ORIGINAL PAPER

Axial Fracture Initiation During Diagnostic Fracture Injection Tests and Its Impact on Interpretations

Y. Cai1 · A. Dahi Taleghani[1](http://orcid.org/0000-0002-1111-2329)

Received: 19 April 2021 / Accepted: 27 July 2021 / Published online: 9 August 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract

Diagnostic fracture injection tests (DFITs) have been performed extensively in unconventional reservoirs to derive reservoir properties such as pressure, permeability, and closure stress. Since most horizontal wells in unconventional reservoirs are drilled in the direction of the minimum horizontal stress, prevailing studies typically presume that hydraulic fractures are oriented transverse to the wellbore direction. However, the near-wellbore stress concentration and perforation frictions may favor the initiation of fractures along the wellbore, which is perpendicular to the maximum horizontal stress. The possibility for the initiation of an axial fracture increases, if the injection rate is high enough or having low diferential stress. In this study, we investigate the efect of initiation of the axial fractures on a DFIT test and its interpretation, using a fully coupled geomechanics and fuid fow model. First, we provide a model for the initiation and closure of axial fractures and transverse fractures during DFITs by coupling geomechanics with fuid fow. Then, using numerical simulations, we demonstrate that estimated closure stress can be misleading in the presence of an axial fracture. Finally, we discuss a potential method to determine the maximum horizontal stress under such circumstances.

Keywords Diagnostic fracture injection tests · DFITs · Axial fractures · Fracture closure · Closure stress

Abbreviations

The Pennsylvania State University, University Park, PA 16802, USA

- μ Fluid viscosity
- ϕ Formation porosity

1 Introduction

The exploitation of low-permeability unconventional reservoirs has become more and more important in the energy supply chain. Hydraulic fracturing is the main technology for developing these shale gas and shale oil resources. Hydraulic fracturing like many other subsurface activities is governed by rock mechanics parameters, among them in situ stress plays a critical role on the outcome of hydraulic fracturing treatments. Diagnostic fracture injection tests (DFIT) are widely used to estimate formation properties such as initial pore pressure, formation permeability (Wang and Sharma [2019;](#page-20-0) Cai et al. [2020](#page-19-0)), and closure pressure (Barree et al. [2007](#page-19-1)) in these low-permeability reservoirs. The aforementioned properties play an essential role in hydraulic fracturing design and long-term production forecasting. During a DFIT, untreated water is usually injected for a short period of time at a low rate to create a small fracture, although some authors have recommended a high injection rate (Craig [2014\)](#page-19-2). After injection, the well is shut-in for an extended

period of time. Pressure decline after shut-in is then collected and analyzed to obtain the reservoir properties. A typical DFIT test procedure is illustrated in Fig. [1](#page-1-0).

Traditional DFIT analyses to determine closure stress are based on *G*-function and its derivatives (Nolte [1979](#page-20-1)). Embedded within the *G*-function's derivation are few assumptions: a constant leakoff coefficient, constant fracture stifness, uniform fracture closure, and planar fracture geometry. Following these assumptions, fracture pressure linearly declines with the *G*-function as

$$
\Delta P(\Delta t_{\rm D}) = \frac{CH_{\rm p}E'\sqrt{t_{\rm inj}}}{H^2\beta_{\rm s}}G(\Delta t_{\rm D}),\tag{1}
$$

where *C* is the fluid-loss coefficient; H_p is fluid-loss height; *H* is fracture height; *E*′ is the plane strain Young's modulus, $\Delta t_D = \Delta t / t_{\text{ini}}$; Δt is the time after shut-in; t_{ini} is the duration of the injection; and β_s is the ratio of average and wellbore pressure while shut-in (Nolte [1979](#page-20-1)). The *G*-function is given by

$$
G(\Delta t_{\rm D}) = \frac{4}{\pi} \left[g(\Delta t_{\rm D}, \alpha) - g(0, \alpha) \right],\tag{2}
$$

The *G*-function is only weakly dependent on α ranging from 0.5 to 1.0 (McClure et al. 2016). If the leakoff rate along the fracture is assumed to be uniform, *G*-function reduces to the square root of time. The square root of time is also widely used (Zoback [2007](#page-20-3)). When $\alpha = 1$, $g(\Delta t_D)$ is given by

$$
g(\Delta t_{\rm D}) = \frac{4}{3} \Big[\big(1 + \Delta t_{\rm D} \big)^{1.5} - \Delta t_{\rm D}^{1.5} \Big],\tag{3}
$$

and Δt_D , which is the elapsed time normalized by the injection time, is defned as

Fig. 1 Example of an ideal DFIT test procedure showing the pressure increase and fallof during injection and the shut-in period

$$
\Delta t_{\rm D} = \frac{t - t_{\rm inj}}{t_{\rm inj}},\tag{4}
$$

where *t* is the elapsed time since the beginning of pumping. From Eq. ([1](#page-1-1)), the plot of pressure versus *G*-function is expected to be a straight line and the deviation from the straight line indicates the occurrence of the fracture closure that can be used to identify the minimum horizontal stress (Castillo [1987\)](#page-19-3). The slope of this straight line can also be used for calculating the pressure-independent leakoff coef-ficient. By overserving Eq. ([1\)](#page-1-1), $G \times dP/dG$ forms a straight line that can be used to determine the fracture closure as well (Barree and Mukherjee [1996](#page-19-4)). However, in reality, plots of pressure vs. *G*-time often show non-linear behaviors. The nonideal observations are mostly contributed by wellbore and near-wellbore pressure drops, pressure-dependent leakoff, fracture height recession, the closing of secondary transverse fractures, and fracture tip-extension (Nolte [1991](#page-20-4); Barree et al. [2007](#page-19-1); Jung et al. [2016](#page-19-5)). The typical pressure decline behaviors are summarized in Fig. [2.](#page-2-0) According to Barree et al. [\(2007\)](#page-19-1), the closure pressure can be determined by the tangential point between a straight line that passes the origin and the plot when the $G \times dP/dG$ curve is concave upward. When the curve is concaving downward, the fracture closure time is picked when the curve stops increasing. Instead of using the tangent line method suggested by Barree et al. ([2007](#page-19-1)), McClure et al. ([2016\)](#page-20-2) propose the fracture compliance method and advocate for picking the closure pressure at the initial deviation from linearity of $G \times dP/dG$. The authors suggest that in most cases, $G \times dP/dG$ curves upward due to the change in fracture stifness during fracture closure rather than a more traditional interpretation such as fracture height recession or the storage efect driven by

Fig. 2 Schematics of ideal and nonideal behaviors in the

G × d*P*∕d*G* plot

the closure of activated natural fractures. Wang and Sharma ([2017\)](#page-20-5) suggest that the fracture compliance method overestimates the closure pressure, and the traditional *G*-function analysis underestimates the closure pressure. They propose combining the tangential method with the compliance method to provide a more accurate assessment of the closure pressure.

In addition to methods based on *G*-function plots, there are other efforts to analyze DFIT data using different types of plots. Bourdet plots (Bourdet et al. [2004\)](#page-19-6) show the change in pressure Δp and $\Delta t \times d\Delta p/d\Delta t$ vs. shut-in time Δ*t* in log–log scale during fracture closure. Mohamed et al. ([2011\)](#page-20-6), Marongiu-Porcu et al. ([2011](#page-19-7)) and Marongiu-Porcu and Retnanto [2017\)](#page-19-8) modify Bourdet plots by taking the derivative with respect to superposition time τ to account for the injection period. Superposition time τ is defined as

$$
\tau = \frac{\Delta t + t_{\text{inj}}}{\Delta t}.
$$
\n(5)

Craig and Blasingame ([2006](#page-19-9)) advocate for using the efective pressure response to interpret DFIT data. The efective pressure response is defned as

$$
I(\Delta p) = \int_{0}^{t_{\rm inj} + \Delta t} \Delta p \mathrm{d}t,\tag{6}
$$

i.e., the Bourdet plot is modified from plotting Δ*p* and Δ*t* × dΔ*p*∕dΔ*t* to the efective pressure response, *I*. The wellbore storage period on the Bourdet plot of the efective pressure is long due to low formation permeability and the storage efect associated to the wellbore and the fracture. Craig and Blasingame ([2006](#page-19-9)) suggest identifying the fracture closure at the point where the fracture/wellbore storage

changes (which is caused by the changing fracture stifness at closure). This corresponds to the time during the wellbore storage period that a defection can be identifed in the Bourdet plot with respect to effective pressure.

The existing DFIT analyses investigate the effect of pressure-dependent leakoff, transverse storage, and fracture height recession on the pressure decline. However, there is an important practical issue that has not yet received sufficient attention. Due to excessive frictions and flow restrictions at the perforations, axial fractures may develop along the wellbore to accommodate fuid fow into the transverse fractures (Weijers et al. [1994\)](#page-20-7), as shown in Fig. [3a](#page-3-0). This phenomenon difers from the nonplanar fracture problem due to the activation of natural fractures, as both the axial fracture and the transverse fracture are directly and separately connected to the wellbore. Due to the geometry of horizontal wells, an increase in the bottomhole pressure will generate tensile tangential stresses that may overcome the tensile strength of the axial fracture and trigger its initiation (Abbas et al. [2013](#page-19-10)). In the feld, the initiation of an axial fracture is more favorable if the injection rate is high enough. A schematic diagram of axial and transverse fractures from a horizontal borehole is shown in Fig. [3b](#page-3-0). However, axial fractures may not extend quite as far from the wellbore since tectonic stress and stress shadowing favor the propagation of transverse fractures. Nevertheless, the closure of the axial fracture during DFIT adds complexity to the analysis and causes traditional analysis to result in signifcant inaccuracy when determining the closure stress. Jung et al. [\(2016](#page-19-5)) present a case study using a 2D hydraulic fracture simulation where a small axial fracture forms initially parallel to the wellbore and then reorients in the direction perpendicular to the minimum horizontal stress. However, the competition between the axial fractures and the transverse fractures can be complicated, which is primarily determined by the initial defect length and the stress feld (Lecampion et al. [2013](#page-19-11)). The axial fractures and the transverse fractures may also initiate at the same time depending on their energy requirement. In addition, due to the short injection period during DFITs, the size of the axial fractures is comparable to the transverse fractures (see Fig. [3a](#page-3-0)). Sherman et al. [\(2015\)](#page-20-8) simulate initiations of the axial fractures and the transverse fractures using a fully coupled 3D fnite element hyraulic fracturing model. The study shows that after the initial development of an axial fracture, the transverse fracture forms as a branch of the axial fracture immediately (around 0.5 s after starting injection). The branching location is close to the wellbore instead of the tip of the axial fracture. Ugueto et al*.* ([2019\)](#page-20-9) also report the simultaneous occurrences of the axial fractures and the transverse fractures using distributed temperature sensing (DTS). The observations are consistent with the numerical study from Sherman et al. ([2015\)](#page-20-8). More recently, Daneshy [\(2020\)](#page-19-12) documented initiation of axial fractures during injection in closely spaced clusters in horizontal wells. Hence in this study, we presumed simultaneous initiation of the axial and transverse fractures. Modelling this phenomenon requires detailed modelling of perforation holes (Wang and Dahi Taleghani [2014](#page-20-10)), which has no impact on the result of the DFIT, hence we skip this part of the problem and mainly focus on how presence of axial fractures may impact DFIT data and its interpretations.

In this work, we simulate the DFIT using a coupled geomechanics and fuid fow model and demonstrate that the estimation of minimum horizontal stress (s_h) can be inaccurate in presence of axial fractures. In addition, residual fracture width from fracture surface roughness can lead to the overestimation of s_h . Therefore, we propose a calibration method to correct the closure stress from DFIT. Since the axial fracture is perpendicular to the maximum horizontal stress (s_H) , we can also infer S_H from the proposed analysis.

Fig. 3 (**a**) Experimental result showing axial and transverse fractures initiating at the same time (Weijers et al. [1994\)](#page-20-7). (**b**) Schematic diagram of axial and transverse fractures from the horizontal borehole

We propose what we call the refection point method to determine S_H . Based on our analysis, if there is an indication of the presence of an axial fracture, one can consider the maximum horizontal stress to be at the frst refection point where the pressure-dependent leakoff (PDL) effect dominates the transverse storage effect. Transverse storage occurs when the main fracture intercepts a secondary fracture. The secondary fracture can provide pressure support to the main fracture rather than PDL efect. While "transverse fracture" refers to the secondary fracture in DFIT, it refers to the main fracture in the literature on the initiation of axial fractures (Weijers et al. [1994](#page-20-7); Abbas et al. [2013](#page-19-10)). To avoid confusion, in this paper, we use "transverse fracture" to refer to the fracture that propagates perpendicular to the wellbore (or the minimum horizontal stress), which stands in contrast to the axial fracture (or longitude fracture). We also use the term "fracture storage efect" to represent pressure support from the axial fracture instead of relying on the transverse fracture storage efect commonly used in the DFIT literature.

2 Methodology

In this study, a fully three-dimensional model is created to simulate DFIT in horizontal wells. To fully understand the fracture closure process during DFIT, a realistic description of induced transverse fractures and potential axial fractures is required. Thus, the modeling consists of two steps: the injection stage and the well shut-in stage. The cohesive zone method (CZM) is adopted to simulate the initiation and propagation of fractures. In the CZM, cohesive elements are pre-inserted as potential paths of fracture propagation and these paths can be adjusted to align with evolving fracture paths. During injection, the fuid pressure in the cohesive elements increases, which causes the interfaces of the cohesive elements to begin separating. The process is governed by the

traction–separation law (TSL; for more details, see Yu et al. ([2018\)](#page-20-11). For fluids, we presumed single-phase Newtonian fluid with constant viscosity and compressibility. The effect of gravity on the fuid fow is neglected here, as the length of the fracture and injection time are too short to realize this efect. During fracture propagation, two sets of fractures may form: main fracture, which is perpendicular to the minimum horizontal stress, and axial fractures, which are parallel to the well and form due to frictions at perforations (Weijers et al*.* [1994](#page-20-7)). Figure [4a](#page-4-0) shows the confguration of cohesive elements representing potential paths for axial and transverse fractures with respect to the wellbore. In the cohesive elements, pressure nodes for the fuid mass balance equation are located in the middle of the elements. To ensure fuid fow continuity at the fractures' intersection points, we link the pressure nodes of the main fracture to the corresponding pressure nodes of the axial fracture, as illustrated in Fig. [4b](#page-4-0). This method is described in more detail in Dahi Taleghani et al. [\(2018\)](#page-19-13). Upon shut-in, pressure starts to decline due to fluid leakoff into the formation and let the fracture to close under closing stresses. However, due to the connectivity of two fractures through the wellbore, further complications are expected.

While most prevailing DFIT studies neglect the effect of geomechanics and only solve pore pressure equation, this approach may not properly simulate stress shadowing and the interactions between axial and transverse fractures. Our proposed DFIT model simultaneously solves both rock stress and fuid fow, thereby illustrating a more realistic fracture closure process. The governing equation coupling rock matrix deformation and fuid fow via linear poroelasticity is

$$
\sigma_{ij} - \sigma_{ij}^0 = \frac{E}{1+v} \left(\varepsilon_{ij} + \frac{v}{1-2v} \varepsilon_{kk} \delta_{ij} \right) - \alpha \left(p - p_0 \right) \delta_{ij}, \tag{7}
$$

where σ_{ij} are the stress components; σ_{ij}^0 are the initial stress components; *E*, *v* are Young's modulus and Poisson's ratio

of the formation, respectively; ε_{ii} is the strain tensor; α is Biot's constant; p is fluid pressure; and p_0 is initial fluid pressure in the formation. The fuid mass balance equation inside the fracture is given by

$$
\frac{\partial w_{\rm f}}{\partial t} + \nabla \cdot q + q_{\rm leak} = q_{\rm well},\tag{8}
$$

where q_{well} is the injection rate at the wellbore. q_{leak} is the fluid leakoff rate. Unlike the commonly used 1D Carter's model, our model incorporates non-uniform leakoff rate, which is calculated as

$$
q_{\text{leak}} = c_{\text{leak}}(p_{\text{m}} - p_{\text{s}}),\tag{9}
$$

where c_{leak} is leakoff coefficient, p_m is pressure at the cohesive element mid node and p_s is the pressure at the cohesive element surface. *q* is the fowrate inside the fracture, which is calculated using the cubic law as

$$
q = -C_1 \frac{w_f^2}{12\mu} \frac{\mathrm{d}p_f}{\mathrm{d}x},\tag{10}
$$

where C_1 is a factor accounting for the effects of fracture surface roughness that cause deviations from the ideal parallel plate; in this study, C_1 is assumed to be 0.8. The governing equations for coupling fuid fow and geomechanics that are used in the model can also be found in Cai and Dahi Taleghani ([2019](#page-19-14)).

In addition to the aforementioned equations, a contact model for fracture surfaces that accounts for residual fracture width is needed. Due to the roughness of the fracture walls, the fractures may not close to zero aperture. Their inherent roughness begins to resist closure. To model the mechanical response of fracture closure on rough walls, this study adopts the Barton-Bandis fracture closure model, which is given by

$$
\sigma_n = \frac{w_0 - w_f}{C_2 - \frac{C_2}{w_0}(w_0 - w_f)},
$$
\n(11)

where σ_n is the contact stress to resist fracture closure and $w₀$ is the critical aperture at which the fracture walls begin to contact each other, i.e. when $w_f > w_0$, $\sigma_n = 0$. C_2 is a parameter that represents the compressibility of the residual fracture. McClure et al. [\(2016](#page-20-2)) showed that due to the fracture closure on rough surfaces, the closure stress determined by the $G \times dP/dG$ analysis may be much larger than s_h . The magnitude of the overestimation varies from case to case depending on the roughness of the fracture walls. Here, we propose calibrating the DFIT analysis based on the residual fracture width fraction. The minimum horizontal stress is calibrated as

$$
S_{\rm h} = p_{\rm c} - f_{\rm r} p_{\rm net},\tag{12}
$$

where p_{net} is the net pressure, and is defined as

$$
p_{\text{net}} = p_{\text{si}} - S_{\text{h}}.\tag{13}
$$

 p_{si} is the bottomhole pressure at the beginning of shut-in. Combining Eqs. (12) (12) and (13) (13) , we have

$$
S_{\rm h} = \frac{p_{\rm c} - f_{\rm r} p_{\rm si}}{1 - f_{\rm r}}.\tag{14}
$$

Since this study focuses on conducting DFIT analysis rather than determining the residual fracture width during fracture closure, f_r , which is used to calibrate the DFIT analysis from the simulation results, is calculated based on the average fracture width as

$$
f_{\rm r} = \frac{w_{\rm r}}{\overline{w}},\tag{15}
$$

where \overline{w} is the average fracture width calculated from the simulation results and w_r is the residual fracture width. The fraction of the residual width depends on the rock fabric and in situ stress (Ahmadi et al. [2016;](#page-19-15) Van Dam and de Pater [1999](#page-20-12)). The downhole tiltmeter array has been found useful for accurately measuring the residual width of unpropped fractures (Warpinski et al. [1997\)](#page-20-13). However, a tiltmeter measurement is not often available. In such cases, we can calibrate s_h using the average fraction of residual volume based on available studies. Warpinski [\(2010](#page-20-14)) used a downhole tiltmeter array, fnding that the fracture closure often leaves 20–30% residual fracture width. Van Dam et al. ([2000](#page-20-15)) observed up to a 15% residual aperture (compared to the maximum aperture during fracture propagation) long after shut-in. In the DFIT test, the residual fracture volume fraction can be higher in comparison with that in the hydraulic fracturing since a lower injection rate is used. Thus, we recommend calculating the residual volume fraction using the typical residual fracture width observed in lab studies if a tiltmeter measurement is not available. Sakaguchi et al. [\(2008\)](#page-20-16) measured the asperity height and distribution of tensile fractures on large rock blocks. The authors show that the residual width when the two fracture surfaces are in contact is around 2 mm. Bhide et al. [\(2014\)](#page-19-16) created X-ray microtomographic images to estimate the residual fracture width, which varied from 1.8 to 1.95 mm. Zou et al. ([2015\)](#page-20-17) conducted experiments on 20 fractured shale samples and found the average fracture width to be 1.88 mm. Thus, we recommend using 1.9 mm as the w_r value in Eq. ([15\)](#page-5-2). The average fracture width \overline{w} can be calculated as

$$
\overline{w} = \frac{2H}{E} p_{\text{net}}.\tag{16}
$$

The last component to be considered in the numerical model is the near-wellbore pressure drop. During the shut-in period of a DFIT test, the fracture fuid pressure measurement is lower than the bottomhole pressure measurement due to the near-wellbore pressure drop. Pokalai et al. ([2015\)](#page-20-18) show that the near-wellbore pressure drop introduced by the wellbore tortuosity is very high when there is a preexisting natural fracture. During the well shut-in period, we not only incorporate a pressure drop at the perforation but also an additional pressure drop due to the wellbore tortuosity. The total pressure drop is calculated using an empirical relationship (Pokalai et al. [2015](#page-20-18)) such that

$$
\Delta p_{\rm w} = C_3 q_{\rm exp}^2 + C_4 q_{\rm exp}^{0.5}.
$$
\n(17)

where q_{exp} is the flow rate from the wellbore to the formation. The constant C_3 combines the effect of friction in the wellbore and the perforations. Friction in the wellbore is related to the wellbore diameter and the wellbore rough-ness (Moody [1944](#page-20-19)). C_4 is a parameter that depends on the pressure-dependent fracture opening and far-feld stresses (Hildek and Weijers [2007\)](#page-19-17). Ignoring the change in wellbore volume, q_{exp} is given by

$$
q_{\exp} = \frac{dV_{\exp}}{dt},\tag{18}
$$

where V_{exp} is the cumulative expanded fluid volume from the well to the formation that is given by

$$
V_{\rm exp} = V_{\rm well} C_{\rm w} \Delta p_{\rm si},\tag{19}
$$

where Δp_{si} is the pressure drop after the well shut-in.

3 Results and Discussion

In the following sections, diferent DFIT cases are presented and discussed to be understand the role of the aforementioned parameters. Simulation results are provided in the form of two types of fgures: *G*-function plots (*G* × d*P*∕d*G* plot and d*P*∕d*G* plot) and screenshots of fracture openings that show fracture closure behaviors. In the beginning, we present a base case study to show how pressure decline behavior is diferent when an axial fracture is present. The input parameters of the base case scenario are shown in Table [1](#page-6-0).

The inputs of other case studies are modifed based on the base case. In Case 1, the injection time is reduced from 3 to 2 min. Thus, the fuid pressure is not high enough to initiate an axial fracture. In Case 1, we demonstrate how the initiation of an axial fracture can afect the pressure decline and DFIT analysis. In Case 2, the axial fracture is smaller (around 0.6 of the main fracture size). We show that the efect of the axial fracture closure is slightly more difficult to spot in the $G \times dP/dG$ plot. However, combining the $G \times dP/dG$ plot with the dP/dG plot makes this efect noticeable. Case 3 and Case 4 investigate the efects

Table 1 Input parameters of case studies

Void ratio	0.1
Fracture height (m)	20
Matrix permeability (md)	0.1
Matrix total compressibility (MPa^{-1})	$2e-3$
Young's modulus (GPa)	30
Poisson's ratio	0.25
Initial reservoir pressure (MPa)	30
Minimum horizontal stress (MPa)	40
Maximum horizontal stress (MPa)	45
Injection pressure (MPa)	49
Injection time (min)	3
Injection fluid viscosity (cp)	1
Reservoir fluid viscosity (cp)	1
Critical aperture (mm)	2.3
Residual fracture compressibility (MPa^{-1})	$3e-4$
Injection fluid compressibility (MPa^{-1})	$1e-6$
Wellbore volume (m^3)	100

Table 2 Modifcations to base case model for all other case studies

of diferent parameters in the contact models. In Case 3, the induced fracture is less compliant in comparison to the base case. The residual fracture compressibility is reduced to 2e−4 MPa−1. Case 4 has a higher residual fracture width of 2.8 mm. We show that the proposed calibration method works well regardless of the parameters of the contact model. In Case 5, we study the efect when the formation has lower permeability. The permeability is lowered to 0.01 md. In Case 6, we study the pressure characteristic when there is no horizontal stress contrast. In Case 7, the horizontal stress contrast is smaller: 3 MPa compared to 5 MPa in the base case. These modifcations to the base case model are summarized in Table [2](#page-6-1). For each case, we apply three commonly used interpretation methods: the tangent line method (Barree and Mukherjee [1996;](#page-19-4) Barree et al. [2007](#page-19-1)), fracture compliance method (McClure et al. [2016\)](#page-20-2) and variable fracture compliance method (Wang and Sharma [2017\)](#page-20-5) to determine the closure stress. We frst utilize these methods without the proposed calibration method and then correct the results using the proposed calibration procedure to realize the diference.

3.1 Base Case

In the base case, the axial fracture is assumed to have the same size as the transverse fracture. This allows us to inves-tigate the effect of the axial fracture more clearly. In Fig. [5,](#page-7-0) we show the initial fracture opening at the end of the injection period. Note that the axial fracture has an obvious bottleneck in comparison to the transverse fracture. This is for two reasons. First, the transverse fracture is much easier to open in comparison to the axial fracture. The fracture mouth of the axial fracture supplies the transverse fracture, which causes the non-uniform opening after the injection. Second, in situ stress is increased due to the opening of the transverse fracture. The efect is largest near the mouth of the transverse fracture. In fact, the transverse fracture has a slight bottleneck shape as well due to the stress increase near the fracture mouth region introduced by the axial fracture initiation. The efect is less signifcant in comparison to the axial fracture. This is because the axial fracture has a smaller opening; thus, the stress increase only slightly affects the transverse fracture. During the fracture closure process, the fracture at the mouth may close frst (Dahi Taleghani et al. [2020](#page-19-18)). Due to the non-uniform initial opening, a nonuniform fracture closure is very likely to happen during the shut-in period, as shown in the snapshots of the numerical simulation. The wellbore and the perforation are only shown in the base case to illustrate the model. In all other cases, we have chosen not to show the wellbore and the perforation so that the reader is able to better visualize the fracture width of the axial fracture.

The pressure decline shows fracture closure in diferent stages (the numbered arrows shown in Fig. [6](#page-8-0). At the beginning, the $G \times dP/dG$ plot (Fig. [6](#page-8-0)a) shows the effect of the fracture storage, which can be identifed by a concave upward trend until *G*-time reaches about 5 (Arrow 1). The concave upward trend suggests that the fracture storage effect dominates the pressure-dependent leakoff (PDL) effect for two reasons. First, the axial fracture is well connected to the transverse fracture through the wellbore, which makes the pressure support efect more signifcant than the PDL efect. Second, the smaller PDL efect is also because that the effective leakoff area is smaller in the presence of the axial fracture is present than the case where the transverse fracture intersects and activates the natural fracture.

When *G*-time reaches 5 (Arrow 1), the effect of fracture storage ceases as the pressure decline rate stops increasing. The lack of further increase in the pressure decline rate is caused by the complete closure of the axial fracture, as indicated both in the $G \times dP/dG$ plot (Fig. [6](#page-8-0)a) and the dP/dG plot (Fig. [6b](#page-8-0)). Figure [7](#page-8-1) also suggests that the axial fracture is fully closed. The maximum width of the axial fracture becomes lower than the residual width input of the simulation, 1.5 mm. The axial fracture does not close uniformly due to its initial non-uniform opening (Fig. [5](#page-7-0)) as well as its flow into the transverse fracture from the fracture mouth. We advocate picking the maximum horizontal stress S_H at this refection point as confrmed by simulation results. The refection point is easier to spot in the d*P*∕d*G* plot at the peak of the first hump than it is in the $G \times dP/dG$ plot.

When the transverse fracture losses pressure support from the axial fracture, it starts to close at the fracture mouth and the fracture tip. While the fracture tip receding is common during the shut-in period if the leakoff rate is high (Dahi Taleghani et al. [2020](#page-19-18)), the mouth closure is rarely observed when no production operation is performed. When the axial fracture is open, it provides pressure support to the transverse fracture. After the axial fracture closes, the transverse fracture can have reverse fluid leakoff into the axial fracture.

Fig. 5 Base case: snapshot of the numerical simulation showing the initial fracture opening after the fracture propagation

Fig. 6 Base case: closure stress estimation from the analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

This phenomenon only happens under these particular circumstances. Using the $G \times dP/dG$ plot alone, it can be hard to observe the change in the pressure decline rate as well as the reflection point. Combining the $G \times dP/dG$ plot and the d*P*/d*G* plot can help with interpretation. The PDL effect is indicated more clearly in the d*P*∕d*G* plot (Fig. [6](#page-8-0)b). The pressure decline rate decreases after the axial fracture closes and before the fracture surfaces of the transverse fracture come into contact (from Arrow 1 to Arrow 2). At Arrow 2, $G \times dP/dG$ curves upward again, which indicates the transverse fracture starts to close partially, as shown in Fig. [8](#page-9-0) at G -time=5.6.

 G -time= 5

According to the tangent line method, the closure stress should be picked at Arrow 3 at G -time = 6.8, which is 42.7 MPa. Using the fracture compliance method, the closure point is picked at the green arrow when *G*-time is equal to 6.35 and the fracture compliance starts to change signifcantly. We found the complete closure of the transverse

fracture happens neither at the closure time determined using the tangent line method nor that identifed using the fracture compliance method. As shown in Fig. [9,](#page-9-1) the maximum fracture aperture of the transverse fracture reduces to the input residual fracture width of -1.5 mm, which indicates its full closure at *G*-time=6.6. Pressure found at the complete closure time is 43 MPa. The variable compliance method suggests that the fracture compliance method overestimates s_h , while the traditional tangential line method underestimates s_h . Thus, the variable compliance method calculates the average of the tangent line method and the fracture compliance method, which is 43.4 MPa. In addition to determining closure stress, it is possible to determine the maximum horizontal stress from the plot using the refection point method. At Arrow 1, when the *G*-function is around 5, the concave upward trend stops and the pressure decline rate slightly decreases, which together indicate that the PDL dominates over the fracture storage efect due to closure of the axial fracture. s_H is picked to be 48.1 MPa at that moment.

A comparison of these diferent methods for determining closure stress is summarized in Table [3.](#page-9-2) Note that all the *s*h estimation methods and the proposed refection point method for estimating s_H significantly overestimate s_h and s_H . This is because the roughness surfaces of the fracture can prevent the fracture from closing completely; in other words, some residual fracture volume remains after shut-in. Thus,

we applied the proposed calibration method to improve the accuracy in estimating s_h and S_h . To test the calibration procedure, the calibration factor f_r is calculated from the residual aperture input divided by the average fracture aperture calculated from the simulation outputs. After the calibration, the tangential line method produces an s_h estimation of 40.4 MPa, only 1.0% higher than the input value of 40 MPa. The fracture compliance method has an s_h estimation of 41.9 MPa, 4.7% higher than the s_h input value. The

Table 3 Results of DFIT interpretations (base case)

variable compliance method provides an *s*h estimation of 41.1 MPa, 2.8% higher than the s_h input value. The DFIT analysis methods based on fracture compliance all tend to overestimate s_h . This is due to the fact the closed axial fracture provides an extra path for fluid leakoff at the mouth of the transverse fracture. The transverse fracture frst closes at the mouth and the $G \times dP/dG$ and dP/dG plot curves upward even though a large portion of the fracture has not closed yet. Stress in the region close to the fracture mouth is slightly increased due to the initiation of both the axial and transverse fractures so that the closure stress picked from the fracture mouth closure cannot represent s_h in other regions. Thus, when the axial fracture is present, s_h can be signifcantly overestimated when using methods based on fracture compliance. Although the tangent line method can slightly overestimate closure time, it provides the most reasonable s_h estimation. The simulation results show the complete fracture closure happens later than the time determined from the fracture compliance method. The refection point method provides an S_H estimation of 45.4 MPa with 0.9% overestimation.

3.2 Case 1 (Planar Fracture Only)

In Case 1, only a planar fracture is formed after injecting the fuid. There is an initial short preexisting axial fracture intersecting the wellbore that is oriented perpendicular to the maximum horizontal stress. However, there was not enough induced stress to open it. The initial opening of the fracture is shown in Fig. [10](#page-10-0). Unlike the base case, Case 1 features a planar fracture with a very uniform opening due to the stress distribution near the fracture mouth that is not further increased by the initiation of the axial fracture.

No closure of the axial fracture is identified in the $G \times dP/dG$ plot (Fig. [11](#page-11-0)a). $G \times dP/dG$ is almost linearly

increasing until *G*-time is around 8.5 (Arrow 1) when the transverse fracture begins to close. Upon fracture closure, $G \times dP/dG$ reaches its peak at *G*-time = 9.4 (Arrow 2). Although the $G \times dP/dG$ plot (Fig. [11](#page-11-0)a) seems linear in the early stage, from the d*P*∕d*G* plot (Fig. [11b](#page-11-0)), we can see that the pressure decline rate is slightly increasing over time. This may be due to a slight change in fracture compliance. McClure et al. [\(2016](#page-20-2)) suggest fracture compliance is not a constant during fracture closure. Wang and Sharma ([2018\)](#page-20-20) also show fracture stifness remains constant only when the fuid pressure is very high. Jung et al. [\(2016](#page-19-5)) suggest the concave upward $G \times dP/dG$ plot may be caused by the changing fracture stifness rather than the fracture storage efect considered in traditional DFIT analysis (Nolte [1991](#page-20-4); Barree et al. [2007\)](#page-19-1). However, the effect of the changing fracture compliance is not as large as the fracture storage efect. Note that compared with the base case, for a planar fracture that does not intersect a secondary fracture, the concave upward trend can only be observed from the d*P*∕d*G* plot. In the $G \times dP/dG$ plot, the pressure decline appears to be linear. However, when an axial fracture is present, the concave upward trend of the $G \times dP/dG$ plot is more obvious, and it is followed by a PDL-dominant period. The two diferent concave upward behaviors thus can be distinguished easily.

Using the tangent line method, we pick the closure stress at Arrow 2, which is 41.0 MPa. Using the fracture compliance method, we pick the closure stress to be 43.6 MPa at Arrow 1 when *G*-time equals 8.5. The variable compliance method gives the average of the tangent line method and the fracture compliance method, which is 42.3 MPa. After the calibration, the tangent line method produces an s_h estimation of 38.8 MPa, 3.0% lower than the input value. The fracture compliance method has an s_h estimation of 42.0 MPa, 5.0% higher than the s_h input value. The variable compliance method provides an s_h estimation of 40.4 MPa, only 1.0%

Fig. 10 Case 1: snapshots of the numerical simulation showing the uniform initial fracture opening after fracture propagation

Fig. 11 Case 1: closure stress estimation based on an analysis of (**a**) the *G* × d*P*∕d*G* plot and (**b**) the d*P*∕d*G* plot

higher than the s_h input value. Before calibrating the interpretation results with the residual fracture width, the tangent line method provides the most accurate s_h because it identifes a fracture closure time later than the true fracture closure time, thereby ofsetting the overestimation introduced by the fracture roughness. The fracture aperture is reduced to less than the residual fracture width at *G*-time=9. The closure time is later than the closure time determined based on the fracture compliance method and earlier than the value determined based on the tangent line method. By averaging the results from the tangent line method and the fracture compliance method, the variable fracture compliance method can determine the most accurate closure time, and it performs best after calibration with an error of 1.0%, which is consistent with the fndings in Wang and Sharma [\(2017](#page-20-5)). Thus, when the $G \times dP/dG$ plot shows the characteristic of a planar fracture, we recommend using the variable compliance method. We are not able to analyze the s_H for this case since no axial fracture is formed; that is, a refecting point is not available. A comparison of the diferent methods used to determine closure stress is provided in Table [4](#page-11-1).

3.3 Case 2 (Smaller Axial Fracture)

In Case 2, the axial fracture has a smaller size (about 0.6 of the transverse fracture). The $G \times dP/dG$ plot (Fig. [12](#page-12-0)a) seems slightly concave upward until *G*-time is around 4.5. This stands in contrast to the base case in which the efect of the transverse fracture storage is more signifcant because of a larger axial fracture. When *G*-time reaches 4.5, the pressure decline rate starts to decrease. From the $G \times dP/dG$ plot alone, we cannot see the refection point very clearly. However, from the d*P*∕d*G* plot (Fig. [12b](#page-12-0)), we can observe that the pressure decline rate is slightly decreasing from Arrow 1 to Arrow 2 due to the PDL efect, similar to the base case. At *G*-time=6 (Arrow 2), the transverse fracture starts to close at the fracture mouth and the fracture tip, as shown in Fig. [13.](#page-12-1) At *G*-time = 7.8, $G \times dP/dG$ reaches its peak (Arrow 3).

Based on the tangent line method, the closure stress should be picked at *G*-time = 7.8, which is 42.3 MPa. Using the fracture compliance method, the closure point is picked to be 44.2 MPa at G -time $= 7$, when the fracture compliance starts to change signifcantly. The variable compliance method gives the average of the tangent line method and the fracture compliance method, which is 43.3 MPa. After the calibration, the tangential line method produces an *s*h estimation of 40.15 MPa, only 0.4% higher than the input value of 40 MPa. The fracture compliance method has an s_h estimation of 42.4 MPa, 6.0% higher than the s_h input. The variable compliance method provides an *s*h estimation of 41.3 MPa, 3.3% higher than the s_h input. The reflection point method provides an S_H estimation of 45.4 MPa with an error of $+0.9\%$. A comparison of different methods to determine s_h and S_h can be found in Table [5.](#page-12-2) Similar to the base case, in Case 2, complete

Table 4 Results of DFIT interpretations (Case 1)

fracture closure happens later than the time determined by the fracture compliance method and earlier than the time determined by the tangent line method. In this case, when the axial fracture is much smaller than the transverse fracture, the tangent line method still provides the most accurate s_h estimation. Comparing the results from the base case and Case 2, we conclude that when an axial fracture is present, the DFIT analysis based on the fracture compliance significantly overestimates s_h regardless of the size of the axial fracture. However, when the size of the

axial fracture is small, the d*P*/d*G* plot must be used to observe the refection point more clearly.

3.4 Case 3 (Less Compliant Fracture)

In Case 3, the axial fracture is less compliant than it is in the base case. Fracture compressibility is reduced to 2e−4 MPa−1. At the beginning, the *G* × d*P*∕d*G* plot (Fig. [14a](#page-13-0)) is concave upward until *G*-time is around 5 due to the fracture storage efect. When *G*-time reaches 5, the

Fig. 12 Case 2: closure stress estimation from an analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

Fig. 13 Case 2: snapshot of the numerical simulation showing the transverse fracture starts to close at *G*-time=6

Table 5 Results of DFIT interpretations (Case 2)

pressure decline rate starts to decrease. We can see that similar to the base case, in Case 3, the pressure decline rate is slightly decreasing from Arrow 1 to Arrow 2 due to the PDL effect. S_H can be picked from either the $G \times dP/dG$ plot (Fig. [14a](#page-13-0)) or the dP/dG plot (Fig. [14](#page-13-0)b). At G -time = 5.6 (Arrow 2), when the pressure decline rate rises again, the transverse fracture starts to close at the fracture mouth and the fracture tip. The time the transverse fracture starts to close is the same as in the base case since the change in fracture compliance does not afect the time of closure.

Based on the tangent line method, the closure stress should be picked to be 42.5 MPa (Arrow 3). Using the fracture compliance method, the closure point is picked to be 44.2 MPa at the green arrow when *G*-time equal to 7, where the fracture compliance starts to change signifcantly. The variable compliance method gives the average of the tangent line method and the fracture compliance method, which is 43.3 MPa. After the calibration, the tangential line method produces an *s*h estimation of 40.2 MPa, 0.5% higher than the s_h input value. The fracture compliance method has a s_h estimation of 42.1 MPa, 5.2% higher than the s_h input value. The variable compliance method provides an *s*h estimation of 41.1 MPa, 2.8% higher than the s_h input value. Similar to the base case, in Case 4, complete fracture closure happens later than the time determined by the fracture compliance method and earlier than the time determined by the tangent line method. After calibration, the tangent line method provides the most accurate s_h estimation. The reflection point method provides an S_H estimation of 45.6 MPa with an error of+1.7%. A comparison of diferent methods to determine closure stress is provided in Table [6](#page-13-1). Comparing the results from the base case to those of Case 4, we can see that the performance of the three s_h estimation approaches is independent of the fracture compliance.

3.5 Case 4 (Higher Residual Fracture Width)

Rough walls can provide resistance to the fracture closing process. Additionally, plastic deformations of rocks due to pressurization during fracturing may induce residual openings. To study the effect of residual fracture width during DFIT, we use an extreme large residual width fraction of 35%—a fracture residual of 2.7 mm. The *G* × d*P*∕d*G* plot (Fig. [15a](#page-14-0)) shows the signifcant efect of the transverse fracture storage till *G*-time=3.4. Then the pressure decline rate decreases slightly for a short period of time due to the PDL efect. This period is very short in comparison to that of the base case. Due to the large residual aperture in Case 4, the transverse fracture closes faster, which conceals the efect of PDL. The decrease in the pressure decline rate is more visible in the d*P*∕d*G* plot (Fig. [15](#page-14-0)b) than it is in the $G \times dP/dG$ plot. Thus, the reflection point method relies on the d*P*∕d*G* plot when the residual width is high. At Arrow 2, the pressure decline rate rises again due to the closure of the transverse fracture.

Fig. 14 Case 3: closure stress estimation from an analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

Table

Fig. 15 Case 4: closure stress estimation from an analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

Based on the tangent line method, the closure stress should be picked at G -time = 4.6 (Arrow 3), which is 47 MPa. Using the fracture compliance method, the closure point is determined to be 50.5 MPa at *G*-time = 3.6, when the fracture compliance starts to change signifcantly. The true fracture closure time is *G*-time=4.5, as shown in the snapshot of the numerical simulation (Fig. [16\)](#page-14-1). Similar to other case studies, in this case, the fracture compliance method signifcantly underestimates fracture closure time, while the tangent line method slightly overestimates fracture closure time. The variable compliance method gives the average of the tangent line method and the fracture compliance method, which is 48.25 MPa. After the calibration, the tangential line method produces an *s*h estimation of 39.35 MPa, -1.6% lower than the s_h input value. The fracture compliance method has an s_h estimation of 45.1 MPa, 12.8% higher than the s_h input value. The variable compliance method provides an s_h estimation of 42.2 MPa, with an error of 5.5%. The refection point method provides an S_H estimation of 44.0 MPa with an error of -2.0% . A comparison of diferent methods to determine closure stress is provided in Table [7.](#page-15-0) Similar to the other case studies, in this

case, we recommend using the tangent line method when an axial fracture is present because it has the most accurate fracture closure identifcation. Note that the residual width used in this case study is extremely high to investigate the accuracy of the proposed calibration method. After the calibrations, despite all the methods produce slightly higher errors in comparison with the previous case studies, we can consider the proposed calibration works well for estimating horizontal stresses regardless of diferent contact models.

3.6 Case 5 (Lower Permeability Reservoir)

In Case 5, the formation has a lower permeability of 0.01 md. We can see that at the beginning of shut-in, the pressure decline rate is decreasing, as shown in the $G \times dP/dG$ plot and the d*P*∕d*G* plot (Fig. [17](#page-15-1)). The decrease in the pressure decline rate, which is due to a lower permeability reservoir results in a very slow leakoff rate. An additional leakoff path provided by the axial fracture that can signifcantly increase the leakoff rate. The PDL effect dominates the fracture storage effect during the early shut-in period until there is substantial leakoff volume. At *G*-time = 10, the $G \times dP/dG$ plot (Fig. [17a](#page-15-1)) starts to concave upward until *G*-time is around 11 due to the fracture storage efect. We advocate picking S_H at the reflection point. It can be picked from either the $G \times dP/dG$ plot (Fig. [17](#page-15-1)a) or the dP/dG plot (Fig. [17b](#page-15-1)). We can see that similar to the base case, the pressure decline rate is slightly decreasing from Arrow 1 to Arrow 2, which is due to the PDL effect. Around G -time = 14 (Arrow 2), when the pressure decline rate rises again, the transverse fracture starts to close at the fracture mouth and the fracture tip. The time that the transverse fracture starts to close in Case 5 is the same as in the base case since the change in fracture compliance does not afect the time of closure.

Based on the tangent line method, the closure stress should be picked to be 42.9 MPa (Arrow 3). Using the fracture compliance method, the closure point is picked to be 43.9 MPa at *G*-time=16, when the fracture compliance starts to change signifcantly. The variable compliance method gives an average of the tangent line method and the fracture compliance method, which is 42.4 MPa. After the calibration, the tangential line method leads to an *s*h estimation of 40.8 MPa, 2% higher than the input value. The fracture compliance method has an estimation for s_h of 41.9 MPa, 4.8% higher than the s_h input value. The variable compliance method provides an estimation for *s*h of 41.4 MPa, 3.4% higher than the s_h input value. Complete fracture closure happens later than the time determined by the fracture compliance method and earlier than the time determined by the tangent line method. Compared to the results of the base case, the performance of three s_h estimation approaches in Case 5 is independent of the fracture compliance. After calibration, the tangent line method provides the most accurate s_h estimation when an axial fracture is present. The reflection point method provides an S_H estimation of 46.2 MPa with an error of 2.7%. The comparison

Fig. 17 Case 5: closure stress estimation from an analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

of diferent methods to determine closure stress is provided in Table [6](#page-13-1).

3.7 Case 6 ($S_H = S_h$)

In Case 6, the maximum horizontal stress is set to be the same as the minimum horizontal stress, i.e. 40 MPa. In other words, the dimensions of the transverse fracture will be the same as the dimensions of the axial fracture due to symmetry of the model. The initial bottleneck of the fracture is due to the stress concentration around the fracture mouth region, as shown in Fig. [18](#page-16-0). Although no closure of the axial fracture can be identified from the $G \times dP/dG$ plot, the axial fracture and the transverse fracture are closing simultaneously. As indicated in the $G \times dP/dG$ plot (Fig. [19](#page-16-1)a) the pressure is almost linearly increasing until *G*-time is around 6.5 (Arrow 1). Although there is a small fluctuation in the pressure decline curve, as revealed in the d*P*∕d*G* plot (Fig. [19b](#page-16-1)), the efect of the change in fracture compliance is not very large in comparison to that of the base case where the fracture storage effect and the PDL effect change the pressure decline rate more signifcantly. The comparison of

Fig. 19 Case 6: closure stress estimation from an analysis of (a) the $G \times dP/dG$ plot and (b) the dP/dG plot

Table 8 Results of DFIT interpretations (Case 5)

	Before calibration	After calibration
Tangent line method (S_h)	42.9 MPa $(+7.2\%)$	40.8 MPa $(+2.1\%)$
Fracture compliance method (S_h)	43.9 MPa $(+9.8\%)$	41.9 MPa $(+4.8\%)$
Variable fracture compliance method (S_h)	42.4 MPa $(+8.5\%)$	41.4 MPa $(+3.4\%)$
Reflection point method (S_H)	48.5 MPa $(+7.8\%)$	46.2 MPa $(+2.7\%)$

diferent methods to determine closure stress is provided in Table [8](#page-16-2).

Using the tangent line method, we pick the closure stress at the moment of 43 MPa at G -time = 7 (Arrow 2). Using the fracture compliance method, the closure stress would be 44.5 MPa at Arrow 1 at *G*-time=6.5. The variable compliance method gives the average of the tangent line method and the fracture compliance method, which is 43.7 MPa. After the calibration, the tangential line method produces the most accurate s_h estimation—40.1 MPa, 0.3% higher than the input value. The fracture compliance method has an s_h estimation of 42.2 MPa, 5.6% higher than the s_h input value. The variable compliance method provides an s_h estimation of 41.2 MPa, 3.0% higher than the input value for s_h . The comparison of diferent methods to determine closure stress is provided in Table [9](#page-17-0). The calibration method signifcantly improves the accuracy of the DFIT analysis. When there is no diference in horizontal stresses, the refection point cannot be identifed even though the axial fracture is initiated. Thus, s_H cannot be found in this case. The two fractures are still closing at the same time.

3.8 Case 7 (Less Horizontal Diferential Stress)

In Case 7, the maximum horizontal stress is set to be lower: 43 MPa. At the beginning of shut-in, the *G* × d*P*∕d*G* plot (Fig. [20](#page-17-1)a) shows the effect of transverse fracture storage, which is identifed by a concave upward trend until

 G -time = 5.7 (Arrow 1). The concave upward trend suggests that the fracture storage efect dominates the PDL. Then, the effect of fracture storage ceases as the pressure decline rate stops increasing, which is caused by full closure of the axial fracture as indicated both in the $G \times dP/dG$ plot (Fig. [20a](#page-17-1)) and the d*P*∕d*G* plot (Fig. [20](#page-17-1)b). As shown in the d*P*∕d*G* plot, after the axial fracture fully closes, the pressure decline rate continues increases with a slower rate. This is diferent from the base case where after the axial fracture closes, PDL dominates which causes decrease of pressure decline. This is due to the fact that when the horizontal differential stress is smaller, the diference of width between the axial fracture and the transverse fracture is also smaller. Part of the transverse fracture starts to close before the axial fracture completely closes. Screenshot of the numerical simulation in Fig. [21](#page-18-0) confrms this phenomenon. At *G*-time=5.7, when the maximum aperture of axial fracture is reduced to less than the residual fracture width—1.5 mm, width of transverse fracture mouth and fracture tip also falls below the residual fracture width. After the axial fracture closure, whether the pressure decline rate decrease, or continue increasing depends on the competence between the PDL effect and closure of the transverse fracture. In this case, when the transverse fracture closes a lot at the fracture mouth and the fracture tip, the closure of the transverse fracture dominates the PDL efect which results in increasing of the pressure decline rate.

Table 9 Results of DFITs interpretations (Case 6)

Fig. 20 Case 7: closure stress estimation from analysis of (**a**) $G \times dP/dG$ and (**b**) dP/dG plot

Fig. 21 Case 7: snapshot of the numerical simulation showing complete axial fracture closure during shut-in (at *G*-time 5.7)

From the tangent line method, the closure stress should be picked to be 42.5 MPa at Arrow 3. Using the fracture compliance method, the closure pressure is picked to be 44.3 MPa at *G*-time=6.5, when the fracture compliance starts to change significantly. The variable compliance method calculates the average of the tangent line method and the fracture compliance method and provides a value of 43.4 MPa. After the calibration, the tangent line method provides a s_h estimation of 40.3 MPa, 0.1% lower than the input value. The fracture compliance method has a s_h estimation of 42.4 MPa, 6.0% higher than the s_h input. The variable compliance method provides a s_h estimation of 41.3 MPa, 3.3% higher than the s_h input. Like the other cases with the presence of the axial fracture, complete fracture closure happens later than the time determined by the fracture compliance method and earlier than the time determined by the tangent line method. Comparing the results (Table [10\)](#page-18-1), the tangent line method provides the most accurate s_h estimation in Case 8. The reflection point method provides an estimated S_H of 43.8 MPa with an error of $+1.8\%$.

4 Conclusion

This work presents a fully coupled geomechanics and fuid flow model for DFIT. While available DFIT analyses investigate the effect of pressure-dependent leakoff, transverse fracture storage, and fracture height recession on shut-in behavior, there is little discussion of the effect of the initiation and closure of axial fractures. Thus, we proposed a coupled geomechanics and fuid fow model to investigate this efect. Our modeling results show that stress changes in the matrix around the fracture can cause the initial non-uniform opening of both the axial fracture and transverse fracture and their closure behavior. The results also show that the presence of an axial fracture can have a unique efect on the *G*-function plots ($G \times dP/dG$ plot and dP/dG plot). When an axial fracture is formed, the $G \times dP/dG$ plot initially has a concave upward trend, which shows the fracture storage efect at the beginning of shut-in. This fracture storage efect ceases when the axial fracture fully closes. Since the closed axial fracture can be an extra leakoff path for the transverse fracture, the PDL effect can be found in the *G*-function plot as the pressure decline rate starts to decrease. When formation permeability is extremely low, the PDL effect can initially dominate the fracture storage efect.

The simulation results suggest that when an axial fracture is present, the DFIT analysis based on fracture compliance indicates an earlier fracture closure due to the non-uniform fracture closure of the transverse fracture. Therefore, these methods should be used when there is no indication of the initiation of the axial fracture (fracture storage behavior followed by PDL). In addition to examining the performance of available DFIT interpretation schools, we propose a method

Table 10 Results of DFIT interpretations (Case 7)

that we call the refection point method to identify the closure of the axial fracture. From the refection point in the *G*-function plots, it is possible to determine the maximum horizontal stress s_H in addition to s_h . We show that using the $G \times dP/dG$ plot alone can make it hard to observe the reflection point or a change in the pressure decline rate. Combining the $G \times dP/dG$ plot and the dP/dG plot can aid in DFIT interpretation. We also found that the overestimation of the horizontal stresses introduced by fracture surface roughness is huge but can be calibrated using the method proposed in this study. The calibration method can be applied successfully to all DFIT analyses based on the *G* function plot. When the downhole tiltmeter test is available at the DFIT site, we recommend calculating f_r using the fracture residual width obtained from the inclinometer array. When the test is not available, we recommend assuming the fracture residual width to be 1.9 mm based on available experimental studies.

Acknowledgements The authors declare that there is no confict of interest regarding the publication of this paper. Data were not used, nor created for this research. The authors also thank PSU ICDS for providing the computation resource.

Author Contributions ADT presented idea. CY developed the model and performed the computations. ADT supervised the fndings of this work. All authors discussed the results and contributed to the fnal manuscript.

Availability of Data and Materials All data generated from the simulations can be found in this article.

Code Availability The model used in this study is mainly a commercial fnite element package i.e. ABAQUS.

Declarations

Conflict of interest The authors declare that there is no confict of interest.

Ethics Approval The manuscript will not be submitted to other journal for simultaneous consideration. The submitted work is original, without fabrication and has not been published elsewhere in any form or language.

Consent to Participate Informed consent was obtained from all individual participants included in the study.

Consent for Publication The authors give the consent for the publication of the paper.

References

Abbas S, Lecampion B, Prioul R (2013) Competition between transverse and axial hydraulic fractures in horizontal wells. In: SPE hydraulic fracturing technology conference. Society of Petroleum Engineers. <https://doi.org/10.2118/163848-MS>

- Ahmadi M, Dahi Taleghani A, Sayers CM (2016) The effects of roughness and ofset on fracture compliance ratio. Geophys J Int 205:454–463. <https://doi.org/10.1093/gji/ggw034>
- Barree RD, Mukherjee HM (1996) Determination of pressure dependent leakoff and its effect on fracture geometry. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers. <https://doi.org/10.2118/36424-MS>
- Barree RD, Barree VL, Craig D (2007) Holistic fracture diagnostics. In: Rocky mountain oil & gas technology symposium. Society of Petroleum Engineers. <https://doi.org/10.2118/107877-MS>
- Bhide R, Gohring T, McLennan J, Moore J (2014) Sheared fracture conductivity. In: 39th workshop on geothermal reservoir engineering
- Bourdet D, Ayoub JA, Pirard YM (2004) Use of pressure derivative in well-test interpretation. SPE Form Eval 4:83–92. [https://doi.org/](https://doi.org/10.2118/20704-PA) [10.2118/20704-PA](https://doi.org/10.2118/20704-PA)
- Cai Y, Dahi Taleghani A (2019) Pursuing improved fowback recovery after hydraulic fracturing. In: SPE eastern regional meeting. Society of Petroleum Engineers. <https://doi.org/10.2118/196585-MS>
- Cai Y, Dahi Taleghani A, Hawkes R (2020) A quick and rigorous approach for estimating reservoir permeability from DFITs. In: Proceedings—SPE annual technical conference and exhibition 2020. Society of Petroleum Engineers (SPE). [https://doi.org/10.](https://doi.org/10.2118/201531-MS) [2118/201531-MS](https://doi.org/10.2118/201531-MS)
- Castillo JL (1987) Modifed fracture pressure decline analysis including pressure-dependent leakoff. In: SPE/DOE joint symposium on low permeability reservoirs. Society of Petroleum Engineers. [https://](https://doi.org/10.2118/16417-MS) doi.org/10.2118/16417-MS
- Craig DP (2014) New type curve analysis removes limitations of conventional after-closure analysis of DFIT data. In: SPE USA unconventional resources conference 2014. Society of Petroleum Engineers. <https://doi.org/10.2118/168988-ms>
- Craig DP, Blasingame TA (2006) Application of a new fracture-injection/falloff model accounting for propagating, dilated, and closing hydraulic fractures. In: SPE Gas technology symposium. Society of Petroleum Engineers.<https://doi.org/10.2118/100578-MS>
- Dahi Taleghani A, Gonzalez-Chavez M, Yu H, Asala H (2018) Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. J Pet Sci Eng 165:42–57.<https://doi.org/10.1016/j/petro/2018.01.063>
- Dahi Taleghani A, Cai Y, Pouya A (2020) Fracture closure modes during fowback from hydraulic fractures. Int J Numer Anal Methods Geomech 44:1695–1704. <https://doi.org/10.1002/nag.3086>
- Daneshy A (2020) Mechanics of fracture propagation in closely spaced clusters. In: SPE annual technical conference and exhibition 2020. Society of Petroleum Engineers. [https://doi.org/10.2118/](https://doi.org/10.2118/201675-MS) [201675-MS](https://doi.org/10.2118/201675-MS)
- Hildek B, Weijers L (2007) Fracture -to-well conectivity. in modern fracturing: enhancing natural gas production. In: Economides MJ, Martin T (eds) Chap. 6, p 216.
- Jung H, Sharma MM, Cramer DD, Oakes S, McClure MW (2016) Reexamining interpretations of non-ideal behavior during diagnostic fracture injection tests. J Pet Sci Eng 145:114–136. [https://doi.org/](https://doi.org/10.1016/j/petro/2016.03.016) [10.1016/j/petro/2016.03.016](https://doi.org/10.1016/j/petro/2016.03.016)
- Lecampion B, Abbas S, Prioul R (2013) Competition between transverse and axial hydraulic fractures in horizontal wells. In: SPE hydraulic fracturing technology conference 2013. Society of Petroleum Engineers. <https://doi.org/10.2118/163848-ms>
- Marongiu-Porcu M, Retnanto A (2017) After-closure idiosyncrasies of Fracture Calibration Test analysis in shale formations. In: Proceedings—SPE annual technical conference and exhibition. Society of Petroleum Engineers (SPE). [https://doi.org/10.2118/](https://doi.org/10.2118/187321-ms) [187321-ms](https://doi.org/10.2118/187321-ms)
- Marongiu-Porcu M, Ehlig-Economides CA, Economides MJ (2011) Global model for fracture falloff analysis. In: Society of petroleum engineers—SPE Americas unconventional gas conference.

Society of Petroleum Engineers (SPE). [https://doi.org/10.2118/](https://doi.org/10.2118/144028-ms) [144028-ms](https://doi.org/10.2118/144028-ms)

- McClure MW, Jung H, Cramer DD, Sharma MM (2016) The fracturecompliance method for picking closure pressure from diagnostic fracture-injection tests. SPE J 21:1321–1339. [https://doi.org/10.](https://doi.org/10.2118/179725-PA) [2118/179725-PA](https://doi.org/10.2118/179725-PA)
- Mohamed IM, Nasralla RA, Sayed MA, Marongiu-Porcu M, Ehlig-Economides CA (2011) Evaluation of after-closure analysis techniques for tight and shale gas formations. In: SPE hydraulic fracturing technology conference 2011. Society of Petroleum Engineers. <https://doi.org/10.2118/140136-ms>
- Moody LF (1944) Friction factors for pipe flow. Trans ASME 66(8):671–684
- Nolte KG (1979) Determination of fracture parameters from fracturing pressure decline. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers. [https://doi.org/10.](https://doi.org/10.2118/8341-MS) [2118/8341-MS](https://doi.org/10.2118/8341-MS)
- Nolte KG (1991) Fracturing-pressure analysis for nonideal behavior. J Pet Technol 43:210–218. <https://doi.org/10.2118/20704-PA>
- Pokalai, K, Haghighi M, Sarkar S, Tyiasning S, Cooke D (2015) Investigation of the efects of near-wellbore pressure loss and pressure dependent leakoff on flowback during hydraulic fracturing with preexisting natural fractures. In: Society of petroleum engineers— SPE/IATMI Asia pacifc oil and gas conference and exhibition, APOGCE 2015. Society of Petroleum Engineers. [https://doi.org/](https://doi.org/10.2118/176440-ms) [10.2118/176440-ms](https://doi.org/10.2118/176440-ms)
- Sakaguchi K, Tomono J, Okumura K, Ogawa Y, Matsuki K (2008) Asperity height and aperture of an artifcial tensile fracture of metric size. Rock Mech Rock Eng 41(2):325–341. [https://doi.org/](https://doi.org/10.1007/s00603-005-0102-3) [10.1007/s00603-005-0102-3](https://doi.org/10.1007/s00603-005-0102-3)
- Sherman C, Morris J, Johnson S, Savitski AA (2015) Modeling of near-wellbore hydraulic fracture complexity. In: 20–22 (American Association of Petroleum Geologists AAPG/Datapages. [https://](https://doi.org/10.15530/urtec-2015-2153274) doi.org/10.15530/urtec-2015-2153274
- Ugueto G, Huckabee P, Wojtaszek M, Daredia T, Reynolds A (2019) New near-wellbore insights from fber optics and downhole pressure gauge data. In: Society of petroleum engineers—SPE hydraulic fracturing technology conference and exhibition. Society of Petroleum Engineers. <https://doi.org/10.2118/194371-ms>
- Van Dam DB, De Pater CJ (1999) Roughness of hydraulic fractures: the importance of in-situ stress and tip. In: SPE annual technical conference and exhibition. <https://doi.org/10.2118/56596-MS>
- Van Dam DB, De Pater CJ, Romijn R (2000) Analysis of hydraulic fracture closure in laboratory experiments. SPE Prod Facil 15:151–158.<https://doi.org/10.2118/65066-PA>
- Wang W, Dahi Taleghani A (2014) Simulating multizone fracturing in vertical wells. ASME J Energy Resour Technol 136(4):042902. <https://doi.org/10.1115/1.4027691>
- Wang H, Sharma MM (2017) New variable compliance method for estimating in-situ stress and leak-off from DFIT data. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers. <https://doi.org/10.2118/187348-MS>
- Wang H, Sharma MM (2018) Estimating unpropped-fracture conductivity and fracture compliance from diagnostic fracture-injection tests. SPE J 23:1648–1668. <https://doi.org/10.2118/189844-PA>
- Wang H, Sharma MM (2019) A novel approach for estimating formation permeability and revisiting after-closure analysis of diagnostic fracture-injection tests. SPE J 24:1809–1829. [https://doi.org/](https://doi.org/10.2118/194344-PA) [10.2118/194344-PA](https://doi.org/10.2118/194344-PA)
- Warpinski NR (2010) Stress amplifcation and arch dimensions in proppant beds deposited by waterfracs. In: SPE production and operations, vol 25. Society of Petroleum Engineers, pp 461–471 <https://doi.org/10.2118/119350-PA>
- Warpinski NR, Branagan PT, Engler BP, Wilmer R, Wolhart SL (1997) Evaluation of a downhole tiltmeter array for monitoring hydraulic fractures. Int J Rock Mech Min Sci 34:329.e1–29.e13. [https://doi.](https://doi.org/10.1016/S1365-1609(97)00074-9) [org/10.1016/S1365-1609\(97\)00074-9](https://doi.org/10.1016/S1365-1609(97)00074-9)
- Weijers L, De Pater CJ, Owens KA, Kogsboll HH (1994) Geometry of hydraulic fractures induced from horizontal wellbores. SPE Prod Facil 9:87–92. <https://doi.org/10.2118/25049-PA>
- Yu H, Dahi Taleghani A, Gonzalez Chavez M, Lian Z (2018) Is complexity of hydraulic fractures tunable? A question from design perspective. In: SPE/AAPG eastern regional meeting. Society of Petroleum Engineers[.https://doi.org/10.2118/191809-18ERM-MS](https://doi.org/10.2118/191809-18ERM-MS)
- Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, Cambridge. <https://doi.org/10.1017/CBO9780511586477>
- Zou Y, Ma X, Zhang S, Zhou T, Ehlig-Economides C, Li H (2015) The origins of low- fracture conductivity in soft shale formations: an experimental study. Energy Technol 3(12):1233–1242. [https://doi.](https://doi.org/10.1002/ente.201500188) [org/10.1002/ente.201500188](https://doi.org/10.1002/ente.201500188)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.