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Abstract
Calculation of the bearing capacity of shallow foundations on rock masses is usually addressed either using empirical equa-
tions, analytical solutions, or numerical models. While the empirical laws are limited to the particular conditions and local 
geology of the data and the application of analytical solutions is complex and limited by its simplified assumptions, numerical 
models offer a reliable solution for the task but require more computational effort. This research presents an artificial neural 
network (ANN) solution to predict the bearing capacity due to general shear failure more simply and straightforwardly, 
obtained from FLAC numerical calculations based on the Hoek and Brown criterion, reproducing more realistic configura-
tions than those offered by empirical or analytical solutions. The inputs included in the proposed ANN are rock type, uniaxial 
compressive strength, geological strength index, foundation width, dilatancy, bidimensional or axisymmetric problem, the 
roughness of the foundation-rock contact, and consideration or not of the self-weight of the rock mass. The predictions from 
the ANN model are in very good agreement with the numerical results, proving that it can be successfully employed to 
provide a very accurate assessment of the bearing capacity in a simpler and more accessible way than the existing methods.
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List of Symbols
�1  Major principal stress
�3  Minor principal stress
�c , UCS  Uniaxial compressive strength
m0  Rock type
GSI  Geotechnical quality of the rock mass
ψ  Dilatancy angle
D  Depth of damage in the rock mass due to 

human actions
B  Foundation width
xi  Input from each node in the previous layer in 

a layer of a neural network
wji  Adjustable connection weight in a neural 

network
�j  Threshold value or bias in a neural network
yj  Output from a layer in a neural network

f   Nonlinear transfer function in a neural 
network

fhidden , foutp  Nonlinear transfer function at the hidden and 
output layers in a neural network

Ph  Bearing capacity of the shallow foundation

1 Introduction

Shallow foundations are the type of foundation more com-
monly used to transmit the applied loads to the underlying 
soil or rock from civil engineering or building structures. 
According to the properties of the rock mass and the layer 
beneath, the failure of rocks under applied loads may occur 
through several mechanisms (Sowers 1979; Paikowsky et al. 
2010; Canadian Geotechnical Society 2006). These mecha-
nisms are presented in Fig. 1 and correspond to (a) general 
shear failure; (b) local failure when discontinuity spacing is 
bigger than the foundation width; (c) failure of the underly-
ing rock columns created by discontinuities spacing smaller 
than the foundation width; (d) punching shear failure fol-
lowing vertical joints existing bellow the contact zone or 
produced by shallow cavities.
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These failure modes reveal the range of application of 
the different analytical or numerical formulations and the 
validity of empirical methods based on field trials. The local 
conditions are more representative of cases (b), (c), and (d), 
which acquire a great dependence on the spacing and the 
width of the foundation so that their adequate bearing capac-
ity can be deduced from simplified mathematical models, 
field trials, and reduced models, where such local conditions 
can more easily be presented. However, the foundations of 
large civil engineering works, which include rock masses 
with varied distribution of discontinuities (type I, IV or V, 
Fig. 2), respond in a general way to a type of global fail-
ure, defined by the case (a). In this case, empirical experi-
ences are more unpredictable due to their local condition 
and it is necessary to resort to analytical and/or numerical 
techniques.

The limitations under which analytical solutions can be 
established and the high computational costs to guarantee 
the convergence and stability of the solution in numerical 
methods (both are analyzed in detail in the following sec-
tions) makes advisable to offer simple formulations that 
allow obtaining a reliable solution of rapid application for 
the calculation of the bearing capacity under global failure 
in a rock mass.

Considering the intrinsic difficulty of the assessment 
of many of the engineering problems related to techni-
cal design, soft computing appeared as an alternative to 
the common analytic and numeric approaches. A type of 
soft computing technique is ANN. It learns from a dense 
enough data set and configures a black-box-type prediction 

model that solves the problem in the form of a closed simple 
equation.

Many applications of ANN were presented in recent 
years, particularly in the Geotechnical Engineering field, as 
discussed by Shahin et al. (2001, 2008) in the review papers 
on the subject, expanding to almost every problem in the 
field. Regarding shallow foundations, the specific subject 
of this research, many applications of neural networks were 
presented.

The problem of shallow foundation settlement on cohe-
sionless soils was addressed first, considering for example 
Sivakugan et al. (1998), Chen et al. (2006) and Shahin et al. 
(2002a, 2002b, 2003a, 2003b, 2004a, 2005a, 2005b). Later, 
some other researchers used perceptrons to obtain alternative 
approaches to the problem of shallow foundations, predict-
ing the bearing capacity of strip footing on multi-layered 
cohesive soil (Kuo et al. 2009), or on cohesionless soils 
using neuro-fuzzy models (Provenzano et al. 2004; Padmini 
et al. 2008).

In the rock mechanics field, some advances were pre-
sented recently. Some of them are related to the analysis by 
ANN’s of the parameters defining the rock behavior. Some 
researchers as Yang and Zhang (1997) used neural networks 
to identify the relative effect of each factor involved in a rock 
mechanic problem, as the stability of underground openings. 
Mert et al. (2011) and Gholami et al. (2013) presented an 
approach to assess the total RMR classification system using 
a simulation-based on neural networks. Ocak and Seker 
(2012) developed a neural network to estimate the elastic 
modulus of intact rocks, since its difficult determination in 

Fig. 1  Failure mechanisms for shallow foundation: a general shear failure; b local failure through large spacing discontinuities; c columnar fail-
ure; d punching shear failure
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laboratory tests because high-quality cores are required. 
Yılmaz and Yuksek (2008) used ANN to indirectly estimate 
the rock parameters.

Very few results were presented related to the bearing 
capacity of shallow foundation on rocks, as Ziaee et al. 
(2015), based in a comprehensive database of tests and 
reduced model results, using four main parameters: rock 
mass rating, unconfined compressive strength of rock, 
ratio of joint spacing to foundation width, and angle of 
internal friction for the rock mass. Alavi and Sadrossadat 
(2016) proposed precise predictive equations derived from 
linear genetic programming (LGP) for the ultimate bear-
ing capacity of shallow foundation resting on a jointed 
(non-fractured) rock. A comprehensive and reliable set of 
data including 102 previously published rock sockets, cen-
trifuge rock sockets, plate load, and large-scaled footing 
load test results is collected to develop the models. These 
works, based on the results of load tests and small-scale 
tests, allow considering the incidence of local conditions 
to develop local failure mechanisms. However, they do not 
focus attention on the general shear failures generated in 

sound or fractured rock masses, which can occur in large-
scale civil works, where furthermore, for an adequate 
analysis of the bearing capacity, factors that are difficult 
to reproduce in tests on a small scale such as dilatation or 
roughness of the foundation contact must be incorporated. 
Then, more research is needed and this paper follows this 
line of exploration, introducing an enlarged set of param-
eters and adopting the widely accepted Hoek and Brown 
failure criterion for the rock.

As proved by the previous references, using ANN appears 
as an adequate alternate approach to the problem, overcom-
ing the limitations of empirical, analytical, and numerical 
methods, provided an extended and accurate set of data is 
used to build the network.

A neural network (ANN) is proposed in this research to 
offer this alternative approach, introducing an enlarged set 
of parameters and adopting the widely accepted Hoek and 
Brown failure criterion for the rock. The network learns from 
a dense enough data set and configures a black-box-type 
prediction model that solves the problem in the form of a 
set of closed simple equations.

Fig. 2  Rock mass types with 
global failures for shallow 
foundation ( adapted from Hoek 
1983)
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2  Objectives

The main objective of this research is to develop a neural 
network to address the calculation of the bearing capacity 
of shallow foundations on rock masses from a different 
approach than in common practice, where empirical, ana-
lytical, and numerical methods are used.

The reason for using this alternative approach is to 
make available a method of calculation that is simultane-
ously easy to use without having the limitations of other 
simple methods as empirical or analytical methods. That 
is also to say, having the accuracy of numerical methods 
without their complexity of use.

To reach this goal, it is necessary to consider a detailed 
analysis of the rock failure mechanism and of the ana-
lytical and numerical methods used to solve the prob-
lem of the bearing capacity, considering their respective 
limitations.

The simplifications adopted in the analytical solution 
(Serrano et al. 2000) (plane strain, the associative flow 
rule, the coaxiality, the perfectly plastic yield surface, 
and weightless rock mass) and the relative complexity of 
numerical models, that considerably raises computational 
costs, invite to consider new approaches. These approaches 
should relate the bearing capacity of shallow foundations 
on rock masses with an extended set of parameters, includ-
ing those related to the rock itself and those related to the 
problem geometry and characteristics.

The neural network is built based on an extended set 
of numerical calculations obtained using the commercial 
software FLAC, including those most influential param-
eters in the bearing capacity problem.

From this dataset, the network is trained and opti-
mized, offering a fair rate between simplicity and accu-
racy. Finally, this generated ANN is converted into a set of 
simple equations of easy implementation and use.

3  Methods of Analysis

3.1  Identification of the Failure Mechanism Under 
Study

The heterogeneous and anisotropic nature that can charac-
terize rock masses locally is determined by the presence 
of discontinuity families so that the study of the bearing 
capacity is highly conditioned by the distribution of dis-
continuities in the rock mass.

Simplified and semi-empirical solutions are available 
for specific rock mass configurations (Bishoni 1968; 
Goodman 1989) indicating that the bearing capacity of 

shallow foundations on jointed rock masses depends on 
the ratio of space between joints to foundation width, joint 
condition, rock type, and the condition of the underlying 
rock mass. Among this type of formulations, some stand 
out in regulations such as the Eurocode 7 (2004), which 
includes a rather simplified method, in which, as a func-
tion of the rock type, the ultimate bearing capacity is esti-
mated depending on the uniaxial compressive strength and 
the spacing of the main joint set. However, these formula-
tions do not take into account the important role of the 
rock type and its qualitative mass parameters such as rock 
quality designation (RQD), rock mass rating (RMR), or 
geological strength index (GSI) and therefore, they do not 
result useful for identifying general failure mechanisms, 
which cover a large amount of ground.

There were also proposed empirical methods that often 
establish a correlation between the bearing capacity and rock 
mass properties based on the observations and experimental 
test results such as (Bowles 1996) or the method by Carter 
and Kulhawy (1988), recommended by AASHTO (2007) 
and based on the lower bound solution. These equations 
consider the particular and local conditions of the experi-
mentation but cannot take into account the geometry of the 
foundations or the spacing between joints in a general way.

The singularities induced by the distribution of disconti-
nuities can be treated globally when the scale of the problem 
allows us to consider any of the situations indicated in Fig. 2, 
where the rock mass can be considered as a homogeneous 
and isotropic medium (cases I, IV, and V). This is the case 
in many of the main engineering works where large founda-
tion surfaces are required, such as bridges, dams, or large 
building towers. This analysis corresponds to the study of 
the global shear failure of the ground and its analysis must 
be based on the choice of a suitable failure criterion for the 
rock mass.

Defining the value of the dilatancy angle is a very com-
plex problem, being usual practice to define either null dila-
tancy or the associative flow rule. Considering the correla-
tions proposed by Hoek and Brown (1997), the dilatancy is 
between 0º and a quarter of the friction angle, depending on 
the geotechnical quality of the rock mass. From this perspec-
tive, it is considered reasonable to study the extreme cases 
of the problem, from the conservative side (null dilatancy) 
to the more optimistic side (associated dilatancy).

3.2  Hoek and Brown Failure Criterion

In rock mechanic, the non-linear Hoek and Brown failure 
criterion (Hoek and Brown 1980, 1997; Hoek et al. 2002) 
is the most used and it is applicable for the rock mass with 
a homogeneous and isotropic behavior, that is to say, it has 
the same physical properties in all directions because of the 
inexistence or the abundance of discontinuities.
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The Hoek and Brown failure criterion depends on the 
major principal stress 

(

�1

)

 and minor principal stress 
(

�3

)

 
according to the following equation:

The uniaxial compressive strength (UCS) is �c , while the 
parameters m, s, and a can be evaluated by (2), (3) and (4) 
and depend on the rock type (m0), geotechnical quality of 
the rock mass (GSI) and damage in the rock mass due to 
human actions (D) that in shallow foundations is usually 
equal to zero:

This criterion defines the failure envelope for a rock mass 
and allows the study of the mechanism of general shear fail-
ure in the ground for the problem of bearing capacity of 
shallow foundations.

3.3  Calculation Methods of the Global Shear Failure 
Mechanism

Over the years several methods were used to study the bear-
ing capacity under the global failure of the ground: limit 
equilibrium method (Terzaghi 1943; Meyerhof 1951), slip 
line method (Sokolovskii 1965), limit analysis method 
(Sloan 1988; Sloan and Kleeman 1995), and the numerical 
method (Griffiths 1982; Merifield et al. 2006).

The traditional analytical solutions to estimate the ulti-
mate bearing capacity in soils (Terzaghi 1943; Brinch-
Hansen 1970) were developed for the linear Mohr–Coulomb 
failure criterion that depends on the cohesion and internal 
friction angle of the material. Since the development of the 
non-linear Hoek and Brown failure criterion for rock masses 
(Hoek and Brown 1980, 1997; Hoek et al. 2002), the equiva-
lent strength parameters of the Mohr–Coulomb failure cri-
terion (cohesion and friction angle) were assessed for the 
corresponding stress level of the rock mass, to introduce 
them in traditional formulations. However, some research 
from different authors as Merifield et al. (2006) observed 
that the use of Mohr–Coulomb equivalent strength param-
eters overestimates the bearing capacity by up to 157% in the 
case of a good quality rock mass (GSI about 75).

To calculate the bearing capacity, Yang and Yin (2005) 
applied the multi-wedge translation failure mechanism and 
the tangential line technique. They used the upper bound 

(1)
�1 − �3

�c

=

(

m ⋅

�3

�c

+ s

)a

.

(2)m = m0 ⋅ e
GSI−100

28−14⋅D ,

(3)s = e
GSI−100

9−3⋅D ,

(4)a =
1

2
+

1

6
⋅

(

e
−GSI∕15 − e

−20∕3

)

.

limit theory for strip foundation based on a modified Hoek 
and Brown failure criterion deducing the equivalent param-
eters of the Mohr–Coulomb failure criterion. Saada et al. 
(2008) also proposed another method to calculate the bear-
ing capacity based on the limit theories by applying the 
Hoek and Brown failure criterion and deducing the equiva-
lent parameters of the Mohr–Coulomb method that provided 
a better fit than the results obtained in Yang and Yin (2005). 
However, these methods do not claim to be general for con-
sideration in the presentation of results and their implemen-
tation requires a specific analysis.

Thus, a specific study is necessary that expressly con-
siders the markedly non-linear character of the rock mass, 
for which analytical and numerical methods have been 
developed.

3.3.1  Analytical Method

The analytical method that solves the internal equilibrium 
equations combined with the failure criterion was proposed 
by Serrano and Olalla (1994) and Serrano et al. (2000) 
applying the Hoek and Brown failure criterion (Hoek and 
Brown 1997) and the modified Hoek and Brown failure 
criterion (Hoek et al. 2002) respectively. It is based on 
the characteristic line method (Sokolovskii 1965) with the 
hypothesis of plane strain, associative flow rule, coaxiality, 
perfectly plastic yield surface, and weightless rock mass.

According to this analytical formulation, the ground sur-
face that supports the foundation is composed of two sectors 
(Fig. 3): boundary 1 with inclination α where the load acting 
on a surface is known (for example, the ground load on the 
foundation level or the load from installed anchors) (acting 
with the inclination i1); and the boundary 2, where the bear-
ing capacity of the foundation should be determined (acting 
with the inclination i2).

The failure criterion of Hoek and Brown (1) is nonlinear, 
then the inclination of the curve on the diagram shear stress 

Fig. 3  Mathematical model of the bearing capacity of the strip foot-
ing
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(τ)—normal stress (σ) (which in rock mechanics is associ-
ated with the instantaneous friction angle of the material) 
depends on the stress state.

The analytical solution is based on the characteristic line 
method with the equation of the Riemann invariants fulfilled 
along the characteristic line (Serrano et al. 2000). From the 
overload on the surface, it can be obtained the instantaneous 
friction angle, and the direction of the principal stress in 
this boundary 1 (see Fig. 3), and using Riemann invariants, 
both the instantaneous friction angle below the foundation 
(boundary 2, see Fig. 3) and the ultimate bearing capacity 
can be estimated.

3.3.2  Numerical Methods

Finite element limit analysis has been one of the possibili-
ties to obtain collapse loads. Different calculations using 
the finite element method under lower and upper bound 
theorem (Sloan 1988; Sloan and Kleeman 1995) were used 
by Zheng et al. (2000) and Sutcliffe et al. (2004) to deter-
mine the bearing capacity of the fractured rock and jointed 
rock mass. Later, Merifield et al. (2006) applied the limit 
theorems (upper and lower bound), as an extension of the 
formulation developed by Lyamin and Sloan (2002a, b) to 
determine the bearing capacity on a fractured rock mass 
whose behavior is a Hoek and Brown type. More recently, 
a lower-bound finite elements limit analysis in combination 
with either semidefinite programming (SDP) or nonlinear 
optimization respectively (Kumar and Khatri 2011; Kumar 
and Mohapatra 2017; Chakraborty and Kumar 2015) have 
been applied to solve stability problems involving a modi-
fied Hoek and Brown (Hoek et al. 2002) yield criterion in 
the rock mass, in particular the bearing capacity for both 
circular and strip footings.

Finite element limit analysis computes the upper o lower 
limit load using optimization techniques rather than time 
stepping and increasing the system load to a collapse load, as 
conventional non-linear finite element techniques do. They 
may use linear programming to consider the common non-
linear behavior of yield surfaces or second-order cone pro-
gramming to address them directly (Makrodimopoulos and 
Martin 2006). However, as reported in Smith and Gilbert 
(2007), the solutions obtained are often highly sensitive to 
the geometry of the original finite element mesh, though the 
problem may be overcome by adaptive remeshing techniques 
at the cost of a higher complex procedure.

Similar limitations were found using other numerical 
techniques as the Finite Difference method. For example, 
some authors reported the difficulty of obtaining stable 
results in conditions of highly fractured rock masses with 
high values of m0 and low values of GSI (Merifield et al. 
2006). Contrary to the case of the linear Mohr–Coulomb 
criterion used in soil mechanics, the application of the Hoek 

and Brown non-linear criterion has produced results dis-
crepancies among researchers when evaluating the bearing 
capacity of a foundation (Alencar et al. 2019) due to the 
need for an exhaustive numerical study.

4  Generation of the Bearing Capacity 
Results Database

To apply the ANN technique, it is necessary to have a data-
base with reliable results, which is extensive enough to cover 
the range of variation of the parameters identified as essen-
tial for defining the global bearing capacity of the rock mass 
and that allows training and properly validating the devel-
oped neural network.

The first step is to identify the parameters that influence 
the evaluation of the bearing capacity of a foundation on a 
rock mass. Thus, the geomechanical, geometric, and soil-
structure interaction parameters indicated in Table 1 are 
considered.

Next, the calculation cases have been established by vary-
ing the parameters throughout their range of variation to 
have the set of data used to build and calibrate the ANN 
model. Table 2 shows the values adopted for the parameters 
so that a series of 2762 calculation simulations is obtained.

Finally, it is necessary to be able to generate reliable 
results for each simulation case of the bearing capac-
ity of shallow foundations on rock masses. For this, the 

Table 1  Parameters considered for evaluating the bearing capacity of 
a shallow foundation on a rock mass

Geomechanical Rock type (m0)
Uniaxial compressive strength (UCS)
Rock mass quality index (GSI)
Dilatancy (ψ)
Self-weight

Geometric Shape: plane strain/axisymmetric
Foundation width (B)

Soil-structure interaction Contact roughness

Table 2  List of inputs for the neural network and adopted values

Inputs parameters Adopted values

m0 5/12/20/32
UCS (MPa) 5/10/50/100
GSI 10/50/85
B (m) 4, 5/11/16, 5/22
Dilatancy Null/associated
Shape Plane strain/axisymmetric
Contact roughness Roughless/rough
Self-weight Weigthless/self-weigthted
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geotechnical commercial programs FLAC (Itasca Consult-
ing Group 2012) has been used. FLAC applies the finite 
differences method (FDM) to solve geotechnical problems. 
The software contains different constitutive models like 
Mohr–Coulomb and Hoek and Brown, using the tangent 
linear approximation in this last failure criterion. In FDM 
it is assumed that the bearing capacity is reached when the 
continuous medium does not support more load because an 
internal failure mechanism was formed. However, an accu-
rate calculation requires an extensive and laborious conver-
gence analysis of the different numerical parameters, which 
becomes costlier in computational terms due to the markedly 
non-linear character of the Hoek and Brown failure criterion 
that governs rock masses. To guarantee the precision of the 
solution, the following have been numerically controlled 
for each of the calculation simulations: (1) the linearization 
of the Hoek and Brown criterion of the rock mass; (2) the 
nodal distance; and (3) the velocity condition applied to the 
boundary nodes.

In the case of the linearization of the failure criterion, 
it should be noted that an adaptive discretization has been 
adopted for each area of the numerical model so that, in 
each calculation step, the stress in the area is defined as the 
point of failure on the Hoek and Brown criterion (that is, 
the failure line that is tangent to that point on the failure sur-
face). This way of associating the linearization of the failure 
criterion is extended to all the areas of the numerical model 
and is carried out until the stresses of all the areas stabilize.

In the case under study, the vertical load was obtained 
through a constant velocity condition (low enough to repro-
duce quasi-static load conditions) applied to the boundary 

nodes, and the bearing capacity was determined from the 
relation between stresses and displacements of one of the 
nodes; in this case, the central node of the foundation was 
considered.

The numerical control of the velocity of the nodes and the 
nodal distance implies carrying out several similar calcula-
tions with different values of each numerical parameter until 
the solution is stabilized. Thus, Fig. 4 shows a 2D finite-
difference model used to calculate the different cases, apply-
ing a plane strain condition to a symmetric model, where 
only half of the strip footing is represented; while in Fig. 5 
the convergence control is presented with both numerical 
parameters in one of the numerical simulations carried 
out with FLAC, which corresponds to the values: m0 = 12; 
UCS = 50 MPa; GSI = 50; B = 4.5 m; associated dilatancy; 
plane strain; rough contact and weightless rock.

5  Overview of Back‑Propagation Neural 
Networks

A comprehensive description and analysis of the type and 
use of back-propagation perceptrons is above the scope of 
this paper and can be found somewhere else (for example 
Zurada 1992; Fausett 1994).

A multilayer perceptron (MLP) consists of multiple layers 
of computational units (nodes or neurons) interconnected, in 
this case, in a feed-forward way. The first layer is formed by 
the input neurons, connected to one or more hidden layers of 
neurons, and followed by the final layer of output neurons. 

Fig. 4  2D model used in the 
calculation through FDM



 M. A. Millán et al.

1 3

5078

Each neuron in one layer has directed weighted connections 
to the neurons of the subsequent layer.

The input from each node in the previous layer 
(

xi
)

 is mul-
tiplied by an adjustable connection weight 

(

wji

)

 when arriv-
ing at the node j in the actual layer, and a threshold value or 
bias 

(

�j

)

 is added or subtracted. This combined input 
(

Ij
)

 is 
then passed through a non-linear transfer function (sigmoi-
dal or tanh function), and the result becomes the input for 
the next layer. This process is summarized in Figs. 6 and 7, 
and Eqs. 5 and 6:

This process starts from the input layer, fed by a set of 
data presented to the network for the learning process. The 
final output obtained from this data is compared against 
the known results, then a measure of some predefined 

(5)Ij =
∑

(

wji ⋅ xj
)

+ �j,

(6)yj = f (Ij).

Fig. 5  Numerical parameters considered for evaluating the bearing 
capacity of a shallow foundation on a rock mass for the case m0 = 12; 
UCS = 50  MPa; GSI = 50; B = 4.5  m; associated dilatancy; plane 

strain; rough contact and weightless: a FDM convergence analysis 
according to the velocity increment; b FDM convergence analysis 
according to the density of nodes

Fig. 6  A schematic illustration of a multilayer perceptron network
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error-function is obtained. Using different optimization 
techniques, the error is fed back through the network, and 
then the algorithm adjusts the weights of each connection 
to reduce the value of the error function by some small 
amount. Repeating this process, a large enough number of 
training cycles, the network eventually converges to a state 
having a small error, meaning that the network has learned 
the function.

An excessive number of training cycles may produce 
what is called overfitting, giving smaller errors for the train-
ing set but reducing the net capacity to predict and general-
ize the results from other sets. A stopping criterion is needed 
to avoid overfitting, being the cross-validation technique the 
most accepted in the field, and will be introduced in the next 
section.

6  ANN Model Development

In this research, the artificial neural network for predicting 
the bearing capacity of shallow foundations on rock masses 
is developed using the Matlab computer software utilities 
(Mathworks Inc. 2019a). The data used to build and calibrate 
the model is obtained from a series of 2762 numerical simu-
lations of the problem using the FLAC software based on 
finite differences, changing the different parameters affecting 
the model behavior.

6.1  Selection of the Inputs and Outputs

In this particular case, as in most cases in Geotechnical 
Engineering, the parameter selection for the neural network 
is based on the knowledge of the physical problem underly-
ing the behavior of the system.

The main parameters defining the bearing capacity of a 
shallow foundation on a rock mass are: three parameters 
characterizing the rock mass as rock type (m0), uniaxial 
compressive strength (UCS), and geological strength index 

(GSI), and the foundation width (B). However, as intro-
duced before in Table 2, there are also some other additional 
parameters influencing the results that allow expanding the 
limitations of analytical and empirical formulations and are 
also considered as inputs: the dilatancy on the failure sur-
face (assigning a 0 value when the dilatancy angle is ψ = 0 
and 1 for ψ = ρ), bidimensional or axisymmetric problem 
(assigning a 0 and 1 values respectively), rough or roughless 
foundation-rock contact (assigning a 0 and 1 values respec-
tively), and weightless or self-weighted rock mass (assigning 
a 0 and 1 values respectively).

Therefore, the total number of inputs is 8 and the bearing 
capacity of the foundation is the single output variable.

6.2  Data Division and Statistical Analysis

When creating a neural network, one of the basic issues is 
training the net up to a point before losing its capacity for 
accurate predictions with a different set of inputs. This situ-
ation is known as over-fitting and can be avoided if training 
and checking of prediction capabilities are developed simul-
taneously using different subsets of the data input.

The total number of available inputs is divided into three 
sets, training, testing, and validation. Using this division, 
cross-validation or the net is allowed, as proposed by Stone 
(1974). The training set is used to adjust the weight of the 
net nodes, and the testing set is used to check the perfor-
mance of the model at different stages of the training process 
and determine when to stop to avoid over-fitting. The valida-
tion set allows an independent check of the network when 
the training process is finished and the different weights of 
each connection are already defined. The percentage of the 
inputs assigned to each set is (75-15-15), meaning that 75% 
is assigned to the training set (1658 cases), 15% to the test-
ing set (332 cases), and 15% to the validation set (332 cases).

The above-mentioned division should represent statis-
tically the whole population of inputs (following Masters 
1993). Then, the statistical properties of the different sub-
sets (e.g. mean, standard deviation, and range) should match 
those of the complete set. Consequently, all patterns con-
tained in the original set of inputs should be reproduced 
in each of the subsets. Since the division is performed ran-
domly, an iterative process is adopted until a group of train-
ing, test, and validation sets consistent with the statistical 
properties is achieved.

The statistical properties considered are mean, standard 
deviation, minimum, maximum, and range, as suggested by 
Shahin et al. (2004b). Table 3 shows the results obtained for 
the different input parameters. It is clear that, as the input 
population is large, there is no problem in the statistical 
matching among the different subsets.

The validity of the network is limited by the range of 
parameters included in the training data. Consequently, the 

Fig. 7  Input–processing–output system in an artificial neuron
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performance is better when no extrapolation is made over 
that range.

6.3  Data Scaling

In most ANN’s, the input parameters are scaled to a (0, 1) or 
(− 1, 1) range before the training to eliminate their dimen-
sion and to assure all of them are treated homogeneously 
during training the network, working well when the data 
distribution is more or less homogeneous. However, that 
scaling procedure, used alone, does not produce good results 
in this research.

One of the more important problems found in build-
ing the network depends on the distribution of the output 
values of bearing capacity (Ph) among the data range, 
which is extremely concentrated around the small values 
of Ph (Fig. 8a). Since most of the Ph values are very small 
compared to the whole range, and even the global error of 
the ANN approximation was very reduced, it created very 
important percentage errors for the smaller values when 
using only regular scaling.

Adding a logarithmic scaling (natural log) to the Ph tar-
gets before the regular scaling (0, 1) solves the problem 
since it produces a more homogeneous distribution of the 
data along with the Ph range. Data distributions without scal-
ing, using logarithmic scaling and the final step, with log 
scaling and (0, 1) scaling simultaneously applied, are shown 
in Fig. 8b, c, respectively. It is important to note that the log 
scaling is exclusively applied to the output values Ph, and 
not to any other input value.

6.4  Determination of Network Architecture 
and Internal Parameters

As introduced in Sect. 5, the neural network is a multilayer 
set of neurons (input layer-hidden layers-output layer), inter-
connected by inputs from the previous layer and output to 
the next layer. At each neuron, the inputs are changed into 
outputs by affecting them with weights and biases and apply-
ing a transfer function that changes their values. Building 
the net means defining the model architecture (layers and 
neurons) and training it (weights and biases).

Table 3  Input and output 
statistics for the different data 
sets (75-15-15 case)

Model variable Dataset Mean Standard deviation Minimum Maximum Range

m0 Training 16.88 9.91 5 32 27
Testing 16.96 9.85 5 32 27
Validation 17.73 10.26 5 32 27

B (m) Training 13.50 6.44 4.5 22 17.5
Testing 13.39 6.53 4.5 22 17.5
Validation 13.72 6.72 4.5 22 17.5

UCS (MPa) Training 42.15 38.46 5 100 95
Testing 38.03 37.31 5 100 95
Validation 39.31 37.77 5 100 95

GSI Training 47.68 30.27 10 85 75
Testing 49.13 30.43 10 85 75
Validation 52.59 29.34 10 85 75

Dilatancy Training 0.66 0.47 0 1 1
Testing 0.69 0.46 0 1 1
Validation 0.70 0.46 0 1 1

Plane strain/axisymmetric Training 0.49 0.50 0 1 1
Testing 0.53 0.50 0 1 1
Validation 0.49 0.50 0 1 1

Contact roughness Training 0.69 0.46 0 1 1
Testing 0.67 0.47 0 1 1
Validation 0.66 0.47 0 1 1

Self-weight Training 0.52 0.50 0 1 1
Testing 0.52 0.50 0 1 1
Validation 0.50 0.50 0 1 1

Ph Training 141.36 265.56 0.18 1745 1744.82
Testing 127.25 240.16 0.21 1700 1699.79
Validation 139.96 234.71 0.2075 1718 1717.7925
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Although the input layer and output layer are predefined 
by the problem under study and the intended results, the hid-
den layers are not. Model architecture requires the selection 
of the optimal number of hidden layers in the network and 
the determination of the optimal number of neurons in each 
layer. Defining a net includes a process of defining many 
networks of different complexity and select the optimum.

There is no unified theory to obtain the optimal number 
of layers in a network and that task is performed by trial-
and-error procedures. Besides, a single hidden layer can 
reproduce successfully any continuous function, as stated 
by Hornik et al. (1989). The number of hidden nodes (2I + 1) 
(being I the number of inputs) is used with success in the 
literature of ANN for geotechnical problems.

The single-hidden layer network is tried using several 
nodes starting from 3 to a maximum of 25, checking that 
over (2I + 1) = 17 (being I = 8 the number of inputs), no 
improvement is achieved, as suggested by Caudill (1988). 
The transfer functions used at each layer to change from 

input to output (see Sect. 5) can be also chosen among a 
variety of them. In the single hidden layer model, different 
combinations of transfer functions were tried (sigmoidal, 
hyperbolic tangent, and linear for the output layer) to iden-
tify those giving the most accurate predictions. Finally, a 
sigmoidal transfer function is adopted for the hidden and a 
linear one for the output layers.

The networks performance, concerning the number of 
hidden layer nodes, is evaluated using as performance meas-
ures the correlation coefficient r, the root mean square per-
centage error, RMSPE, and mean absolute percentage error, 
MAPE. These indicators are chosen because their measure-
ments of the errors are relative and expressed as a percent-
age, allowing their immediate and straightforward evalua-
tion. The expression for each one is included in Table 4. The 
results for the different indexes are shown in Table 5.

The RMSPE and MAPE are also plotted versus the 
number of hidden layer nodes in Fig. 9 and Fig. 10, respec-
tively. As can be seen in the figure, performance quickly 

Fig. 8  Different stages of normalization of the target data Ph: a Original data, b log scaling, and c (0,1) scaling applied to the previous log-scaled 
data
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improves when increasing the number of nodes, highly 
improving before 5 nodes, and stabilizing over 13 nodes. A 
network with seven hidden layers’ nodes is selected as the 
optimum model, balancing that the performance measures 

are in all cases around or below 5% and that the number 
of nodes is not very high. It is the authors’ opinion that 
reducing the performance to 2% does not compensate for 
increasing the number of hidden nodes to 13 or 14.

Table 4  Performance measures 
of error

X, Y are the compared series of data, xi and yi are the elements of the series. Cov(X,Y) is the covariance 
between X and Y, and Var(X) the variance of X

Correlation coefficient Root mean square percentage error Mean absolute percentage error

r =
Cov(X,Y)

√

Var(X)⋅Var(Y) RMSPE =
100

n

�

∑n

i=1 (xi−yi)
2

n

MAPE =
100

n

n
∑

i=1

�

�

�

(xi−yi)

xi

�

�

�

Table 5  Performance results of ANN models for different number of hidden layer nodes

Number hidden 
layer nodes

Performance measures

Training set Testing set Validation set

r RMSPE (%) MAPE (%) r RMSPE (%) MAPE (%) r RMSPE (%) MAPE (%)

1 0.961 51.1 38.9 0.962 49.4 37.3 0.966 50.1 37.4
3 0.989 17.1 13.5 0.987 18.1 13.7 0.991 18.2 14.5
5 0.998 7.5 5.7 0.999 7.2 5.4 0.999 7.8 5.7
7 0.999 4.9 3.6 0.999 5.3 3.9 0.999 4.9 3.4
9 0.999 3.5 2.7 0.999 3.9 2.9 0.999 3.9 2.9
11 1.000 3.3 2.5 1.000 3.8 2.7 1.000 3.2 2.4
13 1.000 2.3 1.7 1.000 2.5 1.9 1.000 2.7 2.0
15 1.000 2.1 1.5 1.000 2.6 1.8 1.000 2.4 1.8
17 1.000 2.2 1.6 1.000 2.3 1.6 1.000 2.5 1.8
19 1.000 1.9 1.4 1.000 2.5 1.7 1.000 2.5 1.8
21 1.000 1.8 1.3 1.000 2.5 1.7 1.000 2.1 1.6
23 1.000 1.7 1.2 1.000 2.2 1.4 1.000 2.0 1.4
25 1.000 1.7 1.3 1.000 2.1 1.5 1.000 2.1 1.5

Fig. 9  Root mean square per-
centage error versus the number 
of hidden layer nodes
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The structure of the optimum neural network is included 
in Fig. 11 showing an input layer with 8 neurons, a hidden 
layer of 7 neurons, and an output layer of 1 neuron.

The weights and biases of the network are detailed in 
Sect. 5.7.

The comparison between targets and predictions is 
superimposed in Fig. 12a, where a very good agreement is 
observed. The histogram of error values obtained predicting 
Ph with a 7-hidden-nodes ANN is also shown in Fig. 12b. 
The error is below 10% in most cases, never reaching a 
maximum of 20%.

Fig. 10  Mean absolute percent-
age error versus the number of 
hidden layer nodes

Fig. 11  Structure of the pro-
posed optimum neural network



 M. A. Millán et al.

1 3

5084

The plot of predicted versus calculated Ph bearing capac-
ity with respect to the data in the training, testing, and 
validation sets, and all the sets simultaneously, are shown 
in Fig. 13a–d, respectively, where the solid line indicates 
equality and the regression coefficient is indicated above 
each sub-figure. According to the value of R, always higher 
than 0.999, it can be concluded that there exists a very good 
correlation between the model predictions and the target 
calculated values.

6.5  Model Optimization

Optimizing the network is addressed by the process of 
training or learning that can begin once the network 
weights and biases are initialized. It requires a set of 

examples of the correct network behavior (network inputs 
and target outputs to compare to in successive training 
steps).

The training process consists of tuning the values of the 
weights and biases of the network to optimize network per-
formance which is checked using the performance function. 
Training in feed-forward neural networks commonly uses the 
back-propagation algorithm (Rumelhart et al. 1986), which 
involves performing computations backward through the 
network. Its details can be found in every basic reference on 
neural networks (Fausett 1994).

The performance function used in this procedure is the 
mean square error (the average squared error between the 
series of network outputs xi and the series of target outputs 
yi : MSE =

1

N

n
∑

i=1

�

xi − yi
�2 ), though there are some other 

options. At each step in training, the gradient of the network 
performance with respect to the network weights is calcu-
lated. The training process will stop when one of the stop-
ping criteria is reached, as explained in Sect. 5.6.

Different training algorithms may be applied to the net-
work. It is difficult to know in advance the fastest method for 
a given problem, then trial and error seems to be the appro-
priate decision criterion. Among the algorithms, Quasi-
Newton, resilient backpropagation, scaled conjugate gradi-
ent, and the Levenberg–Marquardt optimization schemes, 
offered as Matlab algorithms, were tried in this research. 
The Levenberg–Marquardt algorithm (Marquardt 1963) 
was selected since it produced faster and more accurate pre-
dictions in this problem. As a drawback, it requires more 
memory than other algorithms but that was not a limitation 
in this particular model.

6.6  Stopping Criteria

Different stopping criteria are used to decide when finishing 
the training of the network (Shahin et al. 2008). Using the 
Matlab built-in Levenberg–Marquardt procedure, the train-
ing stops when any of these conditions occur (MathWorks 
2019b):

– The maximum number of steps is reached.
– The maximum amount of time is exceeded.
– The performance function is minimized to the goal.
– The performance gradient falls below a pre-fixed mini-

mum.
– The momentum exceeds a pre-fixed maximum. In this 

algorithm, the momentum does not have a constant value 
but is decreased after each successful step from an initial 
value (0.01), aiming to a final value of 0 (in this case, the 
value of 1e−8 was reached). Using this procedure, the 
performance function is always reduced.

Fig. 12  Ph predictions (a) and histogram of error values (b) using an 
ANN with 7 hidden nodes
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– The validation performance has increased more than a 
pre-fixed number of times since the last time it decreased 
(when using validation).

In this research, the input data is divided into training, 
testing, and validation subsets and cross-validation criteria 
(Stone 1974) can be used. This is the most valuable criteria 
to avoid over-fitting (Smith 1996). From the training and 
testing subsets, the performance of the network is checked 
at each step and used to adjust the connection weights. The 
network is then validated using the independent validation 
subset, examining if the performance improves as expected 

or, on the contrary, deteriorates (which means over-fitting), 
in which case the training stops. To avoid false minima, 
the training continues several steps before concluding the 
process.

The performance evolution (mean square error) of the net 
through the training process is shown in Fig. 14a, as well as 
the gradient, the momentum μ, and the validation checks in 
Fig. 14b. The optimum performance was reached with 613 
epochs (iterations), unless the training continued for 150 
more epochs to avoid false minima (as the one found around 
epoch 400, as can be seen in the validation check figure at 
the bottom).

Fig. 13  Measured versus calculated Ph (target) for the optimal ANN model with respect to: a the training set, b validation set, c testing set, and d 
complete set
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6.7  Weights Analysis of the ANN

The weights in the ANN represent the amount of each input 
signal that will be transmitted to the output. The neural net-
work weight matrix obtained for the studied case (Table 6) 
can be used to estimate the relative importance of the vari-
ous input variables on the output variable. The relative 
importance of input variables is calculated using Garson’s 
algorithm (GA) (Garson 1991) of common use in the neural 
network literature. Garson’s algorithm employs the absolute 
value of weights for calculation.

Figure 15 shows the relative importance of the differ-
ent inputs using Garson’s algorithm. GA shows a higher 

contribution from m0, UCS, and GSI. These results will be 
confirmed in the next section, where a sensitivity study is 
carried out.

6.8  Model Validation and Performance Measures

After training the model, a validation step should be per-
formed to ensure, on one hand, its ability to generalize 
between the limits defined by the training data and, on the 
other hand, its robustness under a wide range of conditions 
(Shahin et al. 2008).

The simplest measure of performance is addressed using 
the already introduced statistical parameters as the correla-
tion coefficient, r, the root mean square percentage error, 
RMSPE, and mean absolute percentage error, MAPE. This 
analysis was commented on in a previous section and is not 
repeated here.

However, validation against performance alone results in 
a network that may produce accurate predictions when using 
similar situations to the training data but may not be robust 
under different conditions. Shahin et al. (2005c) proposed 
to perform a sensitivity analysis to check the changes in 
the outputs when the inputs change. The robustness of the 
model is then analyzed examining how well model predic-
tions are in agreement with the known underlying physical 
processes, that is to say, the changes in the predicted bear-
ing capacity of shallow foundations on rock masses when 
changing the different parameters should agree with what 
is expected from the experience and other analytical and 
numerical methodologies.

The sensitivity analysis investigates the response of 
the neural network to a set of hypothetical input data that 
are generated over the ranges of the minimum and maxi-
mum data used to train the model. One variable at a time 
is changed over those ranges while all others are fixed to a 
certain chosen value. The process is repeated for each vari-
able and different sets of synthetic inputs are generated by 
this procedure.

The UCS parameter is chosen as a reference for all the 
analysis since it is one of the most influential parameters on 
the foundation response and its influence is clearly known 
from the analytical formulation, which predicts that the bear-
ing capacity grows proportionally to the UCS (Serrano et al. 
2000).

Variation of results with m0 and GSI against UCS are 
shown in Fig. 16, for the case of null dilatancy (Fig. 16a, c) 
and associated dilatance (Fig. 16b, d) keeping other param-
eters constant. It reveals that bearing capacity is highly 
dependent on the compressive strength of the rock UCS, 
increasing almost linearly as UCS increases. The growth 
of the bearing capacity with the UCS becomes more pro-
nounced with a higher value of the parameters  m0 (Fig. 16a) 
and GSI (Fig. 16c) being the result much more sensitive 

Fig. 14  Performance evolution during the training process. a Varia-
tion of the MSE with the number of epochs. b Evolution of variables 
involves in the training process
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to the variation of the GSI than of the  m0, as reported in 
previous research (Serrano and Olalla 1994; Serrano et al. 
2000; Merifield et al. 2006; Saada et al. 2008). The results 
presented for the case of null dilatancy (Fig. 16b, d) show a 
significant reduction of the bearing capacity relative to the 
associated dilatancy case (Fig. 16a, c). The reduction is more 
important for m0 (Fig. 16b), reaching a 37% reduction for 
m0 = 32, while for GSI (Fig. 16d) the reduction is about 24% 
for GSI = 85. Those results are consistent with the literature 
(Alencar et al. 2019).

The influence of B and self-weight is presented in 
Fig. 17 since they are closely related. They are obtained 
for the reference case: m0 = 12, GSI = 10, associated dila-
tancy, 2D case, rough contact. When a weightless rock is 
considered (Fig. 17a), no difference is shown in the results 
for different values of B, as expected from the analyti-
cal solution of the problem. If self-weight is introduced 

(Fig. 17b), a significant variation on the results appears, 
more evident for larger values of UCS, proving an impor-
tant influence of B for the selected case (it is smaller for 
higher values of GSI).

Al figures show a coherent and smooth variation with 
the parameters, proving that the neural network offers a 
robust response in the input domain where it was trained.

The influence of the different hypotheses on the model 
(dilatancy, shape, roughness, and self-weight) are pre-
sented in Fig.  18, where an intermediate value of the 
parameters is chosen as reference (m0 = 10, B = 11 m, 
GSI = 50) and each of the others is changed between 0 
and 1 alternatively to address its influence on the results. 
In general, starting from the 2D case, with associate 
dilatancy, rough contact, and weightless rock (Dilat = 1, 
Sh = 0, R = 1, Wh = 0), the figure shows an important 
reduction in Ph when dilatancy changes to null, as can be 
expected. A smaller reduction is obtained when the contact 
changes from rough type to roughness type since a rough 
interface rigidizes the rock under the foundation, and only 
a slight increment is observed when the self-weight of the 
rock is considered, showing the increment of work neces-
sary to move the wedge of failure. On the contrary, an 
important increase in Ph appears when an axisymmetric 
foundation is considered instead of the 2D one, which is 
coherent with the well-known fact in geotechnical engi-
neering that the bearing capacity is smaller in the 2D one 
as theoretical results show. All results are consistent with 
previous research on the subject (Alencar et al. 2019).

The previous results confirm that the optimum network 
performs well and can be successfully used to coherently 
predict the bearing capacity of shallow foundations on 
rock masses.

Table 6  Weights and biases corresponding to the optimal ANN

Hidden 
layer nodes

Weight from node i in the input layer to node j in the hidden layer wij Hidden layer bias θj

m0 B (m) UCS (MPa) GSI Dilatancy Plane strain Roughness Self-weight

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

j = 1 0.0904 0.3748 − 1.0865 − 1.8340 − 0.3503 − 0.2675 0.0152 − 5.1612 − 0.4305
j = 2 0.5123 0.0294 − 0.0416 − 0.0688 − 0.0356 − 0.0377 − 0.0118 0.0456 − 0.2945
j = 3 − 0.1519 − 0.0658 0.1049 0.3028 0.0420 0.0591 − 0.0074 − 0.0906 − 0.1662
j = 4 − 0.4427 0.1000 − 0.1222 0.3550 − 2.6524 0.3938 2.6979 0.0360 − 2.0397
j = 5 − 0.0081 0.0160 4.2855 − 0.0651 − 0.0129 − 0.0089 − 0.0034 0.0333 2.0280
j = 6 − 0.2113 − 0.0215 0.0236 − 2.4740 − 0.0189 − 0.0722 − 0.0587 − 0.0719 − 1.1319
j = 7 0.2910 0.0462 − 0.0620 − 0.1653 − 0.0247 − 0.0436 − 0.0001 0.0652 − 0.0723

Output layer node Weight from node j in the hidden layer to node k in the output layer wjk Output layer bias θk

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

k = 1 − 0.1109 − 6.1851 8.0002 0.0891 4.8032 − 0.7105 15.3881 − 4.6804

Fig. 15  Relative importance of the various input variables on the out-
put variable
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7  Results and Discussion

The main result of this research is the ANN model that is 
conveniently converted into a set of simple equations to 
facilitate its use, being easily implemented in a spreadsheet. 
The detailed equations are presented in the following, as 
well as some discussion about its scope and limitations.

The optimal ANN previously developed has 8 inputs, 7 
neurons in the hidden layer, and only one output, as shown 
schematically in Fig. 11.

The equations are obtained from the weights and biases 
provided by the Matlab software (applying to the inputs and 
one output the convenient scaling and re-scaling process), 
using the following expression (Ranasinghe et al. 2017):

(7)

yn = foutp

{

�k +

7
∑

1

{

wkj ⋅ fhidden

[

8
∑

1

(

wji ⋅ xni
)

+ �j

]}}

,

Fig. 16  Variation of the bearing capacity Ph. Relation between m0 and UCS for the associated (a) and null dilatancy (b) cases. Relation between 
GSI and UCS for the associated (c) and null dilatancy (d) cases. Variable codes are dilat: dilatancy, Sh: shape, Rg: roughness, Wh: self-weight
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where yn is the single normalized output variable, represent-
ing the bearing capacity; 

(

�k

)

 is the threshold value at the 
output layer and 

(

wkj

)

 is the connection weight between the 

jth node in the hidden layer and the kth node in the output 
layer; 

(

�j

)

 is the threshold value of the jth hidden node and 
(

wji

)

 is the connection weight between the ith input node and 
the jth hidden node; 

(

xni
)

 is the ith normalized input variable; 
and 

(

foutp
)

 and 
(

fhidden
)

 are the transfer functions at the hidden 
and output nodes respectively.

The previous expression (7) can be implemented recur-
sively, considering that fhidden correspond to the tangent-
sigmoid function 

(

2

1+e−2⋅t

)

− 1 , and foutp to the linear func-
tion, as:

Note that the inputs xni in Eq. (9) are the normalized val-
ues. The weights and biases provided by the Matlab software 
corresponding to the optimal ANN are detailed in Table 6.

It is important to remember that reverse normalization 
should be applied to Eq. (8) to obtain the desired value of 
bearing capacity Ph. Considering that the variables are nor-
malized in the range (hmin, hmax) = (0,1) the following expres-
sions should be used:

– Direct normalization of input values xi to normalized 
values xni:

(8)yn = foutp

{

�k +

7
∑

1

{

wkj ⋅ Tj
}

}

= �k +

7
∑

1

{

wkj ⋅ Tj
}

,

(9)

Tj = fhidden

�

�j +

8
�

1

�

wji ⋅ xni
�

�

=
2

1 + e
−2

�

�j+
∑8

1 {wji⋅xni}
� − 1.

Fig. 17  Variation of the bearing capacity Ph relation between B (m) and UCS for weightless (a) and self-weighted rock (b) for the reference case: 
m0 = 12, GSI = 10, Dilat = 1, Sh = 0, Rg = 1. Relation. Variable codes are dilat: dilatancy, Sh: shape, Rg: roughness, Wh: self-weight

Fig. 18  Variation of the bearing capacity Ph with respect to the differ-
ent hypotheses in the model for the reference case: m0 = 10, B = 11 m, 
GSI = 50
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– Reverse normalization of the normalized output value yn 
to the output value y:

– Reverse log conversion of the output value y to obtain the 
final limit load:

Being xmax−i , xmin−i the maximum and minimum value 
in the ith-parameter input data (xi) used to train the neural 
network that can be found in Table 3.

From the results obtained in the previous section, the 
equation representing the optimal ANN (already includ-
ing the double normalization previously explained) can be 
expressed as:

where the different terms T1 to T7 are obtained using Eq. (9). 
As an example, the term T1 is shown in full, being xni the 
normalized (not original) input values:

Using the previous equations, the trained ANN is eas-
ily reproduced and a very complex problem that would 
demand an elaborate model to be solved is straightforwardly 
addressed.

Some parameters as those corresponding to the modified 
Hoek and Brown criterion or dilatancy are not easily avail-
able in some software solutions, making the proposed ANN 
especially powerful and useful.

It is important to remark that the scope of the proposed 
ANN is restricted between the limits adopted for the input 
parameters. Predictions made outside those limits may not 
be accurate.

Although interpolation between input limits is available 
and the results will produce relatively accurate results, it 
should not be used for non-homogeneous inputs that not 
are associated with a real numerical value. A more detailed 
explanation is for the different cases:

(10)
xni =

(

xi − xmin−i

)

xmax−i − xmin−i

(

hmax − hmin

)

+ hmin

=

(

xi
)

xmax−i − xmin−i

.

(11)
y = (yn − hmin) ⋅

(

yn−max − yn−min

)

(

hmax − hmin

) + yn−min

= 9.179(yn) − 1.715.

(12)Ph = ey = e9.179(yn)−1.715.

(13)Ph = e9.179(−0.1109T1−6.1851T1+8.0002T1+0.0891T1+4.8032T1+−0.7105T1+15.3881T1−4.6804)−1.715,

(14)T1 = −1 +
2

1 + e−2(0.0904xn1+0.3748xn2−1.0865xn3−1.8340xn4−0.3503xn5−0.2675xn6+0.0152xn7−5.1612xn8−0.4305)
.

– Parameters with a numerical value: m0, UCS (MPa), 
GSI, B (m) can be given any value between inputs limits. 
For example, for  m0 the adopted values in the net were 
(5/12/20/32) but any value between 5 and 32 can be used 
as input for new predictions. The use of (5/12/20/32) for 
training assures a higher precision.

– Parameters that cannot be related homogeneously to a 
numerical value:

o Self-weight. Although a 0/1 value was adopted for 
this parameter, it is related to 0 and 26 kN/m3 real 
values. However, interpolation between those values 
is not recommended, since the predictions may not 
be accurate since only those two extreme cases were 
used to train the net.

o Dilatancy. This case is different from self-weight 
because associated dilatancy does not correspond to 
a unique value but it depends on the stress level (angle 
of the tangent to the Hoek and Brown criterion at the 
point of failure). Interpolation for dilatancy values 
other than 0–1 may give inaccurate results.

– No interpolation corresponds to shape and contact rough-
ness.

From the previous discussion, it can be followed that the 
case of a shallow foundation on a saturated rock with the 
phreatic level at the ground surface can be also studied using 

the network by assigning to the self-weight parameter the 
specific weight of the submerged rock.

8  Summary and Conclusions

This research deal with the calculation of the bearing capac-
ity of shallow foundations on rock masses due to general 
shear failure. Different tools can be used to address the prob-
lem, having either excessive simplification (empirical equa-
tions, analytical solutions) or are quite complex and requires 
high expertise (numerical models). A different approach is 
available nowadays, neural networks and soft computing, 
that can overcome both limitations.

An artificial neural network (ANN) is created to predict 
the aforementioned bearing capacity of shallow foundations 



Application of Artificial Neural Networks for Predicting the Bearing Capacity of Shallow…

1 3

5091

on rock masses, based on a large number of numerical cal-
culations used as input data for training the net.

Since based on complex numerical calculations using 
FLAC software, it will have the same capacity that the sub-
stituted method if uses the same main representative param-
eters and assures a good accuracy of predictions by adequate 
building and training.

The inputs used in the ANN are three parameters charac-
terizing the rock mass as rock type  (m0), uniaxial compres-
sive strength (UCS), and geological strength index (GSI), the 
foundation width (B), the dilatancy on the failure surface, 
bidimensional or axisymmetric problem, rough or roughless 
foundation-rock contact, and weightless or self-weighted 
rock mass. The only output is the bearing capacity (Ph). 
Most professional foundation problems can be addressed 
properly using the previous set of parameters, even cover-
ing a wider range (as considering dilatancy).

Once inputs and outputs are defined, both building and 
training the net are required. The structure and the optimal 
size of the network are obtained by comparing the results 
for a net with a different number of hidden nodes (from 3 to 
25), training functions, and transfer functions. Each archi-
tecture is trained and its predictions compared to the target 
values, analyzing the network performance, comparing pre-
dictions using the ANN with the target values, using the 
correlation coefficient, r, the root mean square percentage 
error, RMSPE, and mean absolute percentage error, MAPE. 
The final optimal architecture is a single hidden layer with 
7 nodes, balancing that the previous global performance 
measures are in all cases around or below 5% and that the 
number of nodes is not very high. The individual prediction 
error is below 10% in most cases, never reaching a maximum 
of 20%.

This network can deal with similar problems as an elabo-
rate numerical model and assures good accuracy. A sensi-
tivity analysis is developed to ensure de robustness of the 

proposed model. Both show a very good agreement with 
the expected results proving that the model can be used to 
predict the bearing capacity. Its only limitation is the need 
to use input values within the limits defined to train the net-
work as explained in the paper.

Finally, the neural network is converted into a set of sim-
plified design equations to facilitate the use of the model 
through hand or spreadsheet calculations. By using these 
equations, no specific training or experience is needed to 
solve the problem (unlike with numerical methods) beyond 
the necessary knowledge to properly define the input param-
eters and correctly interpret the obtained bearing capacity.

Appendix: Illustrative numerical example

To illustrate the detailed use of the previous bearing capac-
ity equation, a simple case of a shallow foundation on a 
rock mass having m0 = 20, B (m) = 11, UCS = 50 MPa, and 
GSI = 85. We also consider dilatancy 1 (associated), plane 
strain (0), rough contact (1), and self-weighted rock (1).

The following steps should be followed:
The input data should be scaled to the (0, 1) range, 

using Eq. (10):

Being xni and xi the obtained normalized value and the 
original value, respectively; x, xmax−i and xmin−i the origi-
nal, maximum and minimum values of the original data, 
respectively.

The original and normalized values for the studied case 
are shown in Table 7.

Calculation of the intermediate terms corresponding to 
the hidden-neuron outputs, T1 to T7, following Eq. (14), 
(15) and similar expressions:

(15)xni =

(

xi
)

xmax−i − xmin−i

.

T1 = −1 + 2∕
{

1 + exp
[

−2 ×
(

0.0904 × x1 + 0.3748 × x2 − 1.0865 × x3 − 1.8340 × x4

−0.3503 × x5 + −0.2675 × x6 + 0.0152 × x7 − 5.1612 × x8 − 0.4305
)]}

= −1 + 2∕{1 + exp [−2 × (0.09043 × 0.5556 + 0.37487 × 0.3714 − 1.0865 × 0.4737

−1.8340 × 1 + −0.3503 × 1 − 0.2675 × 0 + 0.01512 × 1 − 5.1612 × 1 − 0.43045)]}

= −1.0000

Table 7  Data normalization in 
the proposed example

m0 B (m) UCS (MPa) GSI Dilatancy Plane strain Roughness Self-weight
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

Original inputs 20 11 50 85 1 0 1 1
Normalized inputs 0.5556 0.3714 0.4737 1 1 0 1 1
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Similar results are obtained for the rest of the terms: 
T2 = −0.0891; T3 = 0.0215; T4 = −0.9536; T5 = 0.9993;

T6 = −0.9991, and T7 = −0.0477.
Obtain the final limit load from Eq.  (13) (this step 

includes the reverse normalization of the normalized out-
put value yn , from the final output neuron to the output 
value y , and the reverse log conversion of the output value 
y to obtain the final limit load):

The predicted result offers a 3.4% error compared to the 
target value, equal to 402.7 kN.
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Ph = exp
[

9.17 ×
(

−0.1108 × T1 − 6.1851 × T2

+8.0001 × T3 + 0.089 × T4

+4.8032 × T5 + −0.7105 × T6

+15.388 × T7 − 4.6803
)

− 1.715
]

= exp [9.17 × (−0.1108 × −1.0000

−6.1851 × −0.0891 + 8.0001 × 0.0215

+0.089 × −0.9536 + 4.8032 × 0.9993

−0.7105 × −0.9991

+15.388 × −0.0477 − 4.6803) − 1.715]

= 416.3 kN.
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