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Abstract
To investigate the thermal shock effect on microseismic response during hydraulic fracturing in hot dry rock, laboratory 
hydraulic fracturing experiments combined with acoustic emission (AE) monitoring were performed on granite after heating 
and rapid water-cooling treatments. Thereafter, the influence of thermal treatment level and the number of cycles on hydraulic 
fracture geometry, injection pressure curve, and the spatial distribution and focal mechanism was analyzed. Besides, the 
maximum AE amplitude and the localization results of large AE events with amplitudes larger than 7.0 mV were further 
investigated to discuss the thermal shock effect on reducing breakdown-induced seismicity. Experimental results show that 
the thermal shock effect was beneficial for reducing the maximum amplitude of AE events during laboratory fracturing 
experiments on Laizhou granite. After single-cycle thermal treatment, large AE events tended to disperse far away from 
rather than located around the open-hole section only when the thermal treatment level exceeded the threshold temperature 
(300 °C). At the thermal treatment level of 300 °C, increasing the number of cycles had a little influence on reducing the 
breakdown-induced seismicity due to the limited reduction of breakdown pressure. Most of the large AE events are still 
mainly detected during the occurrence of breakdown and located around the open-hole section. At the thermal treatment 
level of 400 °C, shear events were dominant. Even though a complex fracture network was created, no obvious cluster of 
large AE events was detected around the open-hole section.
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1 Introduction

Geothermal energy in hot dry rock (HDR) refers to the heat 
stored in the high-temperature tight crystalline rock mass 
buried at depths of 3–10 km (Brown 2009; Olasolo et al. 
2016; Watanabe et al. 2017; Zhang et al. 2019a). Using 
hydraulic fracturing to create a large-scale fracture network 
for the long-term fluid circulation between the injection 
and production wells is the typical exploitation paradigm 
of commercial heat extraction from deep HDR formation. 

This development mode is well known as the enhanced 
geothermal system (EGS) (Genter et al. 2010; Ghassemi 
2012; Breede et al. 2013; Kelkar et al. 2016). Generally, 
microseismic monitoring is utilized to determine the spatial 
distribution of created hydraulic fracture network during the 
stimulation treatment in an injection well. The monitoring 
results are critical guidance for selecting the location of a 
production well, so that a successful hydraulic connection 
can be established. Moreover, the magnitude of microseis-
mic events is also an essential parameter for evaluating the 
risk of fluid-injection-induced seismicity (Diaz et al. 2018; 
Zang et al. 2019; Xing et al. 2019; Li et al. 2020). Therefore, 
understanding the microseismic response during hydraulic 
fracturing is of great significance for the safe and efficient 
exploitation of HDR geothermal energy.

As a high-frequency analog of microseismicity, acous-
tic emission (AE) monitoring has been widely utilized in 
combination with laboratory hydraulic fracturing (Lock-
ner and Byerlee 1977; Zoback et al. 1977; Stanchits et al. 
2009, 2015; Tang et al. 2019). To date, a series of laboratory 

 * Ning Li 
 lining19900629@163.com

1 SINOPEC Petroleum Exploration and Production Research 
Institute, Beijing, China

2 State Key Laboratory of Petroleum Resource 
and Prospecting, China University of Petroleum, Beijing, 
China

3 Southern University of Science and Technology, Shenzhen, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-021-02568-y&domain=pdf


4794 N. Li et al.

1 3

hydraulic fracturing experiments on different granites com-
bined with AE monitoring. It has been well acknowledged 
that the AE monitoring and interpretation technique is con-
ducive to the investigation of dynamic propagation behavior 
of hydraulic fracture (HF) and the visualization of ultimate 
fracture geometry (Chitrala et al 2013; Goodfellow et al 
2016). Ishida et al. (2000a, 2012, 2013) and Chen et al. 
(2015) performed a series of laboratory hydraulic fracturing 
experiments on different granites combined with AE moni-
toring. Experimental results show that the number of AE 
events increased, while the breakdown pressure decreased 
with the increasing of grain size (Ishida et al. 2000a). Com-
pared with water, super-critical or liquid carbon dioxide 
with lower viscosity was more beneficial for reducing the 
breakdown pressure and created more complex fracture 
geometry which was indicated by more three-dimensionally 
distributed AE events (Ishida et al. 2012, 2013; Chen et al. 
2015). Hampton et al. (2017) discussed the damage char-
acterization due to microcracking by comparing the rela-
tionship between the density of AE events and the perme-
ability. Hu et al. (2019) performed laboratory fracturing on 
Sierra White granite under different stress conditions. It was 
indicated that the higher stress was applied, the more AE 
events were induced. The focal mechanisms of AE events 
are generally analyzed to reveal the generation mechanisms 
of HF. Ishida et al. (2000b) found that shear events domi-
nated in granite specimens with large grain size. Hampton 
et al. (2013) investigated the focal mechanism of AE events 
induced in Colorado Rose Red Granite. It was found that 
shear fractures tended to be dominant when natural frac-
tures or stress concentration exists, while tensile fractures 
dominate in homogeneous and non-naturally fractured mate-
rial. Experimental results of Yamamoto et al. (2019) show 
that the dominant type of AE events is closely related the 
spatial relationship between the propagated HF and pre-
existing weak planes. During stimulation treatments, the 
radiated seismic energy is also of additional significance. In 
the previous studies, many parameters have been suggested 
for further AE analysis (Goodfellow et al. 2016; Ishida et al. 
2017; López-Comino et al. 2017). Zhuang et al. (2017, 
2018) performed cyclic hydraulic fracturing experiments 
on core samples of Pocheon granite. Experimental results 
show that the breakdown pressure in the cyclic injection 
test was generally reduced by approximately 20% compared 
with that in monotonic injection tests. Meanwhile, the aver-
age value of the induced AE amplitude decreased from 66.3 
to 53.3 dB. Diaz et al. (2018) suggested that tensile events 
mainly induced during the pre-failure period, while more 
shear events with high energy were monitored during failure/
post-failure period.

Even though so many studies have been reported, 
most of the above-mentioned studies were conducted 
without consideration of the thermal shock effect. For 

high-temperature HDR formations, the injection of mas-
sive cold water during hydraulic fracturing rapidly cools 
down the vicinity of wellhole or HF, which induces signifi-
cant thermal tensile stress (Dusseault 1993; Jansen et al. 
1993). Due to this thermal shock effect, inter- and/or intra-
granular microcracks tend to be created in the wall of the 
wellbore or perpendicular to the HF surface (Wang et al. 
1989; Kumari et al. 2017; Li et al. 2019a, b). Previous 
experimental results show that the generation of thermally 
induced microcracks tends to result in significant varia-
tion in the physical and mechanical properties of granite, 
which will further influence the initiation and propagation 
behavior of HF (Kim et al. 2014; Kumari et al. 2017; Zhao 
et al. 2018; Wu et al. 2018). Recently, to investigate the 
thermal shock effect on the hydraulic fracturing process, 
many laboratory experimental studies have been con-
ducted on granite specimens under high-temperature con-
dition or after pre-heated treatment (Watanabe et al. 2017, 
2019; Kumari et al. 2018; Yang et al. 2019; Zhang et al. 
2019a, b, c; Li et al. 2020). Experimental results show 
that the breakdown pressure reduced with the increase of 
temperature due to the thermally induced mechanical dete-
rioration. Meanwhile, the generation of thermally induced 
microcracks was also conducive to enhance the complexity 
of the HF geometry to some extent. However, a few labora-
tory hydraulic fracturing experiments have been performed 
combined with AE monitoring in terms of the limitation 
of equipment in temperature resistance. Consequently, the 
thermal shock effect on acoustic emission response during 
laboratory hydraulic fracturing is still not clear yet.

In this study, the thermal shock effect was simulated by 
heating granite specimens to a series of target temperatures 
and then rapidly cooled down to room temperature using 
flowing water. This pre-heating method has been widely 
used in mechanical tests and laboratory fracturing experi-
ments to investigate the thermal shock effect on mechanical 
strength and fracture initiation and propagation behavior 
(Yang et al. 2017, 2019; Zhang et al. 2017; Li et al. 2020). 
After that, laboratory hydraulic fracturing was performed on 
pre-heated cuboid granite specimens (8 × 8 × 10  cm3) under 
tri-axial stresses. Meanwhile, the AE activity induced dur-
ing the experiments was monitored. In the previous study 
of Li et al. (2020), the fracture initiation and propagation 
behavior, and the spatial distribution and focal mechanisms 
of induced AE events in granite specimens after single-cycle 
thermal treatments have been discussed. In this paper, first, 
we further focused on the thermal shock effect on the dis-
tribution of large AE events which means those with high 
amplitude (> 7 mV). Based on the obtained new insights, 
additional laboratory hydraulic fracturing experiments 
were designed to investigate the cyclic thermal shock effect 
on fracture geometry, characteristics of the injection pres-
sure curve, and AE response. This study may provide some 
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references for the exploitation of deep geothermal energy, 
especially using thermal stimulation.

2  Experimental Method

Large block Laizhou granite was collected from Shandong 
Province, China. The experimental result of thin section 
observation shows that the measured grain size mainly 
ranges from 0.5 to 4.3 mm. X-ray diffraction analysis shows 
that the granite is composed of quartz 27.5%, potassium 
feldspar 33.2%, plagioclase 32.0%, calcite 1.8%, mica 4.5%, 
and clay mineral 1.0%. The porosity and permeability of 
the virgin granite are 0.7% and 1.9 ×  10−3 mD, respectively. 
The tensile strength of the virgin granite is 11.84 MPa. 
In the previous study of Li et al. (2020), the temperature 
dependence of physical and mechanical properties, hydraulic 
fracture process, and AE response of the Laizhou granite 
has been investigated after single-cycle thermal treatment. 
Herein, this paper further illustrated the new insights in the 
thermal shock effect on AE response from the aspect of AE 
amplitude. Then, the cyclic thermal shock on mechanical 
strength, hydraulic fracturing process, and AE response was 
discussed.

2.1  Specimen Preparation and Cyclic Thermal 
Treatment

To investigate the cyclic thermal shock effect on tensile 
strength of Laizhou granite, disc specimens with 2.54 cm 
in diameter and 1.3 cm in thickness were prepared and 
then thermally treated as the following procedures: (1) 
specimens were slowly heated to a series of target temper-
atures (200 °C, 300 °C, 400 °C, and 500 °C) utilizing a 
high-temperature furnace at a constant rate of 5 °C/min to 
avoid the possible thermal shock (Yang et al. 2017; Kumari 
et al. 2017; Fan et al. 2018); (2) the target temperature was 
maintained for 4 h to ensure the temperature-equilibrium 
(Li et al. 2020); (3) the specimens were then rapidly cooled 
down to room temperature using flowing water to simulate 
the thermal shock effect during the hydraulic fracturing in 
HDR (Li et al. 2019a, b); (4) cyclic thermal treatments were 
performed by repeating steps (1) to (3) for 5, 10, 15, and 20 
times, respectively. The scheme of cyclic thermal treatment 
is shown in Fig. 1. According to the previous experimen-
tal results of Li et al. (2020), there exists a threshold tem-
perature of 300 °C for the studies granite, after which the 
influence of thermal shock on build-up rate and breakdown 
pressure becomes significant. Therefore, in this study, two 
target temperatures of 300 °C and 400 °C were selected for 
cyclic thermal treatments.

Granite specimens for laboratory fracturing experiments 
were prepared with a dimension of 8 × 8 × 10  cm3. Then, a 

6.5-cm blind hole (i.e., wellhole) with a diameter of 1.5 cm 
was drilled at the center of an 8 × 8-cm2 end face. Thereafter, 
thermal treatments were performed similarly to the above-
mentioned procedures. Noting that the period for thermal 
equilibrium maintained 8 h for cuboid specimens consider-
ing the large specimen size. Additionally, the central hole 
was intentionally hit during the rapid water-cooling treat-
ment to simulate the thermal shock effect acting on the wall 
of the wellhole. Considering that the quick evaporation phe-
nomenon of water may block the flow of cold water in the 
center hole, an injection pipe was inserted into the bottom of 
center hole, and a constant high injection rate was used when 
cooling treatment was performed. Compared with drilling 
the wellhole after thermal treatment, this preparation method 
is more reasonable to simulate the thermal shock effect in 
HDR well. In this paper, only the number of cycles of 10 and 
20 was considered for laboratory fracturing experiments. 
After cyclic thermal treatments, as an additional drying pro-
cess, the granite samples were slowly heated to 60 °C and 
maintained for 6 h to evaporate the water. Then, a 5.8-cm 
steel tube (i.e., wellbore) with an external diameter of 1.2 cm 
was glued into the wellhole using high-strength epoxy, leav-
ing a 2-cm open-hole section at the bottom of the wellhole 
(Ma et al. 2017a, b; Zou et al. 2017, 2018). Figure 2 shows 
the granite specimen for laboratory fracturing experiments. 
Observation results of optical microscope and CT scanning 
indicated that there existed no visible initial defects in virgin 
granite specimens, as shown in Fig. 2b,c.

2.2  Laboratory Fracturing Experiment

Laboratory fracturing was performed using a true tri-axial 
fracturing simulation system, which was composed of a tri-
axial loading chamber, a syringe pump, an AE monitoring 
system, and an injection pressure monitoring system (Ma 
et al. 2017a, b; Li et al. 2019a, b, c, d). The tri-axial testing 

Fig. 1  The scheme of the cyclic thermal treatment (after Wu et  al. 
2019a, b)
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system possessed the following capacities: (1) maximum 
confining stresses of 18 MPa in three directions indepen-
dently; (2) a maximum injection pressure of 60 MPa; (3) 
a maximum injection rate of 20 mL/min. In this study, the 
stress state was set to be 3, 6, and 12 MPa along the X, Y, 
and Z directions, respectively. Water was used as the frac-
turing fluid and injected into the wellbore with a constant 
injection rate of 1 mL/min. The tracer agent (red ink) was 
added to detect the hydraulic fracture on the specimen sur-
faces. During the laboratory fracturing, a nine-channel AE 
monitoring system with an amplitude resolution of 16 bit at 
3 MHz sampling rate was used to monitor the AE activity 
induced by rock failure continuously. The piezoelectric AE 
sensors (RS-2A) were placed inside the loading plates and 
arranged on three surfaces according to the principle of max-
imum volumetric coverage (Frash et al. 2013; Hampton et al. 
2013). The frequency range and the resonance frequency of 
the AE sensors are 50–400 kHz and 150 kHz, respectively. 
To verify whether these nine sensors arranged on three faces 
of the specimens were sufficient for AE localization, the 

pencil lead breaking test was performed. The testing results 
show that this arrangement scheme is reasonable. The short-
time-average/long-time-average (Sta/Lta) method combined 
with the Akaike information criterion (AIC) method was 
used to pick the P-wave arrival time (Wu et al. 2017). The 
characteristic function of the Sta/Lta method is the envelope 
of AE signal energy getting from Hilbert Transform (Wu 
et al. 2019a, b). To ensure the reliability of the interpreting 
results, only those data accepted by more than six sensors 
were post-processed for analysis of the spatial distribu-
tion and hypocenter mechanism of AE events. The Geiger 
method was introduced to determine the spatial distribu-
tion of induced AE events. According to the previous stud-
ies, the focal mechanisms/failure modes of AE events were 
determined by the statistical analysis of P-wave polarity (Lei 
et al. 1992, 2001; Zang et al. 1998; Bennour et al. 2015; Li 
et al. 2018b, c; Wu et al. 2019a, b). In this study, according 
to Li et al. (2018b), the proportion (λ) of dilatational first 
motions in all well-identified P-wave polarities were used to 
clarify the tensile (λ < 0.3), shear (0.3 ≤ λ ≤ 0.7), and com-
pressive events (λ > 0.7). After the experiments, a CT scan-
ning system was utilized to determine the internal fracture 
distribution (Li et al. 2018a, b). Table 1 shows the detailed 
experimental parameters for laboratory hydraulic fracturing.

3  Experimental Results Analysis

3.1  Effect of Thermal Shock on Tensile Strength

Figure 3 shows the experimental results of tensile splitting 
tests of granite specimens after different cyclic thermal treat-
ments. It was shown that the thermal treatment level and the 
number of cycles had a significant influence on the tensile 
strength. With the number of cycles increasing from 1 to 20, 
the tensile strength decreased from 9.02 to 7.59 MPa (by 
approximately 15.9%) under thermal treatment temperature 
of 300 °C, while the tensile strength decreased from 8.07 
to 4.85 MPa (by approximately 39.9%) under the higher 

Fig. 2  a Granite specimen (8 × 8 × 10  cm3); b surface observation 
before thermal treatment; c CT scanning image cross the open-hole 
section

Table 1  Experimental scheme 
of laboratory fracturing

Specimen Temperature 
(°C)

Cycles number Stress state (MPa) Q (mL/min)

σv σh σH

#1 25 1 12 6 3 1
#2 200 1 12 6 3 1
#3 300 1 12 6 3 1
#4 400 1 12 6 3 1
#5 500 1 12 6 3 1
#6 300 10 12 6 3 1
#7 300 20 12 6 3 1
#8 400 10 12 6 3 1
#9 400 20 12 6 3 1–2
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thermal treatment temperature of 400 °C. These experimen-
tal results indicate that the cyclic thermal shock effect tends 
to weaken the mechanical strength of granite more signifi-
cantly, especially when the thermal treatment temperature 
was higher than the threshold temperature (300 °C). It can 
be accounted for by creating more thermally induced micro-
cracks (Kim et al. 2014; Yang et al. 2017; Hu et al. 2018). 
In our previous study, the obvious damage zone, in which 
the network of thermally induced microcracks existed, was 
observed in the wall of open-hole section, especially when 
the thermal treatment temperatures were higher than 300 °C 
(Li et al. 2021).

3.2  Effect of Single‑Cycle Thermal Shock

Specimens #1 to #5 were fractured after single-cycle ther-
mal treatments. The fracture geometries, injection pressure 
response, and spatial distribution and focal mechanisms 
have been thoroughly investigated in the previous study 
of Li et al. (2020). In this section, additional new insights 
in the single-cycle thermal shock effect on AE amplitude 
were aimed to be further discussed. Table 2 summarizes the 
breakdown pressure (Pb), the maximum amplitude (Am), and 
the number of AE events induced in laboratory fracturing 
experiments. It is worth noting that besides the total number 
of AE events (Nt), that of AE events with AE amplitude 
larger than 7.0 mV (NA>7.0) was also counted. This criterion 
was determined out of the consideration that the amplitudes 
of recorded AE events mainly ranged from 5.0 to 8.0 mV in 
this study. To intuitively display the spatial localization of 
the large AE events, the 3D and top view maps were given, 
as shown in Fig. 4. Particularly, T (blue), S (red), C (black) 
refer to tensile, shear, and compressive events, respectively. 

Additionally, the size of the spherical ball demonstrated the 
amplitude of each AE event.

It was indicated that most of the large AE events were 
located around the open-hole section before 300 °C, as 
shown in Fig. 4a–c, indicating that the dense clusters of large 
AE events were closely related to the breakdown. Mean-
while, according to Table 2, the maximum amplitudes of 
AE events were larger than 8.0 mV for Specimens #1 to 
#3. When the thermal treatment levels exceeded 300 °C, no 
cluster of large AE events was induced around the open-
hole section and scattered AE events were observed far away 
from the wellbore in Specimens #4 and #5 (see Fig. 4d, e). 
It was also worth noting that the maximum amplitude of 
AE events significantly decreased to 7.82 and 7.55 mV, 
respectively. The experimental results of the spatial distri-
bution and maximum amplitude of the AE events indicate 
the potential effect of thermal shock on reducing breakdown-
induced seismicity in HDR. As can be seen from Fig. 4 and 
Table 2, the thermal damage caused by thermal shock tends 
to prevent the occurrence of large AE events and reduce the 
largest AE amplitude during the breakdown. In the previ-
ous experimental studies of Zhuang et al. (2017, 2018), it 
was also observed that the maximum amplitude of induced 
AE hits reduced with the decreasing of breakdown pressure 
of Pocheon granite. Differently, in the studies of Zhuang 
et al. (2017, 2018), the effect of cyclic injection scheme was 
investigated, while this study focused on the thermal shock 
effect. According to the injection pressure curves reported 
in our previous study (Li et al. 2020), the thermal shock 
effect on reducing the risk of breakdown-induced seismicity 
can be accounted for by the following two mechanisms. For 
one thing, the breakdown pressure significantly decreased 
due to the generation of thermally induced microcracks. For 
another, the degradation rate of the injection pressure after 
the breakdown was lower, indicating that the input energy 
was released more slowly.

3.3  Effect of Cyclic Thermal Shock

Although the single-cycle thermal shock was beneficial to 
reducing the breakdown pressure, the reduction extent was 
limited (only approximately 5%) before 300 °C (Li et al., 

Fig. 3  Variation of tensile strength after thermal treatments: a ther-
mal treatment levels; b number of cycles

Table 2  Statistic results of breakdown pressure and AE response after 
single-cycle thermal shock

Specimen Pb (MPa) Am (mv) Nt NA > 0

#1 14.02 8.15 406 25
#2 13.61 8.23 326 22
#3 13.43 8.24 298 31
#4 11.41 7.82 370 24
#5 8.17 7.55 234 12
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2020). According to the results of the mechanical test, it 
was indicated that increasing the number of cycles of ther-
mal treatments was beneficial for the degradation of tensile 
strength. Thus, in this section, additional laboratory frac-
turing experiments were further designed and performed 
on granite specimens after different cyclic thermal treat-
ments. To discuss the influence of the threshold temperature 
(300 °C), two target temperatures of 300 and 400 °C were 
considered.

Figure 5 shows the HF geometries in Specimens #6 and 
#7 after 10 and 20 cycles of thermal treatments of 300 °C, 

respectively. An HF initiated from one side of the open-hole 
section and propagated throughout Specimen #6 (Fig. 5b), 
while an HF initiated from both sides of the open-hole sec-
tion and then one wing of the HF terminated in Specimen 
#7 (Fig. 5e). These asymmetry HF geometries may be cor-
responding to the inhomogeneous damage induced in the 
vicinity of the open-hole section. Figure 5c, f shows that 
the localization of AE events agreed well with the distribu-
tion of the HFs. In Specimen #6, all of the AE events were 
located at the height of the open-hole section and in the left 
side of the block (Fig. 5c), which in accordance with the 

Fig. 4  3D and top views of the spatial distribution of large AE events in granite specimens after single-cycle thermal treatments: a Specimen 
#1–25 °C; b Specimen #2–200 °C; c Specimen #3–300 °C; d Specimen #4–400 °C; e Specimen #5–500 °C
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distribution of the one-wing transverse HF (Fig. 5b). While 
in Specimen #7, besides the most AE events located in the 
left side of the block, a few AE events were monitored in the 
right side (Fig. 5f), indicating the asymmetric propagation 
of the bi-wing HF (Fig. 5e).

The variation of injection pressure and the recorded AE 
response versus the injection time (t) during the labora-
tory fracturing experiments was demonstrated in Fig. 6. As 
shown in Fig. 6a, after the open-hole was filled with the 
injected water, the injection pressure of Specimen #6 lin-
early increased at a build-up rate of 0.071 MPa/s. Then, it 
was observed that the injection pressure curve slightly devi-
ated from the linear stage at t = 191 s. The build-up rate of 
injection pressure decreased to approximately 0.039 MPa/s. 
This deviation of injection pressure curve and the follow-
ing intermittent weak AE activities (< 100  s−1) indicated 
the initiation of microcracks (Stanchits et al. 2012, 2015; Li 
et al. 2018a, b, c). The initiation pressure was determined 
as 11.0 MPa for Specimen #6. At t = 221 s, Specimen #6 
was finally fractured at a breakdown pressure of 12.81 MPa, 
which was accompanied by momentary AE activities with 
high intensity (> 300  s−1). After that, the injection pressure 

sharply dropped to approximately 0.9 MPa due to the HF 
propagating throughout the granite specimen. Figure 6b 
indicates that Specimen #7 underwent similar tendencies in 
the variation of injection pressure and AE response to that 
of Specimen #6. Differently, Specimen #7 was linearly pres-
surized by a lower build-up rate of 0.064 MPa/s at the early 
stage. Then, microcracks were initiated when the injection 
pressure reached 10.2 MPa (t = 173 s), which was lower than 
that of Specimen #6. The breakdown pressure of Specimen 
#7 was 11.83 MPa (approximately 7.5% lower than that of 
Specimen #6).

Specimens #8 and #9 were prepared by 10 and 20 cycles 
of thermal treatments at the higher levels of 400 °C, respec-
tively. The characteristics of HF geometries, injection pres-
sure, and AE response are shown in Figs. 7 and 8. It was 
indicated from the CT scanning images that a single trans-
verse HF (perpendicular to the minimum principal stress) 
with a tortuous path was created in Specimen #8 (Fig. 7b), 
while more complex fracture geometry composed of a 
transverse HF and a longitudinal HF (approximately along 
the wellbore) was observed in Specimen #9 (Fig. 7e). The 
enhancement in the complexity of fracture geometry was 

Fig. 5  HF geometry determined by surface observation, CT scanning image, and AE localization in granite specimens after cyclic thermal treat-
ments: a–c Specimen #6–300 °C × 10; d–f Specimen #7–300 °C × 20
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also well indicated by the spatial distribution of AE events. 
In Specimen #8, the AE localization results show that the 
induced AE events were mainly located at the height of the 
open-hole section and evenly distributed in the both sides of 
the block (Fig. 7c), indicating the fully propagation of the 
bi-wing HF. While in Specimen #9, numerous AE events 
more three-dimensionally distributed (Fig. 7f), which was 

in accordance with the more complex fracture network, as 
shown in Fig. 7d.

Figure 8 demonstrates the time dependence of injection 
pressure curve and AE response during laboratory fracturing 
experiments on Specimens #8 and #9. As shown in Fig. 8a, 
the linear build-up (0.046 MPa/s) in the early stage of injec-
tion was accompanied by a quiet period of AE activity 

Fig. 6  Injection pressure and AE response during the laboratory fracturing: a Specimen #6–300 °C × 10; b Specimen #7–300 °C × 20

Fig. 7  HF geometry determined by surface observation, CT scanning image, and AE localization in granite specimens after cyclic thermal treat-
ments: a–c Specimen #8–400 °C × 10; d–f Specimen #9–400 °C × 20
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(t = 45–200 s). When the injection pressure reached 7.6 MPa, 
a non-linear increase of the injection pressure was observed, 
and weak AE activities with the intensity of < 100  s−1 were 
simultaneously monitored. At t = 283 s, Specimen #8 was 
fractured at a breakdown pressure of 9.46 MPa. Meanwhile, 
the intensity of AE activity reached a peak value of 311  s−1. 
After that, the injection pressure slowly decreased and then 
maintained a stable value of 5.1 MPa. The slow dissipation 
of the injection pressure and the apparent residual pressure 
may be related to the tortuosity and narrow aperture of the 
HF caused by the low breakdown pressure. When the labora-
tory fracturing was performed on Specimen #9, the injection 
rate was artificially changed according to the injection pres-
sure response, as shown in Fig. 8b. The whole process of 
injection can be divided into two stages. During the former 
stage (t = 0–309 s), an injection rate of 1 mL/min was used. 
First, the injection pressure linearly increased to 4.8 MPa 
with a build-up rate of 0.044 MPa/s and then non-linearly 
increased to a stable value of approximately 6.9 MPa. With 
the occurrence of non-linear build-up (t = 126–220 s), last-
ing AE activities were monitored, indicating the initiation 
of microcracks. At t = 310 s, the injection rate was increased 
to 2 mL/min and maintained constant in the latter stage 
(t = 310–569 s). Consequently, the injection pressure signifi-
cantly increased again with a build-up rate of 0.060 MPa/s 
due to the high injection rate exceeded the fluid leak-off 
rate. Then, Specimen #9 was fractured at a breakdown pres-
sure of 9.72 MPa (t = 365 s in Fig. 8b), which was followed 
by a sharp injection pressure drop. Intense AE activities 
(> 300  s−1) were monitored lasting from the pressurization 
to the breakdown.

To illustrate the cyclic thermal shock effect on the hydrau-
lic fracturing process, the variation of breakdown pressure 
and build-up rate with the number of cycles is shown in 
Fig. 9. It was indicated that the cyclic thermal shock was 
beneficial for reducing the breakdown pressure of granite, 
while the reduction extent varies with the thermal treatment 

level, as shown in Fig. 9a. This agreed well with the varia-
tion tendency of tensile strength as shown in Fig. 4. For the 
thermal treatment level of 300 °C, as the number of cycles 
increased to 10 and 20, the breakdown pressures decreased 
from 13.43 to 12.81 and 11.83 MPa (by approximately 5% 
and 12%), respectively. When the thermal treatment level 
increased to 400 °C, the breakdown pressure decreased by 
17% (from 11.41 to 9.46 MPa) after 10-cycle thermal treat-
ment. At the number of cycles of 20, even though a higher 
injection rate of 2 mL/min was used, the breakdown pressure 
(9.72 MPa) was still obviously lower than that after single-
cycle thermal treatment.

As shown in Fig.  9b, the variation of build-up rates 
with the number of cycles indicated that the cyclic ther-
mal shock was conducive to permeability enhancement of 
Laizhou granite. For 300 °C, the build-up rate of injection 
pressure linearly decreased from 0.076 to 0.064 MPa/s with 
the increasing of the number of cycles. While the build-
up rate of injection pressure sharply decreased from 0.069 
to approximately 0.044 MPa/s for 400  °C. This can be 
accounted for by the fact that when the thermal treatment 
level exceeded the threshold temperature, thermal cracking 
became more significant and more thermally induced micro-
cracks were induced around the wellhole. Additionally, it 
was worth noting that the degradation extent of the build-up 
rate during the last ten cycles was obviously smaller than 
that during the first ten cycles for 400 °C, which indicates 
that thermal cracking mainly occurred in the early cyclic 
thermal treatments. A similar conclusion was also reported 
in the experimental investigation into cyclic thermal shock 
on mechanical properties of granite (Wu et al. 2019a, b).

Table 3 lists the maximum amplitude (Am) and total num-
ber (Nt) of induced AE events, and the number of large AE 
events (NA>7.0) as well. As shown in Table 3, the maximum 
amplitude has a positive correlation with the breakdown 
pressure, indicating that the cyclic thermal shock is helpful 
for controlling breakdown-induced seismicity. Moreover, 

Fig. 8  Injection pressure and AE response during the laboratory fracturing: a Specimen #8–400 °C × 10; b Specimen #9–400 °C × 20
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due to the creation of a complex fracture network, both the 
total and large AE events induced in Specimen #9 were more 
than others (see Fig. 7, Table 3). Even though, the maximum 
amplitudes were lower than 8.0 mV. The statistical analysis 
results of focal mechanisms of induced AE events are shown 
in Fig. 10. It was indicated that shear failure mode tended 
to be dominant owing to the existence of thermally induced 
microcracks, especially when the thermal treatment level 
was 400 °C. This experimental result agreed well with the 
previous studies of Hampton et al. (2013). Additionally, no 
evident influence of the number of cycles on failure mode 
was observed in this study.

Figure 11 shows the spatial distribution of large AE events 
in granite specimens after different cyclic thermal treatments. 
As shown in Fig. 11a, b, although the number and maximum 
amplitude of the large AE events after 10- and 20-cycle ther-
mal treatments of 300 °C were smaller compared with those 
of Specimen #3 (see Tables 2, 3), most of them tended to be 
induced around the open-hole section. It was indicated that, 
in this case, increasing the number of cycles has a little influ-
ence on reducing the breakdown-induced seismicity due to 
the limited reduction in tensile strength and breakdown pres-
sure (Figs. 3, 6). Also, it may be related to the release mode 
of energy during the occurrence of breakdown. As shown 
in Fig. 6, the injection pressure curves show a sharp pres-
sure drop following the breakdown, which indicated that the 

accumulated elastic energy was quickly released (Stanchits 
et al. 2015; Li et al. 2018a, b). Figure 11c, d shows the induced 
large AE events in Specimen #8 and #9 after 10- and 20-cycle 
thermal treatments of 400 °C, respectively. It was observed 
that the large AE events mainly dispersed around the loca-
tion of hydraulic fractures rather than concentrated around 
the open-hole sections. It should be stressed that the apparent 
cluster of large AE events in the top view map, in fact, was the 
projection of those distributed along the longitudinal hydraulic 
fracture in Specimen #9 (Fig. 11d).

4  Discussion

This experimental study was motivated by the demand of 
explorating sutable soft stimulation technoque for HDR 
formation (Zang et al. 2017a, b, 2019; Zhuang et al. 2019). 

Fig. 9  Influence of cyclic thermal treatment on the characteristic parameters of injection pressure: a build-up rate; b breakdown pressure

Table 3  Statistic results of AE response after cyclic thermal shock

Specimen Pb (MPa) Am (mv) Nt NA > 0

#6 12.81 8.06 199 23
#7 11.83 7.95 377 20
#8 9.46 7.68 274 36
#9 9.72 7.88 665 69

Fig. 10  Statistical analysis of the focal mechanisms of AE events
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Considering the effect of thermal shock on reducing 
mechanical strength of granite, laboratory hydraulic fractur-
ing experiments were performed on granite after cyclic ther-
mal treatments. Besides the analysis of breakdown prssure, 
injection pressure curve, and location and focal mechanism 
of induced AE events, AE amplitude, as a reference value 
for seismic energy, was also used to evaluate the seismicity 
during hydraulic fracturing experiments (Li et al. 2018b; 
Zhuang and Zang 2021). Even though the effect of cyclic 
thermal shock on reducing the breakdown pressure and the 
maximum amplitude of AE events was illustrated, there are 
still some limitations that should be noted.

First, the essence of the thermal shock effect is the ther-
mal stress caused by two mechanisms during the rapid 
temperature change process: (1) the mismatch in thermal 
expansion coefficients between adjacent crystalline grains, 
and (2) the temperature gradient due to the inhomogeneous 
temerature field. Thus, besides the thermal treatment tem-
erature and the number of cycles, the extent of cyclic ther-
mal shock is also closely related to the heating/cooling rate 
during the theraml treatment, and the thermal physical and 
mechanical properties of rock (Finnie et al. 1979; Brotóns 
et al. 2013). Mechinical tests of different granites showed 

that the rapid cooling caused more significant sudden ther-
nal shock, resulting in much greater mechanical degradation 
than that of slow cooling (Kumari et al. 2017; Rossi et al. 
2018; Jin et al. 2019). This can be explained by the fact 
that the higher the convective heat transfer coefficient, the 
larger the temperature gradient and the thermal stress during 
heating/cooling treatment process (Wu et al. 2018). It also 
suggested that the temperature dependence of granite varies 
with the differences in microstructure and mineral composi-
tion, because these microscale characteristics influence the 
heating transport properties. Experimental results of Zhao 
(2018) show that the thermal conductivity was negtively cor-
related with the porosity, while positively correlated with 
the P-wave velocity and the bulk density. Even though the 
thermal stress can be induced once the heat transport occurs, 
only when the thermally induced stresss exceeds the internal 
strength of the rock matrix, inter-/intra-granular cracks can 
be initiated. In some studies, different values of threshold 
temperatures, after which the thermal damage became sig-
nificant, have been reported for different granite (Li et al. 
2020). Thus, further investigations should be continued to 
fully understand the temperature dependence of granite.

Fig. 11  3D and top views of the spatial distribution of the large AE events: a Specimen #6–300 °C × 10; b Specimen #7–300 °C × 20; c Speci-
men #8–400 °C × 10; d Specimen #9–400 °C × 20
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Second, in this study, the large AE events referred to 
those with AE amplitutes larger than 7.0 mV. This criterion 
was determined by considering the following two aspects: 
(1) the threshold value for large AE events were selected as 
the 70% of the upper limit of AE amplitude which can be 
recognized by the AE monitoring system; The amplitudes 
of recorded AE events mainly ranged from 5.0 to 8.0 mV. 
This threshold value may vary with the experimental condi-
tions and properties of rock, because both tri-axial stress 
condition and mechanical strength of rock can influence the 
breakdown pressure, which further influence the AE energy 
(Zhuang et al. 2017; Xing et al. 2019). Additionally, the size 
of granite specimens (8 × 8 × 10  cm3) was small. Accord-
ing to the time dependence of injection pressure curve and 
AE activity, most of the induced AE events were induced 
during the occurrence of breakdown, as shown in Figs. 7 
and 9. Therefore, the experimental results only show the 
effectiveness of thermal shock on reducing the breakdown-
induced seismicity. In reality, the experience learn from EGS 
project sites shows that the existence of a natural fracture 
network or fault zone is beneficial for achieving the desired 
heat exchange surfaces (Asanuma et al. 2005; Baisch et al. 
2006; Ghassemi 2012; Guo et al. 2019, 2020; Kwiatek et al. 
2019; Zhang et al. 2019b). These geological discontinui-
ties have a great influence on the propagation behavior of 
hydraulic fracture (Yoon et al. 2015; Li et al. 2018a, b, c). 
It was also suggested that the risk of inducing seismicity is 
mainly linked to the slippage of large fault zones/natural 
fractures triggered by water injection (Warpinski et al. 2012; 
Yong et al. 2015; Zang et al. 2013, 2019; Li et al. 2019a, 
b, c, d). In addition, in the previous studies of Diaz et al. 
(2018), it was found that the dominant focal mechanism of 
AE events transformed from tensile to shear failure mode 
due to the occrrence of breakdown. In this study, the short 
process of facture propagation in the small-size specimen 
makes it difficult to investigate the focal mechanisms change 
during injection. Thus, to fully understand the thermal shock 
on the hydraulic fracturing process and induced seismicity, 
large-scale granite specimens with artificial or natural frac-
tures should be used for laboratory fracturing experiments 
(Ye et al. 2018, 2019).

5  Conclusion

To investigate the thermal shock effect on characteristics 
of fracture geometry and AE response, a series of labora-
tory hydraulic fracturing experiments combined with AE 
monitoring were performed on Laizhou granite after cyclic 
thermal treatment. After single-cycle thermal treatment, 
both the breakdown pressure and the maximum amplitude of 
induced AE events decrease with the increasing of thermal 
treatment level. Before 300 °C, a cluster of large AE events 

(> 7.0 mV) can be observed around the open-hole section, 
while the large AE events tends to disperses far away from 
the well bole when the thermal treatment level is higher than 
300 °C. Increasing the number of cycles of thermal treat-
ment is helpful to reduce the tensile strength of the studied 
Laizhou granite. As the number of cycles increases from 1 to 
20, the tensile strength decreases by 15.9% and 39.9% after 
cyclic thermal treatments of 300 °C and 400 °C, respec-
tively, indicating that the higher thermal treatment levels, 
the higher mechanical degradation extent. Cyclic thermal 
shock can further reduce the breakdown pressure and the 
build-up rate of the injection pressure curve due to the gen-
eration of thermally induced microcracks. Meanwhile, the 
complexity of fracture geometry may be improved especially 
when the thermal treatment level exceeds the threshold tem-
perature (300 °C). At the thermal treatment level of 300 °C, 
the time dependence of injection pressure and AE activity 
indicates that the AE events are mainly induced during the 
breakdown. Even though the maximum amplitude of AE 
events decreased with the increasing increase of the number 
of cycles, the large AE events still concentrate around the 
open-hole section. At the thermal treatment level of 400 °C, 
shear events dominate (> 50%) according to the focal mech-
anism analysis. Moreover, although the complex fracture 
geometry is created after 20-cycle thermal treatments, no 
obvious cluster of large AE events is induced around the 
open-hole section.
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