these observations 
closely match those obtained in the laboratory (Dang et al. 
2016, 2017, 2018, 2020) (see Appendix for detail), which 
indicates the capability of the model to appropriately capture 
the frictional joint behavior in a realistic manner. However, 
we also find some disagreements between experiments and 
simulations presented here. For example, our model overes-
timates Rpp when analyzing the effect of static normal stress 
level (Fig. 4b), while experiments show that it decreases 
with increasing amplitude (Dang et al. 2018). The following 
factors may contribute to these disagreements.

In the DEM models, we employ the sawtooth normal 
stress wave to approximate the sinusoidal excitation used 
in the experiments. Therefore, normal stress perturbations 
in our model are produced by constant loading rate, while 
sinusoidal-like waves usually produce changing loading 
rates in the lab tests. Experiments (Dang et al. 2018) and 
simulations presented herein have shown that normal load-
ing rate (i.e., normal loading frequency) plays an essential 
role for the minima of μa, αs, and peak shear stress (Fig. 18).

Real contact area growth usually occurs with contact 
aging, shearing, and normal stress increasing (Dieterich and 
Kilgore 1994; Stesky and Hannan 1987). During shearing or 
change of normal stress, joint contacts detach and re-attach, 
as well as rejuvenate between existing and created asperi-
ties (Dieterich and Kilgore 1994; Rubinstein et al. 2006; 
Shreedharan et al. 2019; Stesky and Hannan 1987). Besides, 
the strength of the contacts usually decreases progressively 
during shearing (Li et al. 2011; Stesky and Hannan 1987), 
but can recover with ongoing shear displacement (Ben-
David et al. 2010; Dieterich and Kilgore 1994). All these 
microscopic processes affect the macroscopic shear behavior 
of the joint. While a simplified numerical model is used in 
this study, hence evolution of asperity-scale physics is not 
included. The next challenge is to find an effective approach 
to well describe the evolution of these micro-processes, e.g., 
evolution of contact population, area, rejuvenation, strength, 
etc.

Experiments have proven that gouge material plays a sig-
nificant role in dynamically triggered slip under shear con-
ditions. Gouge material, phase lag, and frictional strength 
are all affected by frequency and amplitude of the dynamic 
loads (Capozza et al. 2009; Johnson et al. 2008; Savage and 
Marone 2007). Slight wear was also observed in our experi-
ments (Dang et al. 2016, 2017), and a small amount of gouge 
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was found between the planar joint surfaces, but this was not 
considered in our model. We believe that the smooth joints 
play a fundamental role in the shear behavior, but wear and 
associated gouge will affect the joint response.

6 � Conclusions

This study presents a microscopic DEM-based model to 
simulate the frictional response of smooth joints under 
DNL. Although using simplified models, our simulations 
successfully reproduced the cyclic behavior of shear stress 
and apparent friction coefficient, the phase shift between 
peak shear stress and peak normal stress (peak shear stress 
delay), as well as between peak friction coefficient and peak 
normal stress (peak friction coefficient delay). αs decreases 
with increasing normal loading rate and shear velocity. μa 
maximizes near the trough of the normal stress wave and 
minimizes at the crest. The maximum value of μa is nearly 
identical to the static friction coefficient. The minima of μa 
increase with normal loading rate and with decreasing shear 

velocity. αf remains unchanged (~ 0.5), especially for cases 
with low shear velocities and low normal loading rates. The 
joint stiffness has a limited effect on the frictional behavior 
of the rock joints.

Although phase shift between peak shear stress and peak 
normal stress is a common phenomenon in direct shear tests 
under DNL conditions, the underlying mechanism of this 
phase shift has remained unclear so far. For the first time, we 
uncover the mechanism based on contact state changes and 
the evolutions of shear force, shear velocities, and shear dis-
placement of individual contacts from a microscopic point 
of view. For cases with appropriate shear velocity (e.g., 
0.003 m/s in this study), shear displacements at individual 
contacts quickly accumulate in the unloading stage, which 
results in more slipping contacts and continued growth of 
shear stress, although reduction of the normal stress takes 
place. As unloading continues, most of the joint contacts 
switch into the slipping state; thus, their shear forces do not 
depend on the slip increments but the imposed normal stress. 
However, for cases with very low or high shear velocities, 
the normal stress change dominates the evolution of shear 
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stress; therefore, no or only minor phase shift occurs. For 
cases with high shear velocity, most of the joint contacts 
are slipping during the whole process; hence, the shear 
forces depend on the normal force applied. For cases with 
very low shear velocity, most of the contacts are frozen, 
and tiny slip increments contribute only a little to the shear 
stress changes, i.e., normal load dominates the shear stress 
changes.

Stress distributions near the contacts indicate damage or 
failure in areas close to the joint; however, this phenom-
enon is only indicated in the simulations due to the unre-
alistic high strength parameters. Future studies are needed 
to investigate the stress heterogeneity-induced damage or 
failure very close to both sides of the rock joint.

The discrepancies between numerical simulations and 
laboratory experiments are mainly caused by the different 
types of dynamic excitation, some shortcomings in respect 
to the duplication of the micro-processes (e.g., 3D vs. 2D, 
evolution of real contact area, population, individual fric-
tional strength, and their interaction), and the gouge between 
joint planes, which are not taken into account in the pre-
sented simulations. This study highlights the role of micro-
scopic DEM models to investigate the frictional response 
of rock joints or faults under dynamic perturbations, and to 
study the underlying physics from a microscopic point of 
view, which is usually not possible in the laboratory. This 
study also suggests a critical need for further fundamental 
studies at the microscopic level.

Appendix

Compared with traditional shear tests (with constant nor-
mal load), totally different frictional behavior was observed. 
Experimental results showed that shear loads show cyclic 
behavior with a significant time shift between peak normal 
load and peak shear load (shear load delay), as shown in 
Fig. 16a. The relative time shift between peak normal load 
and peak shear load decreases with increasing dynamic 
amplitudes. The relative time shift between peak normal 
load and apparent friction coefficient (μa, defined as the ratio 
of actual shear stress to actual normal stress) is nearly con-
stant (about a half cycle, μa delay), i.e., maxima of μa always 
occur at troughs of DNL. The maxima of μa are approxi-
mately equal to the static friction coefficient. The minima 
of μa always happen at crests of DNL, which decrease sig-
nificantly with increasing dynamic amplitudes, as shown in 
Fig. 16b. Shear behavior also depends on shear velocities, as 
shown in Fig. 17. Peak shear loads increase as shear veloc-
ity rises. Peak shear loads lag behind peak normal loads, 
and the relative time shift increases with decreasing shear 
rates. The minima of μa could advance the crest of DNL but 

approach the crest with decreasing shear rate. The minima 
of μa increases as shear velocity rises.

The loading rate of DNL (i.e., normal load frequency) 
also affects the frictional behavior of the joint, as shown 

Fig. 16   Shear load and friction coefficient versus normalized period 
for several DNL tests with different dynamic load amplitudes. ‘T’ 
means the period of the sinusoidal normal load. +/− 1.25 MPa sig-
nifies the sinusoidal normal load varies ±  1.25  MPa around the 
static normal stress level (i.e., the amplitude of the sinusoidal load is 
1.25 MPa).
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in Fig. 18. The maxima of the shear stress decrease as the 
normal load frequency increases (i.e., normal load rate 
increases), while the minima are roughly identical. The 
peaks of shear stress lag behind the peaks of normal stress, 
and the relative time shifts rise with increasing frequency. 
In the three tests, μa has the same waveform as the normal 
stress, but lags a half period behind the normal load, indi-
cating normal stress frequency independence. μa maximizes 
at troughs of the normal stress, and the maxima roughly 
remain constant. μa minimizes at crests of normal stress, and 
minima slightly increase with decreasing frequency.
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